organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2-(4-fluoro­phen­yl)-7-methyl-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 15 December 2009; accepted 16 December 2009; online 19 December 2009)

In the title compound, C16H12BrFO2S, the O atom and the methyl group of the methyl­sulfinyl substituent are located on opposite sides of the plane through the benzofuran fragment. The 4-fluoro­phenyl ring is rotated out of the benzofuran plane, as indicated by the dihedral angle of 16.17 (5)°. The crystal structure exhibits an inter­molecular C—H⋯O hydrogen bond and a Br⋯O halogen inter­action [3.112 (2) Å].

Related literature

For the crystal structures of similar 2-(4-fluoro­phen­yl)-5-halo-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o2608.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2649.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o104.]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Twyman & Allsop (1999[Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383-9384.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For a review of halogen inter­actions, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12BrFO2S

  • Mr = 367.23

  • Triclinic, [P \overline 1]

  • a = 7.5313 (6) Å

  • b = 9.8089 (7) Å

  • c = 10.9117 (8) Å

  • α = 106.567 (1)°

  • β = 92.634 (1)°

  • γ = 109.526 (1)°

  • V = 719.23 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.01 mm−1

  • T = 173 K

  • 0.60 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.586, Tmax = 0.746

  • 6248 measured reflections

  • 3083 independent reflections

  • 2802 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.060

  • S = 1.05

  • 3083 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯O2i 0.96 2.58 3.294 (2) 131
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules of benzofuran ring skeleton have attracted considerable interest, on account of their pharmacological activity (Howlett et al., 1999; Twyman & Allsop, 1999) and their occurrence as natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies on the effect of side chain substituents on the solid state structures of 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2009a, b, 2010), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.014 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran and the 4-fluorophenyl ring is 16.17 (5)°. The crystal packing (Fig. 2) is stabilized by an intermolecular C—H···O hydrogen bond between the methyl H atom and the oxygen of the SO unit, with a C15—H15C···O2i (Table 1and Fig. 2). The contact C-Br···O involving the the oxygen atom of the SO unit [Br···O2ii = 3.112 (1) Å; C—Br···O2ii = 173.44 (7)°] is significantly shorter than the sum of van der Waals radia (3.40 Å) (Politzer et al., 2007).

Related literature top

For the crystal structures of similar 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a,b, 2010). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen interactions, see: Politzer et al. (2007).

Experimental top

77% 3-Chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 5-bromo-2-(4-fluorophenyl)-7-methyl-3-methylsulfanyl-1-benzofuran (351 mg, 1.0 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colourless solid [yield 85%, m.p. 477–478 K; Rf = 0.71 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O and C—Br···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x, y + 1, z; (ii) - x + 1, - y + 1, - z + 2; (iii) x, y - 1, z .]
5-Bromo-2-(4-fluorophenyl)-7-methyl-3-methylsulfinyl-1-benzofuran top
Crystal data top
C16H12BrFO2SZ = 2
Mr = 367.23F(000) = 368
Triclinic, P1Dx = 1.696 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5313 (6) ÅCell parameters from 4231 reflections
b = 9.8089 (7) Åθ = 2.3–27.4°
c = 10.9117 (8) ŵ = 3.01 mm1
α = 106.567 (1)°T = 173 K
β = 92.634 (1)°Block, colourless
γ = 109.526 (1)°0.60 × 0.40 × 0.20 mm
V = 719.23 (9) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3083 independent reflections
Radiation source: Rotating Anode2802 reflections with I > 2σ(I)
HELIOS monochromatorRint = 0.016
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.0°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.586, Tmax = 0.746l = 1313
6248 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.060H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.3573P]
where P = (Fo2 + 2Fc2)/3
3083 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H12BrFO2Sγ = 109.526 (1)°
Mr = 367.23V = 719.23 (9) Å3
Triclinic, P1Z = 2
a = 7.5313 (6) ÅMo Kα radiation
b = 9.8089 (7) ŵ = 3.01 mm1
c = 10.9117 (8) ÅT = 173 K
α = 106.567 (1)°0.60 × 0.40 × 0.20 mm
β = 92.634 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3083 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2802 reflections with I > 2σ(I)
Tmin = 0.586, Tmax = 0.746Rint = 0.016
6248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
3083 reflectionsΔρmin = 0.39 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.56892 (3)0.75819 (2)1.066631 (17)0.02668 (7)
S0.18420 (7)0.22498 (5)0.55788 (4)0.02381 (11)
O10.31077 (18)0.62985 (14)0.50645 (12)0.0214 (3)
O20.3359 (2)0.21723 (16)0.64548 (14)0.0320 (3)
F0.0757 (2)0.21942 (17)0.05951 (11)0.0476 (4)
C10.2455 (3)0.4180 (2)0.56565 (17)0.0207 (4)
C20.3406 (3)0.5483 (2)0.67945 (17)0.0197 (3)
C30.3970 (3)0.5713 (2)0.81000 (17)0.0217 (4)
H30.37260.49010.84270.026*
C40.4906 (3)0.7202 (2)0.88760 (17)0.0216 (4)
C50.5318 (3)0.8455 (2)0.84171 (18)0.0217 (4)
H50.59730.94340.89850.026*
C60.4760 (3)0.8255 (2)0.71248 (18)0.0207 (4)
C70.3798 (2)0.6748 (2)0.63653 (17)0.0193 (3)
C80.2316 (2)0.4724 (2)0.46474 (18)0.0203 (4)
C90.1517 (3)0.4038 (2)0.32705 (17)0.0215 (4)
C100.0209 (3)0.2541 (2)0.27673 (19)0.0283 (4)
H100.01670.19610.33160.034*
C110.0534 (3)0.1909 (3)0.1460 (2)0.0332 (5)
H110.13760.09030.11210.040*
C120.0004 (3)0.2802 (3)0.06824 (19)0.0318 (5)
C130.1276 (3)0.4285 (3)0.11316 (19)0.0298 (4)
H130.16070.48600.05750.036*
C140.2051 (3)0.4901 (2)0.24326 (19)0.0252 (4)
H140.29330.58950.27520.030*
C150.5111 (3)0.9548 (2)0.65832 (19)0.0268 (4)
H15A0.55310.92860.57600.040*
H15B0.60761.04480.71680.040*
H15C0.39520.97370.64750.040*
C160.0164 (3)0.2099 (3)0.6426 (2)0.0351 (5)
H16A0.06390.11110.65380.053*
H16B0.11500.22300.59360.053*
H16C0.02220.28740.72580.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.03804 (12)0.02214 (11)0.01767 (10)0.01046 (8)0.00056 (7)0.00439 (7)
S0.0331 (3)0.0152 (2)0.0220 (2)0.00897 (19)0.00200 (19)0.00445 (17)
O10.0269 (7)0.0172 (6)0.0193 (6)0.0071 (5)0.0009 (5)0.0062 (5)
O20.0397 (8)0.0274 (8)0.0342 (8)0.0167 (7)0.0012 (6)0.0128 (6)
F0.0504 (8)0.0559 (9)0.0194 (6)0.0055 (7)0.0086 (6)0.0053 (6)
C10.0239 (9)0.0164 (8)0.0205 (9)0.0066 (7)0.0025 (7)0.0052 (7)
C20.0223 (8)0.0170 (8)0.0208 (9)0.0087 (7)0.0039 (7)0.0055 (7)
C30.0282 (9)0.0175 (9)0.0211 (9)0.0095 (7)0.0039 (7)0.0075 (7)
C40.0260 (9)0.0226 (9)0.0174 (8)0.0112 (7)0.0019 (7)0.0058 (7)
C50.0232 (9)0.0159 (9)0.0232 (9)0.0071 (7)0.0020 (7)0.0026 (7)
C60.0222 (9)0.0170 (9)0.0239 (9)0.0083 (7)0.0051 (7)0.0065 (7)
C70.0211 (8)0.0186 (9)0.0186 (8)0.0076 (7)0.0015 (7)0.0062 (7)
C80.0200 (8)0.0173 (9)0.0221 (9)0.0063 (7)0.0034 (7)0.0046 (7)
C90.0203 (8)0.0242 (9)0.0202 (9)0.0095 (7)0.0020 (7)0.0059 (7)
C100.0276 (10)0.0276 (10)0.0253 (10)0.0051 (8)0.0010 (8)0.0083 (8)
C110.0282 (10)0.0311 (11)0.0287 (11)0.0026 (9)0.0032 (8)0.0033 (9)
C120.0290 (10)0.0415 (12)0.0187 (9)0.0108 (9)0.0018 (8)0.0037 (9)
C130.0310 (10)0.0368 (12)0.0233 (10)0.0117 (9)0.0031 (8)0.0130 (9)
C140.0259 (9)0.0247 (10)0.0242 (9)0.0093 (8)0.0022 (8)0.0070 (8)
C150.0364 (11)0.0192 (9)0.0261 (10)0.0102 (8)0.0063 (8)0.0087 (8)
C160.0333 (11)0.0280 (11)0.0443 (13)0.0068 (9)0.0101 (10)0.0164 (10)
Geometric parameters (Å, º) top
Br—C41.907 (2)C6—C151.497 (3)
Br—O2i3.112 (2)C8—C91.463 (2)
S—O21.491 (2)C9—C101.397 (3)
S—C11.768 (2)C9—C141.401 (3)
S—C161.794 (2)C10—C111.386 (3)
O1—C71.379 (2)C10—H100.9300
O1—C81.381 (2)C11—C121.368 (3)
F—C121.360 (2)C11—H110.9300
C1—C81.368 (3)C12—C131.375 (3)
C1—C21.445 (2)C13—C141.386 (3)
C2—C71.394 (2)C13—H130.9300
C2—C31.399 (2)C14—H140.9300
C3—C41.378 (3)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.403 (3)C15—H15C0.9600
C5—C61.391 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.389 (2)C16—H16C0.9600
C4—Br—O2i173.44 (7)C10—C9—C8121.62 (17)
O2—S—C1107.33 (9)C14—C9—C8119.58 (17)
O2—S—C16105.95 (10)C11—C10—C9120.85 (19)
C1—S—C1697.80 (9)C11—C10—H10119.6
C7—O1—C8106.74 (13)C9—C10—H10119.6
C8—C1—C2107.32 (16)C12—C11—C10118.3 (2)
C8—C1—S127.08 (14)C12—C11—H11120.8
C2—C1—S125.27 (14)C10—C11—H11120.8
C7—C2—C3118.96 (16)F—C12—C11118.39 (19)
C7—C2—C1105.04 (15)F—C12—C13118.55 (19)
C3—C2—C1136.00 (17)C11—C12—C13123.06 (19)
C4—C3—C2116.62 (16)C12—C13—C14118.48 (19)
C4—C3—H3121.7C12—C13—H13120.8
C2—C3—H3121.7C14—C13—H13120.8
C3—C4—C5123.42 (17)C13—C14—C9120.46 (18)
C3—C4—Br118.40 (14)C13—C14—H14119.8
C5—C4—Br118.17 (14)C9—C14—H14119.8
C6—C5—C4120.97 (17)C6—C15—H15A109.5
C6—C5—H5119.5C6—C15—H15B109.5
C4—C5—H5119.5H15A—C15—H15B109.5
C7—C6—C5114.57 (16)C6—C15—H15C109.5
C7—C6—C15121.86 (17)H15A—C15—H15C109.5
C5—C6—C15123.54 (17)H15B—C15—H15C109.5
O1—C7—C6124.01 (16)S—C16—H16A109.5
O1—C7—C2110.54 (15)S—C16—H16B109.5
C6—C7—C2125.44 (17)H16A—C16—H16B109.5
C1—C8—O1110.33 (16)S—C16—H16C109.5
C1—C8—C9135.27 (17)H16A—C16—H16C109.5
O1—C8—C9114.40 (15)H16B—C16—H16C109.5
C10—C9—C14118.79 (17)
O2—S—C1—C8138.31 (17)C1—C2—C7—O11.57 (19)
C16—S—C1—C8112.23 (18)C3—C2—C7—C61.6 (3)
O2—S—C1—C234.18 (18)C1—C2—C7—C6177.92 (17)
C16—S—C1—C275.29 (18)C2—C1—C8—O10.4 (2)
C8—C1—C2—C70.7 (2)S—C1—C8—O1173.93 (13)
S—C1—C2—C7172.99 (14)C2—C1—C8—C9179.25 (19)
C8—C1—C2—C3179.9 (2)S—C1—C8—C97.2 (3)
S—C1—C2—C36.4 (3)C7—O1—C8—C11.32 (19)
C7—C2—C3—C40.6 (3)C7—O1—C8—C9179.53 (14)
C1—C2—C3—C4178.7 (2)C1—C8—C9—C1017.4 (3)
C2—C3—C4—C50.7 (3)O1—C8—C9—C10161.47 (17)
C2—C3—C4—Br179.49 (13)C1—C8—C9—C14163.3 (2)
C3—C4—C5—C61.1 (3)O1—C8—C9—C1417.8 (2)
Br—C4—C5—C6179.08 (14)C14—C9—C10—C110.7 (3)
C4—C5—C6—C70.2 (3)C8—C9—C10—C11180.00 (18)
C4—C5—C6—C15178.35 (17)C9—C10—C11—C121.8 (3)
C8—O1—C7—C6177.69 (17)C10—C11—C12—F178.57 (19)
C8—O1—C7—C21.81 (19)C10—C11—C12—C131.4 (3)
C5—C6—C7—O1179.43 (16)F—C12—C13—C14179.89 (18)
C15—C6—C7—O10.9 (3)C11—C12—C13—C140.1 (3)
C5—C6—C7—C21.1 (3)C12—C13—C14—C91.3 (3)
C15—C6—C7—C2179.68 (17)C10—C9—C14—C130.8 (3)
C3—C2—C7—O1178.94 (15)C8—C9—C14—C13178.44 (17)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2ii0.962.583.294 (2)131
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H12BrFO2S
Mr367.23
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.5313 (6), 9.8089 (7), 10.9117 (8)
α, β, γ (°)106.567 (1), 92.634 (1), 109.526 (1)
V3)719.23 (9)
Z2
Radiation typeMo Kα
µ (mm1)3.01
Crystal size (mm)0.60 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.586, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
6248, 3083, 2802
Rint0.016
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.05
No. of reflections3083
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2i0.962.583.294 (2)131.4
Symmetry code: (i) x, y+1, z.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o2608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTwyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383–9384.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds