metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m61-m62

Tetra-μ-benzoato-bis­­{[4-(pyrrolidin-1-yl)pyridine]zinc(II)}

aDepartment of Fine Chemistry, and Eco-Product and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, bKorea Division of Forest Disaster Management, Korea Forest Research Institute, Seoul 130-712, Republic of Korea, cDepartment of Forest & Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and dDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

(Received 23 November 2009; accepted 8 December 2009; online 12 December 2009)

The central part of the title centrosymmetric dinuclear complex, [Zn2(C7H5O2)4(C9H12N2)2], has a paddle-wheel conformation with four benzoate ligands bridging two symmetry-related ZnII ions. The distorted square-pyramidal coordination environment around the ZnII ion is completed by an N atom from a 4-(pyrrolidin-1-yl)pyridine ligand. The Zn⋯Zn separation of 2.9826 (12) Å does not represent a formal direct metal–metal bond. The ZnII ion is displaced by 0.381 (1) Å from the mean plane of the four basal O atoms. Two of the C atoms of the pyrrolidine ring are disordered over two sites with refined occupancies of 0.53 (2) and 0.47 (2).

Related literature

For crystal structures containing the [Zn2(O2CPh)4] unit, see: Necefoglu et al. (2002[Necefoglu, H., Clegg, W. & Scott, A. J. (2002). Acta Cryst. E58, m121-m122.]); Zeleňák et al. (2004[Zeleňák, V., Sabo, M., Massa, W. & Černák, J. (2004). Acta Cryst. C60, m85-m87.]); Karmakar et al. (2006[Karmakar, A., Sarma, R. J. & Baruah, J. B. (2006). Inorg. Chem. Commun. 9, 1169-1172.]); Ohmura et al. (2005[Ohmura, T., Mori, W., Takei, T., Ikeda, T. & Maeda, A. (2005). Mater. Sci. Pol. 23, 729-736.]). For the crystal structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methyl­quinoline, 3-methyl­quinoline, di-2-pyridyl ketone and trans-1-(2-pyrid­yl)-2-(4-pyrid­yl)ethyl­ene, see: Lee et al. (2008[Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.]); Yu et al. (2008[Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881-m882.], 2009[Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045-m1046.]); Park et al. (2008[Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.]); Shin et al. (2009[Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658-m659.]); Song et al. (2009[Song, Y. J., Lee, S.-W., Jang, K. H., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1495-m1496.]). For transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids, see: Daniele et al. (2008[Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093-1107.]); Parkin (2004[Parkin, G. (2004). Chem. Rev. 104, 699-767.]); Tshuva & Lippard (2004[Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987-1012.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C7H5O2)4(C9H12N2)2]

  • Mr = 911.59

  • Monoclinic, P 21 /n

  • a = 11.0021 (11) Å

  • b = 11.4303 (11) Å

  • c = 16.9508 (16) Å

  • β = 93.869 (2)°

  • V = 2126.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 293 K

  • 0.08 × 0.08 × 0.01 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.909, Tmax = 0.988

  • 11271 measured reflections

  • 4159 independent reflections

  • 2284 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.179

  • S = 0.90

  • 4159 reflections

  • 270 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, great attention has been paid to transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). Some biologically active molecules that have potential interactions with transition metal ions are amino acids, proteins, sugars, nucleotides, fulvic acids and humic acids. In particular, the study on the interaction of transition metal ions with fulvic acids and humic acids, mainly found in soil, is being extensively investigated. As models to examine these interactions we have previously used copper(II) and zinc(II) benzoates as building blocks and reported the structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, di-2-pyridylketone, andtrans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al., 2009; Yu, et al., 2009; Song, et al., 2009). The related paddle-wheel type structures for Zn complexes have been previouly reported (Necefoglu, et al., 2002; Zeleňák, et al.,2004; Kamakar, et al., 2006; Ohmura, et al., 2005). In this work, we have employed zinc(II) benzoate as a building block and 4-(pyrrolidin-1-yl)pyridine as a ligand. We report herein the structure of the title complex.

The molecular structure of the title complex is shown in Fig. 1. The asymmetric unit contains half of the complex with the formula unit being generated by an inversion center. The central part of the complex had a paddle-wheel type conformation four benzoate ligands bridging two symmetry related ZnII ions. The distorted square-pyramidal coordination environment around the unique ZnII ion is completed by an N atom from a 4-(pyrrolidin-1-yl)pyridine ligand. The ZnII ion is displaced by 0.381 (1) Å from the mean plane of the four basal oxygen atoms.

Related literature top

For crystal structures containing the [Zn2(O2CPh)4] unit, see: Necefoglu et al. (2002); Zeleňák et al. (2004); Karmakar et al. (2006); Ohmura et al. (2005). For the crystal structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, di-2-pyridyl ketone and trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, see: Lee et al. (2008); Yu et al. (2008,2009); Park et al. (2008); Shin et al. (2009); Yu et al. (2009); Song et al. (2009). For transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004).

Experimental top

30.4 mg (0.1 mmol) of Zn(NO3)2.6H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml H2O and carefully layered by 4 ml me thanol solution of 4-(pyrrolidin-1-yl)pyridine (30.3 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement top

H atoms were placed in calculated positions with C—H distances of 0.93 Å (pyridine) and 0.97 Å (pyrrolidine). They were included in the refinement in a riding-motion approximation with Uĩso~(H) = 1.2U~eq~(C). The atoms C37/C37A and C38/C38A are disorder components both with refined occupancies of 0.53 (2) and 0.47 (2).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity. The disordered part of pyrrol group is shown by green bonds [Symmetry code: (i) -x, -y + 1, -z].
Tetra-µ-benzoato-bis{[4-(pyrrolidin-1-yl)pyridine]zinc(II)} top
Crystal data top
[Zn2(C7H5O2)4(C9H12N2)2]F(000) = 944
Mr = 911.59Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1481 reflections
a = 11.0021 (11) Åθ = 2.3–19.2°
b = 11.4303 (11) ŵ = 1.19 mm1
c = 16.9508 (16) ÅT = 293 K
β = 93.869 (2)°Plate, colorless
V = 2126.8 (4) Å30.08 × 0.08 × 0.01 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
4159 independent reflections
Radiation source: fine-focus sealed tube2284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1313
Tmin = 0.909, Tmax = 0.988k = 1314
11271 measured reflectionsl = 1720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.1079P)2]
where P = (Fo2 + 2Fc2)/3
4159 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.94 e Å3
7 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Zn2(C7H5O2)4(C9H12N2)2]V = 2126.8 (4) Å3
Mr = 911.59Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.0021 (11) ŵ = 1.19 mm1
b = 11.4303 (11) ÅT = 293 K
c = 16.9508 (16) Å0.08 × 0.08 × 0.01 mm
β = 93.869 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4159 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2284 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.988Rint = 0.068
11271 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0537 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 0.90Δρmax = 0.94 e Å3
4159 reflectionsΔρmin = 0.71 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.11885 (5)0.44449 (5)0.02560 (4)0.0380 (2)
O110.1576 (4)0.5331 (3)0.0760 (2)0.0524 (11)
O120.0192 (4)0.3879 (4)0.1160 (2)0.0574 (11)
O210.1591 (3)0.5941 (3)0.0872 (2)0.0528 (10)
O220.0201 (4)0.3274 (3)0.0446 (2)0.0562 (11)
N310.2720 (4)0.3488 (4)0.0436 (2)0.0389 (10)
N320.5772 (4)0.1339 (4)0.0637 (3)0.0494 (12)
C110.0949 (5)0.5977 (5)0.1189 (3)0.0409 (13)
C120.1545 (5)0.6638 (4)0.1822 (3)0.0428 (14)
C130.2792 (6)0.6570 (5)0.1882 (3)0.0556 (16)
H130.32500.60610.15540.067*
C140.3364 (7)0.7242 (6)0.2419 (4)0.072 (2)
H140.42070.72240.24360.086*
C150.2653 (9)0.7955 (7)0.2942 (5)0.089 (3)
H150.30250.83850.33250.107*
C160.1429 (8)0.8024 (6)0.2898 (4)0.074 (2)
H160.09740.85230.32360.089*
C170.0854 (6)0.7365 (5)0.2356 (3)0.0542 (15)
H170.00110.73970.23420.065*
C210.0822 (6)0.6758 (5)0.0839 (3)0.0444 (14)
C220.1148 (5)0.7854 (4)0.1296 (3)0.0384 (13)
C230.0408 (6)0.8808 (5)0.1229 (4)0.0638 (18)
H230.02970.87740.08940.077*
C240.0676 (7)0.9824 (6)0.1645 (5)0.084 (3)
H240.01741.04760.15800.101*
C250.1670 (8)0.9853 (6)0.2142 (5)0.082 (2)
H250.18351.05270.24380.098*
C260.2463 (7)0.8915 (6)0.2234 (4)0.0710 (19)
H260.31590.89500.25760.085*
C270.2173 (6)0.7926 (5)0.1794 (4)0.0579 (17)
H270.26950.72860.18380.069*
C310.3724 (5)0.3727 (5)0.0069 (3)0.0455 (14)
H310.37190.43910.02490.055*
C320.4768 (5)0.3064 (5)0.0126 (4)0.0531 (16)
H320.54410.32870.01420.064*
C330.4810 (5)0.2046 (5)0.0591 (3)0.0422 (13)
C340.3747 (5)0.1802 (5)0.0984 (4)0.0517 (16)
H340.37190.11520.13120.062*
C350.2759 (5)0.2528 (5)0.0879 (3)0.0478 (15)
H350.20660.23350.11360.057*
C360.6859 (5)0.1549 (5)0.0198 (4)0.0573 (17)
H36A0.72970.22350.03980.069*0.47 (2)
H36B0.66390.16560.03610.069*0.47 (2)
C370.7631 (14)0.0439 (11)0.0341 (9)0.054 (4)*0.47 (2)
H37A0.74160.01590.00500.065*0.47 (2)
H37B0.84950.06070.03400.065*0.47 (2)
C380.7273 (7)0.008 (2)0.1161 (9)0.067 (6)*0.47 (2)
H38A0.76850.05660.15670.080*0.47 (2)
H38B0.74670.07310.12680.080*0.47 (2)
C390.5882 (5)0.0289 (5)0.1122 (4)0.0607 (18)
H39A0.54410.03620.08720.073*0.47 (2)
H39B0.55950.04200.16430.073*0.47 (2)
H36C0.71130.23600.02380.069*0.53 (2)
H36D0.67100.13450.03550.069*0.53 (2)
C37A0.7824 (9)0.0733 (12)0.0611 (11)0.073 (5)*0.53 (2)
H37C0.83620.04250.02310.088*0.53 (2)
H37D0.83100.11560.10160.088*0.53 (2)
C38A0.7126 (9)0.0257 (12)0.0979 (11)0.063 (5)*0.53 (2)
H38C0.75390.05140.14730.076*0.53 (2)
H38D0.70340.09190.06220.076*0.53 (2)
H39C0.52310.02540.09710.073*0.53 (2)
H39D0.58390.04860.16760.073*0.53 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0382 (4)0.0339 (3)0.0421 (4)0.0065 (3)0.0043 (3)0.0011 (3)
O110.061 (3)0.051 (2)0.047 (2)0.011 (2)0.011 (2)0.017 (2)
O120.055 (3)0.064 (3)0.056 (3)0.007 (2)0.016 (2)0.016 (2)
O210.052 (3)0.040 (2)0.064 (3)0.007 (2)0.011 (2)0.010 (2)
O220.054 (3)0.050 (2)0.063 (3)0.002 (2)0.010 (2)0.014 (2)
N310.038 (3)0.038 (2)0.041 (3)0.005 (2)0.002 (2)0.005 (2)
N320.043 (3)0.052 (3)0.053 (3)0.016 (2)0.006 (2)0.010 (2)
C110.055 (4)0.034 (3)0.035 (3)0.005 (3)0.012 (3)0.003 (2)
C120.053 (4)0.037 (3)0.039 (3)0.004 (3)0.012 (3)0.004 (3)
C130.063 (4)0.061 (4)0.044 (3)0.008 (3)0.013 (3)0.005 (3)
C140.073 (5)0.076 (5)0.068 (5)0.023 (4)0.027 (4)0.015 (4)
C150.135 (8)0.071 (5)0.066 (5)0.035 (5)0.046 (6)0.000 (4)
C160.109 (7)0.066 (5)0.046 (4)0.005 (4)0.004 (4)0.018 (3)
C170.063 (4)0.051 (4)0.048 (4)0.004 (3)0.001 (3)0.008 (3)
C210.062 (4)0.035 (3)0.037 (3)0.002 (3)0.017 (3)0.004 (2)
C220.037 (3)0.041 (3)0.037 (3)0.007 (2)0.005 (3)0.005 (2)
C230.047 (4)0.049 (4)0.096 (5)0.006 (3)0.003 (4)0.018 (4)
C240.062 (5)0.060 (5)0.128 (7)0.012 (4)0.026 (5)0.038 (5)
C250.103 (7)0.052 (4)0.093 (6)0.013 (4)0.022 (5)0.028 (4)
C260.083 (5)0.068 (5)0.059 (4)0.015 (4)0.016 (4)0.013 (4)
C270.080 (5)0.038 (3)0.054 (4)0.000 (3)0.000 (4)0.002 (3)
C310.040 (3)0.046 (3)0.050 (3)0.003 (3)0.001 (3)0.015 (3)
C320.048 (4)0.055 (4)0.058 (4)0.004 (3)0.016 (3)0.012 (3)
C330.042 (3)0.041 (3)0.044 (3)0.009 (3)0.001 (3)0.001 (3)
C340.053 (4)0.043 (3)0.061 (4)0.011 (3)0.012 (3)0.017 (3)
C350.043 (3)0.043 (3)0.059 (4)0.005 (3)0.016 (3)0.011 (3)
C360.047 (4)0.064 (4)0.062 (4)0.015 (3)0.013 (3)0.006 (3)
C390.061 (4)0.050 (4)0.072 (4)0.017 (3)0.006 (4)0.009 (3)
C36A0.047 (4)0.064 (4)0.062 (4)0.015 (3)0.013 (3)0.006 (3)
C39A0.061 (4)0.050 (4)0.072 (4)0.017 (3)0.006 (4)0.009 (3)
Geometric parameters (Å, º) top
Zn1—N312.014 (4)C23—H230.9300
Zn1—O212.036 (4)C24—C251.335 (11)
Zn1—O122.048 (4)C24—H240.9300
Zn1—O222.053 (4)C25—C261.384 (11)
Zn1—O112.068 (4)C25—H250.9300
Zn1—Zn1i2.9826 (12)C26—C271.380 (8)
O11—C111.216 (6)C26—H260.9300
O12—C11i1.270 (6)C27—H270.9300
O21—C211.260 (6)C31—C321.374 (7)
O22—C21i1.268 (7)C31—H310.9300
N31—C351.329 (6)C32—C331.404 (7)
N31—C311.333 (6)C32—H320.9300
N32—C331.330 (6)C33—C341.412 (7)
N32—C391.454 (7)C34—C351.370 (7)
N32—C361.470 (7)C34—H340.9300
C11—O12i1.270 (6)C35—H350.9300
C11—C121.500 (7)C36—C371.536 (7)
C12—C131.384 (8)C36—H36A0.9700
C12—C171.413 (8)C36—H36B0.9700
C13—C141.375 (8)C37—C381.525 (10)
C13—H130.9300C37—H37A0.9700
C14—C151.403 (11)C37—H37B0.9700
C14—H140.9300C38—C391.545 (7)
C15—C161.356 (10)C38—H38A0.9700
C15—H150.9300C38—H38B0.9700
C16—C171.374 (8)C39—H39A0.9700
C16—H160.9300C39—H39B0.9700
C17—H170.9300C37A—C38A1.524 (10)
C21—O22i1.268 (7)C37A—H37C0.9700
C21—C221.504 (7)C37A—H37D0.9700
C22—C231.361 (8)C38A—H38C0.9700
C22—C271.364 (8)C38A—H38D0.9700
C23—C241.380 (9)
N31—Zn1—O21103.14 (17)C25—C24—H24120.6
N31—Zn1—O12101.53 (16)C23—C24—H24120.6
O21—Zn1—O1289.46 (17)C24—C25—C26122.3 (7)
N31—Zn1—O2297.95 (17)C24—C25—H25118.9
O21—Zn1—O22158.90 (16)C26—C25—H25118.9
O12—Zn1—O2286.50 (17)C27—C26—C25117.0 (7)
N31—Zn1—O11100.06 (16)C27—C26—H26121.5
O21—Zn1—O1188.04 (16)C25—C26—H26121.5
O12—Zn1—O11158.27 (16)C22—C27—C26122.3 (6)
O22—Zn1—O1188.11 (16)C22—C27—H27118.8
N31—Zn1—Zn1i169.40 (13)C26—C27—H27118.8
O21—Zn1—Zn1i87.02 (11)N31—C31—C32124.7 (5)
O12—Zn1—Zn1i81.31 (12)N31—C31—H31117.7
O22—Zn1—Zn1i71.90 (12)C32—C31—H31117.7
O11—Zn1—Zn1i77.01 (12)C31—C32—C33119.5 (5)
C11—O11—Zn1130.8 (4)C31—C32—H32120.2
C11i—O12—Zn1124.6 (4)C33—C32—H32120.2
C21—O21—Zn1118.5 (4)N32—C33—C32122.2 (5)
C21i—O22—Zn1137.7 (4)N32—C33—C34122.2 (5)
C35—N31—C31115.9 (4)C32—C33—C34115.6 (5)
C35—N31—Zn1122.0 (3)C35—C34—C33119.6 (5)
C31—N31—Zn1122.0 (4)C35—C34—H34120.2
C33—N32—C39124.8 (4)C33—C34—H34120.2
C33—N32—C36122.8 (5)N31—C35—C34124.7 (5)
C39—N32—C36112.4 (4)N31—C35—H35117.6
O11—C11—O12i125.3 (5)C34—C35—H35117.6
O11—C11—C12118.4 (5)N32—C36—C37104.2 (6)
O12i—C11—C12116.3 (5)N32—C36—H36A110.9
C13—C12—C17118.6 (5)C37—C36—H36A110.9
C13—C12—C11120.5 (6)N32—C36—H36B110.9
C17—C12—C11120.8 (5)C37—C36—H36B110.9
C14—C13—C12121.2 (7)H36A—C36—H36B108.9
C14—C13—H13119.4C38—C37—C36100.9 (9)
C12—C13—H13119.4C38—C37—H37A111.6
C13—C14—C15118.8 (7)C36—C37—H37A111.6
C13—C14—H14120.6C38—C37—H37B111.6
C15—C14—H14120.6C36—C37—H37B111.6
C16—C15—C14120.8 (6)H37A—C37—H37B109.4
C16—C15—H15119.6C37—C38—C39103.7 (8)
C14—C15—H15119.6C37—C38—H38A111.0
C15—C16—C17120.6 (7)C39—C38—H38A111.0
C15—C16—H16119.7C37—C38—H38B111.0
C17—C16—H16119.7C39—C38—H38B111.0
C16—C17—C12119.9 (6)H38A—C38—H38B109.0
C16—C17—H17120.0N32—C39—C38101.2 (8)
C12—C17—H17120.0N32—C39—H39A111.5
O21—C21—O22i124.9 (5)C38—C39—H39A111.5
O21—C21—C22117.3 (6)N32—C39—H39B111.5
O22i—C21—C22117.9 (5)C38—C39—H39B111.5
C23—C22—C27118.0 (5)H39A—C39—H39B109.3
C23—C22—C21120.2 (5)C38A—C37A—H37C110.4
C27—C22—C21121.8 (5)C38A—C37A—H37D110.4
C22—C23—C24121.6 (7)H37C—C37A—H37D108.6
C22—C23—H23119.2C37A—C38A—H38C111.0
C24—C23—H23119.2C37A—C38A—H38D111.0
C25—C24—C23118.8 (7)H38C—C38A—H38D109.0
N31—Zn1—O11—C11173.5 (5)C14—C15—C16—C172.3 (11)
O21—Zn1—O11—C1183.5 (5)C15—C16—C17—C122.2 (10)
O12—Zn1—O11—C110.1 (8)C13—C12—C17—C162.8 (9)
O22—Zn1—O11—C1175.8 (5)C11—C12—C17—C16175.6 (5)
Zn1i—Zn1—O11—C113.9 (5)Zn1—O21—C21—O22i0.0 (7)
N31—Zn1—O12—C11i162.7 (4)Zn1—O21—C21—C22179.7 (3)
O21—Zn1—O12—C11i94.0 (5)O21—C21—C22—C23174.1 (5)
O22—Zn1—O12—C11i65.2 (5)O22i—C21—C22—C235.6 (7)
O11—Zn1—O12—C11i10.7 (8)O21—C21—C22—C276.7 (7)
Zn1i—Zn1—O12—C11i7.0 (4)O22i—C21—C22—C27173.6 (5)
N31—Zn1—O21—C21176.1 (4)C27—C22—C23—C240.3 (9)
O12—Zn1—O21—C2182.2 (4)C21—C22—C23—C24179.5 (6)
O22—Zn1—O21—C213.3 (7)C22—C23—C24—C252.0 (12)
O11—Zn1—O21—C2176.2 (4)C23—C24—C25—C262.4 (13)
Zn1i—Zn1—O21—C210.8 (4)C24—C25—C26—C271.0 (12)
N31—Zn1—O22—C21i175.1 (5)C23—C22—C27—C261.1 (9)
O21—Zn1—O22—C21i4.4 (8)C21—C22—C27—C26178.1 (5)
O12—Zn1—O22—C21i83.8 (5)C25—C26—C27—C220.8 (10)
O11—Zn1—O22—C21i75.2 (5)C35—N31—C31—C320.5 (9)
Zn1i—Zn1—O22—C21i1.8 (5)Zn1—N31—C31—C32175.5 (5)
O21—Zn1—N31—C35110.2 (4)N31—C31—C32—C330.8 (10)
O12—Zn1—N31—C3518.1 (5)C39—N32—C33—C32178.5 (6)
O22—Zn1—N31—C3570.0 (4)C36—N32—C33—C321.1 (9)
O11—Zn1—N31—C35159.4 (4)C39—N32—C33—C343.7 (9)
Zn1i—Zn1—N31—C3586.5 (8)C36—N32—C33—C34176.7 (6)
O21—Zn1—N31—C3175.2 (5)C31—C32—C33—N32176.6 (6)
O12—Zn1—N31—C31167.3 (4)C31—C32—C33—C341.3 (9)
O22—Zn1—N31—C31104.7 (4)N32—C33—C34—C35176.4 (6)
O11—Zn1—N31—C3115.2 (5)C32—C33—C34—C351.6 (9)
Zn1i—Zn1—N31—C3188.1 (8)C31—N31—C35—C340.8 (9)
Zn1—O11—C11—O12i10.9 (9)Zn1—N31—C35—C34175.8 (5)
Zn1—O11—C11—C12171.0 (3)C33—C34—C35—N311.4 (10)
O11—C11—C12—C134.1 (8)C33—N32—C36—C37172.3 (9)
O12i—C11—C12—C13177.6 (5)C39—N32—C36—C378.1 (10)
O11—C11—C12—C17177.5 (5)N32—C36—C37—C3830.5 (16)
O12i—C11—C12—C170.7 (7)C36—C37—C38—C3942 (2)
C17—C12—C13—C143.6 (9)C33—N32—C39—C38162.0 (9)
C11—C12—C13—C14174.8 (5)C36—N32—C39—C3817.6 (10)
C12—C13—C14—C153.6 (9)C37—C38—C39—N3236.8 (17)
C13—C14—C15—C163.0 (11)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn2(C7H5O2)4(C9H12N2)2]
Mr911.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.0021 (11), 11.4303 (11), 16.9508 (16)
β (°) 93.869 (2)
V3)2126.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.08 × 0.08 × 0.01
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.909, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
11271, 4159, 2284
Rint0.068
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.179, 0.90
No. of reflections4159
No. of parameters270
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.71

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support from Korea Ministry Environment `ET-Human resource development Project' and the Korean Science & Engineering Foundation (2009–0074066) is gratefully acknowledged.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107.  Web of Science CrossRef CAS Google Scholar
First citationKarmakar, A., Sarma, R. J. & Baruah, J. B. (2006). Inorg. Chem. Commun. 9, 1169–1172.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNecefoglu, H., Clegg, W. & Scott, A. J. (2002). Acta Cryst. E58, m121–m122.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhmura, T., Mori, W., Takei, T., Ikeda, T. & Maeda, A. (2005). Mater. Sci. Pol. 23, 729–736.  CAS Google Scholar
First citationPark, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, G. (2004). Chem. Rev. 104, 699–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, Y. J., Lee, S.-W., Jang, K. H., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1495–m1496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeleňák, V., Sabo, M., Massa, W. & Černák, J. (2004). Acta Cryst. C60, m85–m87.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m61-m62
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds