organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o175-o176

(3aS,7aS)-5-[(S)-3,3,3-Tri­fluoro-2-meth­­oxy-2-phenyl­propano­yl]-2,3,4,5,6,7-hexa­hydro-1H-pyrrolo[3,4-c]pyridin-3(2H)-one monohydrate

aPfizer Global Research and Development, La Jolla Labs, 10770 Science Center Drive, San Diego, CA 92121, USA, and bDepartment of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: alex.yanovsky@pfizer.com

(Received 3 December 2009; accepted 10 December 2009; online 16 December 2009)

rac-Benzyl 3-oxohexa­hydro-1H-pyrrolo[3,4-c]pyridine-5(6H)-carboxyl­ate was separated by chiral chromatography, and one of the enanti­omers ([α]22D = +10°) was hydrogenated in the presence of Pd/C in methanol, producing octa­hydro-3H-pyrrolo[3,4-c]pyridin-3-one. The latter was reacted with (2R)-3,3,3-trifluoro-2-meth­oxy-2-phenyl­propanoyl chloride [(R)-(−)-Mosher acid chloride], giving rise to the title compound, C17H19F3N2O3·H2O. The present structure established the absolute configuration of the pyrrolopiperidine fragment based on the known configuration of the (R)-Mosher acid chloride. The piperidine ring has a somewhat distorted chair conformation and is cis-fused with the five-membered envelope-shaped ring; the plane of the exocyclic amide bond is approximately orthogonal to the plane of the phenyl ring, making a dihedral angle of 82.31 (3)°. The water mol­ecule acts as an acceptor to the proton of the amino group in an N—H⋯O inter­action, and as a double proton donor in O—H⋯O hydrogen bonds, generating infinite bands along the a axis.

Related literature

For the structures of compounds with a similar bicyclic fragment, see: Kim et al. (2007[Kim, S.-G., Lee, S. H. & Park, T.-H. (2007). Tetrahedron Lett. 48, 5023-5026.]); Arnott et al. (2006[Arnott, G., Clayden, J. & Hamilton, S. D. (2006). Org. Lett. 8, 5325-5328.]); Altomare et al. (1995[Altomare, C., Cellamare, S., Carotti, A., Casini, G., Ferappi, M., Gavuzzo, E., Mazza, F., Carrupt, P.-A., Gaillard, P. & Testa, B. (1995). J. Med. Chem. 38, 170-179.]). For the general synthesis method, see: von Dob­eneck & Hansen (1972[Dobeneck, H. von & Hansen, B. (1972). Chem. Ber. 105, 3611-3621.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19F3N2O3·H2O

  • Mr = 374.36

  • Orthorhombic, P 21 21 21

  • a = 8.4870 (4) Å

  • b = 13.7152 (7) Å

  • c = 14.9113 (7) Å

  • V = 1735.69 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.36 × 0.25 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.984

  • 23008 measured reflections

  • 4020 independent reflections

  • 3738 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 1.02

  • 4020 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1537 Friedel pairs

  • Flack parameter: 0.0 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1O⋯O1 0.88 (2) 1.96 (3) 2.8164 (16) 165 (2)
N1—H1N⋯O1Wi 0.933 (19) 2.037 (19) 2.8687 (17) 147.7 (16)
O1W—H2O⋯O2i 0.88 (2) 2.06 (2) 2.9111 (15) 162.8 (19)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Catalytic hydrogenation of 1H-pyrrolo[3,4-c]pyridin-3(2H)-one (von Dobeneck & Hansen, 1972) with platinum gave rac-(3aR*,7aR*)-octahydro-3H-pyrrolo[3,4-c]-pyridin-3-one which was converted to rac-benzyl(3aR*,7aR*)-3-oxooctahydro-5H-pyrrolo[3,4-c]pyridine-5-carboxylate, and separated into enantiomers by supercritical fluid chiral chromatography on Chiralpak column with 50% methanol-modified CO2 as the eluent. The late eluting enantiomer ([α]22D = 10°) was hydrogenated in the presence of Pd/C in methanol producing octahydro-3H-pyrrolo[3,4-c]pyridin-3-one. The latter was reacted with (2R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl chloride [(R)-(-)-Mosher acid chloride] giving rise to the title compound. The present structure (Fig. 1) established the absolute configuration of the pyrrolopiperidine fragment based on the known configuration at the C9 atom coming from the (R)-(-)-Mosher acid chloride (due to a change of the substituent priority of the product, the S-configuration is assigned).

The piperidine ring N2/C5/C2/C3/C7/C6 has a somewhat distorted chair conformation with torsion angles of alternating signs and absolute values in the range from 40.5 (2)° to 63.0 (1)°. The cis-fused 5-membered ring C1/C2/C3/C4/N1 adopts an envelope shape with the C3 atom displaced by 0.540 (2) Å from the C1/N1/C4/C2 plane which holds to within 0.01 Å. The overall conformation of pyrrolopiperidine fragment is similar to that observed in some of the previously studied compounds with analogous groups (Kim et al., 2007), however the conformation of the rings, especially of the piperidine part, in other related molecules (Arnott et al., 2006; Altomare et al., 1995) is varying broadly depending on the nature of the substituents in the cycle. The amide bond plane (passing through C5/C6/C8/N2/O2/C9 atoms and planar within 0.03 Å) is approximately orthogonal to the plane of the phenyl ring, corresponding dihedral angle being 82.31 (3)°. Water molecule acts as an acceptor of the HN1 group and as a double acceptor in O-H···O interactions generating hydrogen bond network (Table 1, Fig. 2).

Related literature top

For the structures of compounds with a similar bicyclic fragment, see: Kim et al. (2007); Arnott et al. (2006); Altomare et al. (1995). For the general synthesis method, see: von Dobeneck & Hansen (1972).

Experimental top

rac-(3aR*,7aR*)-Octahydro-3H-pyrrolo[3,4-c]-pyridin-3-one hydrochloride. A 1.0 L Parr shaker bottle was charged with 1,2-dihydropyrrolo[3,4-c]pyridin-3-one (68.0 g, 507.5 mmol), acetic acid (400 ml) and PtO2 (6.8 g, 10% dry) catalyst (von Dobeneck & Hansen, 1972). A hydrogenation was performed 4 h at 40 psi. The reaction mixture was filtered through celite, and the solvent removed in vacuo to furnish an oil. HCl in 1,4-dioxane (4.0 M, 126.9 ml) was introduced into the flask at 0°C through an addition funnel. The solvent was then evaporated to dryness, ether (1 L) was added, and the mixture was stirred and filtered to yield 65.1 g (73%) of pale yellow solid. 1H NMR (300 MHz, DMSO-d6) δ 1.50 (m, 1H), 1.82 (m, 1H). 2.45–2.55 (3H), 2.64 (m, 1H), 2.82 (m, 2H), 3.06 (m, 2H), 7.88 (s, 1H), 8.33 (brs, 1H), 9.42 (brs, 1H). LC—MS m/z: 141.2 (M+H)+.

rac-Benzyl (3aR*,7aR*)-3-oxooctahydro-5H-pyrrolo[3,4-c]pyridine-5- carboxylate. To rac-(3aR*, 7aR*)-octahydro-3H-pyrrolo[3,4-c]-pyridin-3-one hydrochloride (45.0 g, 0.25 mol) in THF (300 ml) was added K2CO3 (95.4 g, 0.69 mol), benzyl chloroformate (47.8 g, 0.28 mol), and water (300 ml). The resulting mixture was stirred for 18 h at room temperature. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (3 x 300 ml). The combined organic extracts were dried (Na2SO4) and concentrated. The residue was recrystallized from heptane to give 68.6 g (99%) white crystals. LC—MS (APCI) m/z: 275.1 (M+H)+. 1H NMR (300 MHz, MeOD) δ 1.37 - 1.56 (m, 1H), 1.75 - 1.93 (m, 1H), 2.45 - 2.73 (m, 2H), 2.86 - 3.08 (m, 2H), 3.24 (d, J = 4.90 Hz, 1H), 3.48 (dd, J = 9.98, 6.22 Hz, 1H), 3.76 - 3.95 (m, 1H), 4.17 - 4.44 (m, 1H), 4.99 - 5.21 (m, 2H), 7.15 - 7.51 (m, 5H). LC—MS (APCI) m/z: 275.1 (M+H)+. The racemate (26 g) was separated into enantiomers using supercritical fluid chromatography on a Chiralpak(R) AS—H, 250 x 21 mm, 5µ column at 308 K at 100 bar isobaric pressure using 50% methanol-modified CO2 and a flow rate of 50 ml/min.

Benzyl (3aR,7aR)-3-oxooctahydro-5H-pyrrolo[3,4-c]pyridine-5-carboxylate: 12.1 g (46%), Rf = 0.87, ee: 100%, LC–MS (APCI) m/z: 275.3 (M+H)+. [α]22D = -13.5° (C=0.006 g/ml, MeOH).

Benzyl (3aS,7aS)-3-oxooctahydro-5H-pyrrolo[3,4-c]pyridine-5-carboxylate: 12.1 g (46%), Rf = 1.88, ee: 100%. LC—MS (APCI) m/z: 275.3. [α]22D = +10.1° (c 0.007 g/ml, MeOH).

(3aS,7aS)-Octahydro-3H-pyrrolo[3,4-c]pyridin-3-one. To a solution of benzyl (3aR,7aR)-3-oxooctahydro-5H-pyrrolo[3,4-c]pyridine-5-carboxylate (500 mg, 1.82 mmol) in MeOH (5 ml) was added Pd/C (25 mg, 10 wt. % on activated carbon). The mixture was stirred for 18 h at room-temperature with a hydrogen balloon. The Pd/C was filtered off, and the filtrate was concentrated. Yield: 240 mg (95%). [α]22D = -25.9° (c 0.004 g/ml, MeOH).

(3aS,7aS)-5-((S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)hexahydro-1H- pyrrolo[3,4-c]pyridin-3(2H)-one. To a solution of (3aS,7aS)-octahydro-3H-pyrrolo[3,4-c]pyridin-3-one (180 mg, 1.28 mmol) in DMF (2 ml) was added DIEA (498 mg, 1.28 mmol). The mixture was stirred at 0°C for 5 min. (2R)-3,3,3-trifluoro-2-methoxy-2- phenylpropanoyl chloride (Mosher acid chloride, 324 mg, 1.28 mmol) was added at 273 K. The reaction mixture was slowly warmed up to room-temperature and stirred for 10 min at room temperature. The product was purified by flash chromatography (ISCO, 10% MeOH in DCM, UV collect all) to afford 347 mg (76%) of white solid. 1H NMR (300 MHz, MeOD) δ 0.18 - 0.37 (m, 1H), 1.09 - 1.23 (m, 1H), 2.47 (dq, J = 11.56, 5.94 Hz, 1H), 2.55 - 2.72 (m, 2H), 2.85 - 3.12 (m, 2H), 3.37 - 3.54 (m, 1H), 3.59 - 3.79 (m, 3H), 3.84 - 3.99 (m, 1H), 4.94 - 5.06 (m, 1H), 7.38 - 7.44 (m, 2H), 7.44 - 7.57 (m, 3H). LC—MS (APCI) m/z: 357.2 (M+H)+. [α]22D = -57.9° (c 0.007 g/ml, MeOH). Crystals of the subject compound were grown by heating the sample in a 353 K sand bath for one hour and then allowing it to cool and sit at room temperature for several days.

Refinement top

All H atoms, bonded to C, were placed geometrically (C—H 0.95, 0.98, 0.99 and 1.00 Å for aromatic, methyl, methylene and methine groups respectively) and included in the refinement in riding motion approximation with Uiso(H) set to 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms]. The H atoms at the N and O atoms were located in the difference map and refined isotropically [N—H 0.93 (2) Å; both O—H 0.88 (2) Å]. Even though there are no atoms with Z>Si, taking into account the chirality of the molecule, we chose not to merge the Friedel pairs. The Flack parameter, as one would expect, is inconclusive, and the absolute configuration was assigned on the basis of the known chirality of the starting material [(R)-(-)-Mosher acid chloride].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound showing 50% probability displacement ellipsoids and atom numbering scheme. H atoms are drawn as circles of arbitrary small radius.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis; hydrogen bonds are shown as dashed lines. H-atoms which do not participate in the hydrogen bonds are omitted.
(3aS,7aS)-5-[(S)-3,3,3-Trifluoro-2-methoxy-2- phenylpropanoyl]-2,3,4,5,6,7-hexahydro-1H- pyrrolo[3,4-c]pyridin-3(2H)-one monohydrate top
Crystal data top
C17H19F3N2O3·H2OF(000) = 784
Mr = 374.36Dx = 1.433 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7669 reflections
a = 8.4870 (4) Åθ = 2.7–27.4°
b = 13.7152 (7) ŵ = 0.12 mm1
c = 14.9113 (7) ÅT = 150 K
V = 1735.69 (15) Å3Block, colourless
Z = 40.36 × 0.25 × 0.13 mm
Data collection top
Bruker APEX CCD
diffractometer
4020 independent reflections
Radiation source: fine-focus sealed tube3738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1110
Tmin = 0.957, Tmax = 0.984k = 1718
23008 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.299P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4020 reflectionsΔρmax = 0.22 e Å3
248 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1537 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (5)
Crystal data top
C17H19F3N2O3·H2OV = 1735.69 (15) Å3
Mr = 374.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4870 (4) ŵ = 0.12 mm1
b = 13.7152 (7) ÅT = 150 K
c = 14.9113 (7) Å0.36 × 0.25 × 0.13 mm
Data collection top
Bruker APEX CCD
diffractometer
4020 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3738 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.984Rint = 0.034
23008 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070Δρmax = 0.22 e Å3
S = 1.02Δρmin = 0.19 e Å3
4020 reflectionsAbsolute structure: Flack (1983), 1537 Friedel pairs
248 parametersAbsolute structure parameter: 0.0 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46490 (18)0.72722 (9)0.80771 (10)0.0226 (3)
C20.43300 (15)0.68038 (10)0.71644 (9)0.0201 (3)
H20.44930.73150.66950.024*
C30.56770 (15)0.60584 (10)0.70764 (10)0.0216 (3)
H30.59590.59530.64330.026*
C40.70183 (16)0.65726 (11)0.75757 (10)0.0255 (3)
H4A0.77550.60960.78460.031*
H4B0.76120.70120.71720.031*
C50.26691 (16)0.64039 (10)0.70513 (9)0.0201 (3)
H5A0.18960.68950.72590.024*
H5B0.24660.62740.64090.024*
C60.36089 (16)0.47410 (9)0.73187 (9)0.0202 (3)
H6A0.35220.45960.66700.024*
H6B0.33800.41360.76560.024*
C70.52719 (16)0.50895 (9)0.75338 (10)0.0217 (3)
H7A0.60360.45870.73390.026*
H7B0.53780.51670.81910.026*
C80.13686 (15)0.54710 (9)0.82186 (9)0.0164 (2)
C90.12702 (15)0.45319 (9)0.87997 (9)0.0170 (3)
C100.27529 (15)0.44736 (9)0.93844 (9)0.0180 (3)
C110.33668 (16)0.53289 (10)0.97544 (9)0.0210 (3)
H110.28410.59320.96600.025*
C120.47440 (17)0.53028 (10)1.02599 (9)0.0236 (3)
H120.51610.58871.05070.028*
C130.55050 (16)0.44225 (10)1.04025 (10)0.0245 (3)
H130.64500.44041.07440.029*
C140.48909 (16)0.35704 (10)1.00488 (10)0.0245 (3)
H140.54090.29671.01550.029*
C150.35139 (16)0.35918 (9)0.95366 (9)0.0204 (3)
H150.30990.30060.92930.025*
C160.01874 (16)0.45986 (9)0.94228 (9)0.0211 (3)
C170.00234 (19)0.36490 (10)0.75741 (10)0.0276 (3)
H17A0.10510.35900.78090.041*
H17B0.02510.30950.71800.041*
H17C0.01190.42580.72340.041*
N10.61752 (15)0.71226 (9)0.82667 (9)0.0264 (3)
N20.24673 (13)0.55010 (8)0.75654 (7)0.0180 (2)
O10.36798 (13)0.77208 (7)0.85314 (7)0.0301 (2)
O20.04938 (11)0.61587 (6)0.83902 (6)0.0208 (2)
O30.11272 (11)0.36562 (6)0.83085 (6)0.0201 (2)
O1W0.36093 (13)0.76305 (8)1.04178 (8)0.0273 (2)
F10.00782 (10)0.52989 (5)1.00457 (5)0.02504 (18)
F20.03398 (10)0.37511 (6)0.98714 (6)0.0283 (2)
F30.15420 (9)0.47343 (6)0.89841 (6)0.02748 (19)
H1O0.359 (3)0.7767 (16)0.9843 (17)0.059 (7)*
H2O0.424 (3)0.8062 (16)1.0675 (14)0.052 (6)*
H1N0.665 (2)0.7341 (13)0.8794 (13)0.037 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0274 (7)0.0175 (6)0.0230 (7)0.0043 (6)0.0012 (6)0.0047 (5)
C20.0194 (6)0.0223 (6)0.0188 (7)0.0023 (5)0.0006 (5)0.0046 (5)
C30.0174 (6)0.0292 (7)0.0181 (7)0.0013 (6)0.0009 (5)0.0011 (5)
C40.0188 (6)0.0302 (7)0.0276 (8)0.0047 (6)0.0033 (5)0.0056 (6)
C50.0195 (6)0.0225 (6)0.0183 (7)0.0003 (5)0.0010 (5)0.0053 (5)
C60.0203 (6)0.0201 (6)0.0202 (7)0.0014 (6)0.0035 (5)0.0028 (5)
C70.0194 (7)0.0225 (6)0.0231 (7)0.0030 (5)0.0017 (5)0.0009 (5)
C80.0156 (6)0.0182 (6)0.0155 (6)0.0018 (5)0.0023 (5)0.0001 (5)
C90.0185 (6)0.0159 (5)0.0166 (7)0.0001 (5)0.0017 (5)0.0004 (5)
C100.0184 (6)0.0206 (6)0.0150 (7)0.0014 (5)0.0016 (5)0.0023 (5)
C110.0246 (7)0.0191 (6)0.0194 (7)0.0024 (6)0.0010 (5)0.0001 (5)
C120.0256 (7)0.0252 (6)0.0199 (7)0.0031 (6)0.0012 (5)0.0013 (5)
C130.0181 (6)0.0326 (7)0.0229 (8)0.0013 (6)0.0019 (6)0.0034 (6)
C140.0221 (7)0.0239 (6)0.0275 (8)0.0058 (6)0.0004 (6)0.0031 (5)
C150.0215 (6)0.0177 (6)0.0221 (7)0.0004 (5)0.0027 (6)0.0008 (5)
C160.0220 (6)0.0204 (6)0.0210 (7)0.0006 (6)0.0035 (5)0.0023 (5)
C170.0303 (7)0.0235 (6)0.0290 (8)0.0063 (6)0.0092 (6)0.0017 (6)
N10.0286 (6)0.0264 (6)0.0241 (7)0.0067 (5)0.0068 (5)0.0001 (5)
N20.0174 (5)0.0188 (5)0.0177 (6)0.0010 (5)0.0009 (4)0.0003 (4)
O10.0373 (6)0.0251 (5)0.0280 (6)0.0004 (5)0.0005 (5)0.0024 (4)
O20.0187 (4)0.0200 (4)0.0238 (5)0.0030 (4)0.0021 (4)0.0028 (4)
O30.0211 (5)0.0182 (4)0.0211 (5)0.0020 (4)0.0017 (4)0.0023 (4)
O1W0.0307 (6)0.0256 (5)0.0256 (6)0.0068 (5)0.0051 (5)0.0049 (4)
F10.0294 (4)0.0237 (4)0.0220 (4)0.0044 (3)0.0064 (3)0.0012 (3)
F20.0337 (5)0.0227 (4)0.0286 (5)0.0006 (4)0.0105 (4)0.0069 (3)
F30.0172 (4)0.0350 (5)0.0302 (5)0.0007 (4)0.0029 (3)0.0035 (4)
Geometric parameters (Å, º) top
C1—O11.2305 (18)C9—O31.4120 (15)
C1—N11.3416 (19)C9—C101.5330 (18)
C1—C21.529 (2)C9—C161.5498 (18)
C2—C51.5218 (18)C10—C151.3898 (18)
C2—C31.5392 (18)C10—C111.3971 (19)
C2—H21.0000C11—C121.3913 (19)
C3—C41.5321 (19)C11—H110.9500
C3—C71.5328 (19)C12—C131.3857 (19)
C3—H31.0000C12—H120.9500
C4—N11.464 (2)C13—C141.384 (2)
C4—H4A0.9900C13—H130.9500
C4—H4B0.9900C14—C151.3964 (19)
C5—N21.4664 (16)C14—H140.9500
C5—H5A0.9900C15—H150.9500
C5—H5B0.9900C16—F31.3357 (16)
C6—N21.4699 (17)C16—F11.3393 (15)
C6—C71.5242 (19)C16—F21.3473 (14)
C6—H6A0.9900C17—O31.4412 (16)
C6—H6B0.9900C17—H17A0.9800
C7—H7A0.9900C17—H17B0.9800
C7—H7B0.9900C17—H17C0.9800
C8—O21.2273 (15)N1—H1N0.933 (19)
C8—N21.3490 (17)O1W—H1O0.88 (2)
C8—C91.5546 (17)O1W—H2O0.88 (2)
O1—C1—N1127.29 (14)O3—C9—C16107.02 (10)
O1—C1—C2125.57 (13)C10—C9—C16108.50 (10)
N1—C1—C2107.12 (13)O3—C9—C8114.85 (10)
C5—C2—C1114.46 (12)C10—C9—C8108.42 (10)
C5—C2—C3116.05 (11)C16—C9—C8109.16 (10)
C1—C2—C3102.91 (11)C15—C10—C11119.53 (12)
C5—C2—H2107.7C15—C10—C9121.31 (12)
C1—C2—H2107.7C11—C10—C9119.14 (11)
C3—C2—H2107.7C12—C11—C10120.38 (12)
C4—C3—C7110.46 (12)C12—C11—H11119.8
C4—C3—C2101.82 (11)C10—C11—H11119.8
C7—C3—C2111.79 (11)C13—C12—C11119.80 (12)
C4—C3—H3110.8C13—C12—H12120.1
C7—C3—H3110.8C11—C12—H12120.1
C2—C3—H3110.8C14—C13—C12120.12 (13)
N1—C4—C3102.48 (11)C14—C13—H13119.9
N1—C4—H4A111.3C12—C13—H13119.9
C3—C4—H4A111.3C13—C14—C15120.39 (13)
N1—C4—H4B111.3C13—C14—H14119.8
C3—C4—H4B111.3C15—C14—H14119.8
H4A—C4—H4B109.2C10—C15—C14119.77 (12)
N2—C5—C2110.77 (11)C10—C15—H15120.1
N2—C5—H5A109.5C14—C15—H15120.1
C2—C5—H5A109.5F3—C16—F1107.42 (10)
N2—C5—H5B109.5F3—C16—F2106.30 (10)
C2—C5—H5B109.5F1—C16—F2106.33 (10)
H5A—C5—H5B108.1F3—C16—C9113.68 (11)
N2—C6—C7109.59 (10)F1—C16—C9113.76 (11)
N2—C6—H6A109.8F2—C16—C9108.86 (10)
C7—C6—H6A109.8O3—C17—H17A109.5
N2—C6—H6B109.8O3—C17—H17B109.5
C7—C6—H6B109.8H17A—C17—H17B109.5
H6A—C6—H6B108.2O3—C17—H17C109.5
C6—C7—C3112.70 (11)H17A—C17—H17C109.5
C6—C7—H7A109.1H17B—C17—H17C109.5
C3—C7—H7A109.1C1—N1—C4113.73 (12)
C6—C7—H7B109.1C1—N1—H1N123.0 (12)
C3—C7—H7B109.1C4—N1—H1N123.2 (12)
H7A—C7—H7B107.8C8—N2—C5118.94 (11)
O2—C8—N2123.04 (12)C8—N2—C6127.93 (11)
O2—C8—C9119.21 (11)C5—N2—C6113.02 (10)
N2—C8—C9117.70 (11)C9—O3—C17117.12 (10)
O3—C9—C10108.74 (10)H1O—O1W—H2O107.0 (19)
O1—C1—C2—C533.31 (19)C10—C11—C12—C130.4 (2)
N1—C1—C2—C5148.36 (12)C11—C12—C13—C140.5 (2)
O1—C1—C2—C3160.12 (13)C12—C13—C14—C150.8 (2)
N1—C1—C2—C321.55 (13)C11—C10—C15—C140.67 (19)
C5—C2—C3—C4158.45 (12)C9—C10—C15—C14177.92 (12)
C1—C2—C3—C432.67 (13)C13—C14—C15—C100.3 (2)
C5—C2—C3—C740.53 (16)O3—C9—C16—F368.07 (13)
C1—C2—C3—C785.25 (13)C10—C9—C16—F3174.76 (11)
C7—C3—C4—N186.77 (13)C8—C9—C16—F356.79 (14)
C2—C3—C4—N132.10 (14)O3—C9—C16—F1168.56 (10)
C1—C2—C5—N273.86 (14)C10—C9—C16—F151.39 (13)
C3—C2—C5—N245.83 (16)C8—C9—C16—F166.59 (13)
N2—C6—C7—C356.07 (15)O3—C9—C16—F250.20 (13)
C4—C3—C7—C6157.69 (12)C10—C9—C16—F266.97 (13)
C2—C3—C7—C645.08 (15)C8—C9—C16—F2175.06 (10)
O2—C8—C9—O3129.59 (12)O1—C1—N1—C4178.89 (14)
N2—C8—C9—O352.90 (15)C2—C1—N1—C40.60 (15)
O2—C8—C9—C10108.58 (13)C3—C4—N1—C120.66 (15)
N2—C8—C9—C1068.93 (14)O2—C8—N2—C51.99 (19)
O2—C8—C9—C169.44 (16)C9—C8—N2—C5175.41 (11)
N2—C8—C9—C16173.05 (11)O2—C8—N2—C6177.85 (12)
O3—C9—C10—C1514.71 (16)C9—C8—N2—C60.44 (19)
C16—C9—C10—C15101.35 (14)C2—C5—N2—C8119.23 (13)
C8—C9—C10—C15140.21 (12)C2—C5—N2—C657.22 (14)
O3—C9—C10—C11163.89 (11)C7—C6—N2—C8113.09 (14)
C16—C9—C10—C1180.05 (14)C7—C6—N2—C562.97 (14)
C8—C9—C10—C1138.39 (15)C10—C9—O3—C17166.32 (11)
C15—C10—C11—C121.0 (2)C16—C9—O3—C1776.67 (13)
C9—C10—C11—C12177.60 (12)C8—C9—O3—C1744.66 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1O···O10.88 (2)1.96 (3)2.8164 (16)165 (2)
N1—H1N···O1Wi0.933 (19)2.037 (19)2.8687 (17)147.7 (16)
O1W—H2O···O2i0.88 (2)2.06 (2)2.9111 (15)162.8 (19)
Symmetry code: (i) x+1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC17H19F3N2O3·H2O
Mr374.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)8.4870 (4), 13.7152 (7), 14.9113 (7)
V3)1735.69 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.36 × 0.25 × 0.13
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.957, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
23008, 4020, 3738
Rint0.034
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.02
No. of reflections4020
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.19
Absolute structureFlack (1983), 1537 Friedel pairs
Absolute structure parameter0.0 (5)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1O···O10.88 (2)1.96 (3)2.8164 (16)165 (2)
N1—H1N···O1Wi0.933 (19)2.037 (19)2.8687 (17)147.7 (16)
O1W—H2O···O2i0.88 (2)2.06 (2)2.9111 (15)162.8 (19)
Symmetry code: (i) x+1/2, y+3/2, z+2.
 

Acknowledgements

We thank Christine Aurigemma for chiral separation support.

References

First citationAltomare, C., Cellamare, S., Carotti, A., Casini, G., Ferappi, M., Gavuzzo, E., Mazza, F., Carrupt, P.-A., Gaillard, P. & Testa, B. (1995). J. Med. Chem. 38, 170–179.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationArnott, G., Clayden, J. & Hamilton, S. D. (2006). Org. Lett. 8, 5325–5328.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDobeneck, H. von & Hansen, B. (1972). Chem. Ber. 105, 3611–3621.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKim, S.-G., Lee, S. H. & Park, T.-H. (2007). Tetrahedron Lett. 48, 5023–5026.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o175-o176
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds