organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,4-Di­hydroxy­phen­yl)-2-(4-hy­droxy­phen­yl)ethanone

aKey Laboratory of Plant Resources Conservation and Utilization (Jishou University), College of Hunan Province, Jishou University, Jishou 416000, People's Republic of China, and bCollege of Chemistry & Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: xiaozhuping2005@163.com

(Received 14 November 2009; accepted 18 November 2009; online 4 December 2009)

The title compound, C14H12O4, is a deoxy­benzoin derivative in which the dihedral between the carbonyl group and the catechol unit is 5.99 (3)°. The dihedral angle between the two benzene rings is 60.26 (13)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds connect mol­ecules, forming a two-dimensional network. In addition, weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π contacts further stabilize the crystal structure.

Related literature

For synthetic applications of deoxy­benzoin compounds, see: Xiao et al. (2007a[Xiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007a). Can. J. Chem. 85, 951-957.], 2008a[Xiao, Z.-P., Li, H.-Q., Xue, J.-Y., Shi, L. & Zhu, H.-L. (2008a). Synth. Commun. 38, 525-529.]). For natural occurences of these compounds. see: Kiuchi et al. (1990[Kiuchi, F., Chen, X. & Tsuda, Y. (1990). Heterocycles, 31, 629-36.]); Niwa et al. (1999[Niwa, K., Hashimoto, M., Morishita, S., Yokoyama, Y., Mori, H. & Tamaya, T. (1999). J. Cancer Res. 90, 726-32.]); Sanduja et al. (1985[Sanduja, R., Weinheimer, A. J. & Alam, M. (1985). J. Chem. Res. Synop. pp. 56-57.]). For their biological activity, see: Papoutsi et al. (2007[Papoutsi, Z., Kassi, E., Fokialakis, N., Mitakou, S., Lambrinidis, G., Mikros, E. & Moutsatsou, P. (2007). Steroids, 72, 693-704.]); Xiao et al. (2007b[Xiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C. & Zhu, H.-L. (2007b). Bioorg. Med. Chem. 15, 3703-3710.], 2008b[Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008b). Eur. J. Med. Chem. 43, 1828-1836.]); Parmar et al. (1996[Parmar, V. S., Bisht, K. S., Jain, R., Singh, S., Sharma, S. K., Gupta, S., Malhotra, S., Tyagi, O. D., Vardhan, A. & Pati, H. N. (1996). Indian J. Chem. Sect. B, 35, 220-232.]). For a related structure, see: Xiao & Xiao (2008c[Xiao, Z.-P. & Xiao, H.-Y. (2008c). Acta Cryst. E64, o2324.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12O4

  • Mr = 244.24

  • Triclinic, [P \overline 1]

  • a = 5.7073 (11) Å

  • b = 9.3464 (19) Å

  • c = 11.202 (2) Å

  • α = 100.112 (9)°

  • β = 94.792 (9)°

  • γ = 100.625 (9)°

  • V = 573.99 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.980

  • 3179 measured reflections

  • 2214 independent reflections

  • 1756 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.172

  • S = 1.06

  • 2214 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.94 2.744 (2) 168
O2—H2⋯O3ii 0.82 1.91 2.7274 (19) 171
O4—H4⋯O2iii 0.82 2.00 2.772 (2) 158
C3—H3⋯O3ii 0.93 2.53 3.191 (2) 129
C11—H11⋯Cg1iv 0.93 2.85 3.635 (2) 143
Symmetry codes: (i) x-1, y-1, z-1; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z+1; (iv) -x+1, -y+2, -z+1. Cg1 is the centroid of the C1–C6 ring.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Deoxybenzoin compounds are intermediates in the syntheses of isoflavones (Xiao et al., 2008a; Xiao et al., 2007a) and are found in several plants, such as Glycyrrhiza sp., Trifolium subterraneum and Ononis spinosa, and marine sources (Kiuchi et al., 1990; Niwa et al., 1999; Sanduja et al., 1985). Many deoxybenzoin compounds have shown significant estrogen receptor modulatory, urease inhibitory, antimicrobial and antiviral properties (Papoutsi et al., 2007; Xiao et al., 2007b; Xiao et al., 2008b; Parmar et al., 1996). As part of our work involving the synthesis of a series of deoxybenzoin derivatives for urease inhibitory activity screening we report herein the crystal structure of the title deoxybenzoin derivative (I).

The molecular structure of the title compound is shown in Fig. 1. The two benzene rings form a dihedral angle of 60.26 (13) °. The carbonyl group forms a dihedral angle of 5.99 (3) ° with the catechol moiety [O1/O2/C1-C6] while a similar angle is 1.95 (13)° in our previous related crystal structure (Xiao et al., 2008c). In the crystal structure, intermolecular O—H···O connect molecules to form a two-dimensional network. In addition, weak intermolecular C—H···O hydrogen bonds and C—H···π contacts further stabilize the crystal structure (see Fig. 2).

Related literature top

For synthetic applications of deoxybenzoin compounds, see: Xiao et al. (2007a, 2008a). For natural occurences of these compounds. see: Kiuchi et al. (1990); Niwa et al. (1999); Sanduja et al. (1985). For their biological activity, see: Papoutsi et al. (2007); Xiao et al. (2007b, 2008b); Parmar et al. (1996). For a related structure, see: Xiao et al. (2008c). Cg1 is the centroid of the C1–C6 ring.

Experimental top

0.55 g (5 mmol) of catechol and 0.76 g (5 mmol) of p-hydroxyphenylacetic acid were dissolved into 10 ml of fresh distilled BF3.Et2O. The mixture was stirred and heated on an oil bath at 353 K for about 3 h. After cooling, the contents were poured into 150 ml of ice-cold aqueous sodium acetate (w % = 10%) with stirring. Then, the precipitate was filtered and washed three times with water. The resulting solid was crystallized from methanol-water to give colorless blocks of (I) suitable for single-crystal structure determination.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H of 0.93 Å for the aromatic atoms, 0.97 Å for the CH2 groups and 0.82 Å for the OH groups. Uiso(H) values were set at 1.2 times Ueq(C) for aromatic C and CH2 groups and 1.5 times Ueq(O) for O—H groups.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds indicated by thin dashed lines and C—H···π contacts shown as thick dashed lines.
1-(3,4-Dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone top
Crystal data top
C14H12O4Z = 2
Mr = 244.24F(000) = 256
Triclinic, P1Dx = 1.413 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7073 (11) ÅCell parameters from 1785 reflections
b = 9.3464 (19) Åθ = 2.0–26.0°
c = 11.202 (2) ŵ = 0.10 mm1
α = 100.112 (9)°T = 296 K
β = 94.792 (9)°Block, colorless
γ = 100.625 (9)°0.30 × 0.20 × 0.20 mm
V = 573.99 (19) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2214 independent reflections
Radiation source: fine-focus sealed tube1756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 76
Tmin = 0.970, Tmax = 0.980k = 116
3179 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1062P)2 + 0.1004P]
where P = (Fo2 + 2Fc2)/3
2214 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H12O4γ = 100.625 (9)°
Mr = 244.24V = 573.99 (19) Å3
Triclinic, P1Z = 2
a = 5.7073 (11) ÅMo Kα radiation
b = 9.3464 (19) ŵ = 0.10 mm1
c = 11.202 (2) ÅT = 296 K
α = 100.112 (9)°0.30 × 0.20 × 0.20 mm
β = 94.792 (9)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2214 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1756 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.028
3179 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
2214 reflectionsΔρmin = 0.32 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0231 (3)0.4370 (2)0.17089 (17)0.0357 (4)
C20.2221 (3)0.4285 (2)0.24884 (17)0.0342 (4)
C30.2784 (3)0.5201 (2)0.36129 (17)0.0357 (5)
H30.41230.51400.41200.043*
C40.1374 (3)0.62287 (19)0.40118 (17)0.0335 (4)
C50.0606 (3)0.6309 (2)0.32327 (18)0.0364 (5)
H50.15610.69860.34800.044*
C60.1164 (3)0.5392 (2)0.20949 (18)0.0382 (5)
H60.24900.54600.15820.046*
C70.2107 (4)0.7192 (2)0.52317 (18)0.0377 (5)
C80.0779 (4)0.8423 (2)0.56251 (19)0.0434 (5)
H8A0.06030.89420.49560.052*
H8B0.08210.79770.57690.052*
C90.1937 (3)0.9545 (2)0.67514 (18)0.0376 (5)
C100.4194 (4)1.0415 (2)0.67929 (19)0.0464 (5)
H100.50491.02650.61260.056*
C110.5210 (4)1.1498 (2)0.77965 (19)0.0466 (5)
H110.67301.20700.78020.056*
C120.3970 (3)1.1730 (2)0.87899 (17)0.0375 (5)
C130.1733 (4)1.0874 (2)0.8778 (2)0.0497 (6)
H130.08871.10190.94490.060*
C140.0751 (4)0.9795 (2)0.7761 (2)0.0497 (6)
H140.07630.92200.77600.060*
O10.0188 (3)0.34464 (17)0.06112 (13)0.0505 (4)
H10.15720.33880.03130.076*
O20.3534 (2)0.32578 (15)0.20545 (12)0.0420 (4)
H20.44350.31330.26200.063*
O30.3760 (3)0.70119 (18)0.59031 (14)0.0609 (5)
O40.5023 (3)1.28604 (17)0.97474 (14)0.0507 (4)
H40.42491.28181.03290.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0337 (10)0.0355 (9)0.0340 (10)0.0061 (7)0.0017 (7)0.0002 (8)
C20.0314 (10)0.0336 (9)0.0374 (10)0.0096 (7)0.0032 (7)0.0034 (8)
C30.0340 (10)0.0344 (9)0.0373 (10)0.0113 (8)0.0047 (8)0.0028 (8)
C40.0343 (10)0.0291 (9)0.0366 (10)0.0096 (7)0.0001 (8)0.0036 (7)
C50.0319 (10)0.0337 (9)0.0433 (11)0.0123 (7)0.0005 (8)0.0028 (8)
C60.0317 (10)0.0392 (10)0.0412 (11)0.0101 (8)0.0056 (8)0.0027 (8)
C70.0404 (11)0.0330 (9)0.0402 (11)0.0141 (8)0.0016 (8)0.0045 (8)
C80.0404 (11)0.0383 (10)0.0479 (12)0.0162 (8)0.0047 (9)0.0052 (9)
C90.0377 (11)0.0328 (9)0.0413 (11)0.0149 (8)0.0002 (8)0.0011 (8)
C100.0429 (12)0.0534 (12)0.0379 (11)0.0079 (9)0.0099 (9)0.0047 (9)
C110.0358 (11)0.0521 (12)0.0443 (12)0.0021 (9)0.0057 (9)0.0040 (9)
C120.0379 (11)0.0371 (10)0.0345 (10)0.0116 (8)0.0008 (8)0.0030 (8)
C130.0486 (13)0.0489 (12)0.0470 (13)0.0061 (10)0.0174 (10)0.0046 (10)
C140.0391 (12)0.0420 (11)0.0610 (14)0.0010 (9)0.0114 (10)0.0039 (10)
O10.0472 (9)0.0560 (9)0.0417 (9)0.0205 (7)0.0100 (7)0.0116 (7)
O20.0402 (8)0.0456 (8)0.0390 (8)0.0206 (6)0.0024 (6)0.0043 (6)
O30.0755 (12)0.0577 (10)0.0467 (9)0.0401 (8)0.0243 (8)0.0110 (7)
O40.0450 (9)0.0559 (9)0.0415 (8)0.0076 (7)0.0011 (6)0.0119 (7)
Geometric parameters (Å, º) top
C1—O11.348 (2)C8—H8B0.9700
C1—C61.388 (3)C9—C141.373 (3)
C1—C21.396 (3)C9—C101.383 (3)
C2—C31.369 (3)C10—C111.378 (3)
C2—O21.372 (2)C10—H100.9300
C3—C41.402 (3)C11—C121.375 (3)
C3—H30.9300C11—H110.9300
C4—C51.390 (2)C12—C131.374 (3)
C4—C71.479 (3)C12—O41.374 (2)
C5—C61.382 (3)C13—C141.382 (3)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—O31.212 (2)O1—H10.8200
C7—C81.514 (3)O2—H20.8200
C8—C91.506 (3)O4—H40.8200
C8—H8A0.9700
O1—C1—C6124.22 (17)C9—C8—H8B108.4
O1—C1—C2116.86 (17)C7—C8—H8B108.4
C6—C1—C2118.92 (17)H8A—C8—H8B107.4
C3—C2—O2123.43 (16)C14—C9—C10117.12 (19)
C3—C2—C1120.35 (17)C14—C9—C8121.34 (19)
O2—C2—C1116.22 (16)C10—C9—C8121.47 (19)
C2—C3—C4121.03 (16)C11—C10—C9121.7 (2)
C2—C3—H3119.5C11—C10—H10119.1
C4—C3—H3119.5C9—C10—H10119.1
C5—C4—C3118.43 (17)C12—C11—C10119.8 (2)
C5—C4—C7123.56 (16)C12—C11—H11120.1
C3—C4—C7118.00 (16)C10—C11—H11120.1
C6—C5—C4120.53 (17)C13—C12—O4122.75 (18)
C6—C5—H5119.7C13—C12—C11119.75 (19)
C4—C5—H5119.7O4—C12—C11117.47 (18)
C5—C6—C1120.75 (17)C12—C13—C14119.4 (2)
C5—C6—H6119.6C12—C13—H13120.3
C1—C6—H6119.6C14—C13—H13120.3
O3—C7—C4120.71 (17)C9—C14—C13122.2 (2)
O3—C7—C8120.36 (18)C9—C14—H14118.9
C4—C7—C8118.93 (15)C13—C14—H14118.9
C9—C8—C7115.66 (16)C1—O1—H1109.5
C9—C8—H8A108.4C2—O2—H2109.5
C7—C8—H8A108.4C12—O4—H4109.5
O1—C1—C2—C3179.11 (17)C3—C4—C7—C8173.33 (18)
C6—C1—C2—C30.2 (3)O3—C7—C8—C911.5 (3)
O1—C1—C2—O20.5 (3)C4—C7—C8—C9167.73 (17)
C6—C1—C2—O2179.76 (17)C7—C8—C9—C14121.6 (2)
O2—C2—C3—C4179.83 (17)C7—C8—C9—C1061.4 (3)
C1—C2—C3—C40.6 (3)C14—C9—C10—C110.6 (3)
C2—C3—C4—C50.6 (3)C8—C9—C10—C11176.50 (18)
C2—C3—C4—C7179.35 (16)C9—C10—C11—C120.1 (3)
C3—C4—C5—C60.2 (3)C10—C11—C12—C130.4 (3)
C7—C4—C5—C6178.83 (17)C10—C11—C12—O4177.56 (18)
C4—C5—C6—C10.3 (3)O4—C12—C13—C14177.42 (18)
O1—C1—C6—C5179.49 (18)C11—C12—C13—C140.5 (3)
C2—C1—C6—C50.3 (3)C10—C9—C14—C130.6 (3)
C5—C4—C7—O3175.4 (2)C8—C9—C14—C13176.54 (19)
C3—C4—C7—O35.9 (3)C12—C13—C14—C90.1 (3)
C5—C4—C7—C85.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.942.744 (2)168
O2—H2···O3ii0.821.912.7274 (19)171
O4—H4···O2iii0.822.002.772 (2)158
C3—H3···O3ii0.932.533.191 (2)129
C11—H11···Cg1iv0.932.853.635 (2)143
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H12O4
Mr244.24
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.7073 (11), 9.3464 (19), 11.202 (2)
α, β, γ (°)100.112 (9), 94.792 (9), 100.625 (9)
V3)573.99 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
3179, 2214, 1756
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.172, 1.06
No. of reflections2214
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.942.744 (2)167.7
O2—H2···O3ii0.821.912.7274 (19)171.3
O4—H4···O2iii0.822.002.772 (2)157.7
C3—H3···O3ii0.932.533.191 (2)128.5
C11—H11···Cg1iv0.932.853.635 (2)143.0
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y+2, z+1.
 

Acknowledgements

This research was supported financially by the Key Laboratory of Plant Resources Conservation and Utilization (Jishou University), College of Hunan Province (grant No. JSK200904) and the Key Laboratory of Hunan Forest Products and Chemical Industry Engineering of Hunan Province (grant No. JDZ200904).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKiuchi, F., Chen, X. & Tsuda, Y. (1990). Heterocycles, 31, 629–36.  CAS Google Scholar
First citationNiwa, K., Hashimoto, M., Morishita, S., Yokoyama, Y., Mori, H. & Tamaya, T. (1999). J. Cancer Res. 90, 726–32.  CrossRef CAS Google Scholar
First citationPapoutsi, Z., Kassi, E., Fokialakis, N., Mitakou, S., Lambrinidis, G., Mikros, E. & Moutsatsou, P. (2007). Steroids, 72, 693–704.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParmar, V. S., Bisht, K. S., Jain, R., Singh, S., Sharma, S. K., Gupta, S., Malhotra, S., Tyagi, O. D., Vardhan, A. & Pati, H. N. (1996). Indian J. Chem. Sect. B, 35, 220–232.  Google Scholar
First citationSanduja, R., Weinheimer, A. J. & Alam, M. (1985). J. Chem. Res. Synop. pp. 56–57.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008b). Eur. J. Med. Chem. 43, 1828–1836.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007a). Can. J. Chem. 85, 951–957.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, Z.-P., Li, H.-Q., Xue, J.-Y., Shi, L. & Zhu, H.-L. (2008a). Synth. Commun. 38, 525–529.  Web of Science CrossRef CAS Google Scholar
First citationXiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C. & Zhu, H.-L. (2007b). Bioorg. Med. Chem. 15, 3703–3710.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P. & Xiao, H.-Y. (2008c). Acta Cryst. E64, o2324.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds