metal-organic compounds
Tetra-μ-benzoato-bis{[4-(pyrrolidin-1-yl)pyridine]zinc(II)}
aDepartment of Fine Chemistry, and Eco-Product and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, bKorea Division of Forest Disaster Management, Korea Forest Research Institute, Seoul 130-712, Republic of Korea, cDepartment of Forest & Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and dDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr
The central part of the title centrosymmetric dinuclear complex, [Zn2(C7H5O2)4(C9H12N2)2], has a paddle-wheel conformation with four benzoate ligands bridging two symmetry-related ZnII ions. The distorted square-pyramidal coordination environment around the ZnII ion is completed by an N atom from a 4-(pyrrolidin-1-yl)pyridine ligand. The Zn⋯Zn separation of 2.9826 (12) Å does not represent a formal direct metal–metal bond. The ZnII ion is displaced by 0.381 (1) Å from the mean plane of the four basal O atoms. Two of the C atoms of the pyrrolidine ring are disordered over two sites with refined occupancies of 0.53 (2) and 0.47 (2).
Related literature
For crystal structures containing the [Zn2(O2CPh)4] unit, see: Necefoglu et al. (2002); Zeleňák et al. (2004); Karmakar et al. (2006); Ohmura et al. (2005). For the crystal structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, di-2-pyridyl ketone and trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, see: Lee et al. (2008); Yu et al. (2008, 2009); Park et al. (2008); Shin et al. (2009); Song et al. (2009). For transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809052714/lh2962sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809052714/lh2962Isup2.hkl
30.4 mg (0.1 mmol) of Zn(NO3)2.6H2O and 28.0 mg (0.2 mmol) of C6H5COONH4 were dissolved in 4 ml H2O and carefully layered by 4 ml me thanol solution of 4-(pyrrolidin-1-yl)pyridine (30.3 mg, 0.2 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.
H atoms were placed in calculated positions with C—H distances of 0.93 Å (pyridine) and 0.97 Å (pyrrolidine). They were included in the
in a riding-motion approximation with Uĩso~(H) = 1.2U~eq~(C). The atoms C37/C37A and C38/C38A are disorder components both with refined occupancies of 0.53 (2) and 0.47 (2).Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn2(C7H5O2)4(C9H12N2)2] | F(000) = 944 |
Mr = 911.59 | Dx = 1.423 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1481 reflections |
a = 11.0021 (11) Å | θ = 2.3–19.2° |
b = 11.4303 (11) Å | µ = 1.19 mm−1 |
c = 16.9508 (16) Å | T = 293 K |
β = 93.869 (2)° | Plate, colorless |
V = 2126.8 (4) Å3 | 0.08 × 0.08 × 0.01 mm |
Z = 2 |
Bruker SMART CCD diffractometer | 4159 independent reflections |
Radiation source: fine-focus sealed tube | 2284 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −13→13 |
Tmin = 0.909, Tmax = 0.988 | k = −13→14 |
11271 measured reflections | l = −17→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.179 | H-atom parameters constrained |
S = 0.90 | w = 1/[σ2(Fo2) + (0.1079P)2] where P = (Fo2 + 2Fc2)/3 |
4159 reflections | (Δ/σ)max < 0.001 |
270 parameters | Δρmax = 0.94 e Å−3 |
7 restraints | Δρmin = −0.71 e Å−3 |
[Zn2(C7H5O2)4(C9H12N2)2] | V = 2126.8 (4) Å3 |
Mr = 911.59 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.0021 (11) Å | µ = 1.19 mm−1 |
b = 11.4303 (11) Å | T = 293 K |
c = 16.9508 (16) Å | 0.08 × 0.08 × 0.01 mm |
β = 93.869 (2)° |
Bruker SMART CCD diffractometer | 4159 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 2284 reflections with I > 2σ(I) |
Tmin = 0.909, Tmax = 0.988 | Rint = 0.068 |
11271 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 7 restraints |
wR(F2) = 0.179 | H-atom parameters constrained |
S = 0.90 | Δρmax = 0.94 e Å−3 |
4159 reflections | Δρmin = −0.71 e Å−3 |
270 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.11885 (5) | 0.44449 (5) | 0.02560 (4) | 0.0380 (2) | |
O11 | 0.1576 (4) | 0.5331 (3) | −0.0760 (2) | 0.0524 (11) | |
O12 | 0.0192 (4) | 0.3879 (4) | 0.1160 (2) | 0.0574 (11) | |
O21 | 0.1591 (3) | 0.5941 (3) | 0.0872 (2) | 0.0528 (10) | |
O22 | 0.0201 (4) | 0.3274 (3) | −0.0446 (2) | 0.0562 (11) | |
N31 | 0.2720 (4) | 0.3488 (4) | 0.0436 (2) | 0.0389 (10) | |
N32 | 0.5772 (4) | 0.1339 (4) | 0.0637 (3) | 0.0494 (12) | |
C11 | 0.0949 (5) | 0.5977 (5) | −0.1189 (3) | 0.0409 (13) | |
C12 | 0.1545 (5) | 0.6638 (4) | −0.1822 (3) | 0.0428 (14) | |
C13 | 0.2792 (6) | 0.6570 (5) | −0.1882 (3) | 0.0556 (16) | |
H13 | 0.3250 | 0.6061 | −0.1554 | 0.067* | |
C14 | 0.3364 (7) | 0.7242 (6) | −0.2419 (4) | 0.072 (2) | |
H14 | 0.4207 | 0.7224 | −0.2436 | 0.086* | |
C15 | 0.2653 (9) | 0.7955 (7) | −0.2942 (5) | 0.089 (3) | |
H15 | 0.3025 | 0.8385 | −0.3325 | 0.107* | |
C16 | 0.1429 (8) | 0.8024 (6) | −0.2898 (4) | 0.074 (2) | |
H16 | 0.0974 | 0.8523 | −0.3236 | 0.089* | |
C17 | 0.0854 (6) | 0.7365 (5) | −0.2356 (3) | 0.0542 (15) | |
H17 | 0.0011 | 0.7397 | −0.2342 | 0.065* | |
C21 | 0.0822 (6) | 0.6758 (5) | 0.0839 (3) | 0.0444 (14) | |
C22 | 0.1148 (5) | 0.7854 (4) | 0.1296 (3) | 0.0384 (13) | |
C23 | 0.0408 (6) | 0.8808 (5) | 0.1229 (4) | 0.0638 (18) | |
H23 | −0.0297 | 0.8774 | 0.0894 | 0.077* | |
C24 | 0.0676 (7) | 0.9824 (6) | 0.1645 (5) | 0.084 (3) | |
H24 | 0.0174 | 1.0476 | 0.1580 | 0.101* | |
C25 | 0.1670 (8) | 0.9853 (6) | 0.2142 (5) | 0.082 (2) | |
H25 | 0.1835 | 1.0527 | 0.2438 | 0.098* | |
C26 | 0.2463 (7) | 0.8915 (6) | 0.2234 (4) | 0.0710 (19) | |
H26 | 0.3159 | 0.8950 | 0.2576 | 0.085* | |
C27 | 0.2173 (6) | 0.7926 (5) | 0.1794 (4) | 0.0579 (17) | |
H27 | 0.2695 | 0.7286 | 0.1838 | 0.069* | |
C31 | 0.3724 (5) | 0.3727 (5) | 0.0069 (3) | 0.0455 (14) | |
H31 | 0.3719 | 0.4391 | −0.0249 | 0.055* | |
C32 | 0.4768 (5) | 0.3064 (5) | 0.0126 (4) | 0.0531 (16) | |
H32 | 0.5441 | 0.3287 | −0.0142 | 0.064* | |
C33 | 0.4810 (5) | 0.2046 (5) | 0.0591 (3) | 0.0422 (13) | |
C34 | 0.3747 (5) | 0.1802 (5) | 0.0984 (4) | 0.0517 (16) | |
H34 | 0.3719 | 0.1152 | 0.1312 | 0.062* | |
C35 | 0.2759 (5) | 0.2528 (5) | 0.0879 (3) | 0.0478 (15) | |
H35 | 0.2066 | 0.2335 | 0.1136 | 0.057* | |
C36 | 0.6859 (5) | 0.1549 (5) | 0.0198 (4) | 0.0573 (17) | |
H36A | 0.7297 | 0.2235 | 0.0398 | 0.069* | 0.47 (2) |
H36B | 0.6639 | 0.1656 | −0.0361 | 0.069* | 0.47 (2) |
C37 | 0.7631 (14) | 0.0439 (11) | 0.0341 (9) | 0.054 (4)* | 0.47 (2) |
H37A | 0.7416 | −0.0159 | −0.0050 | 0.065* | 0.47 (2) |
H37B | 0.8495 | 0.0607 | 0.0340 | 0.065* | 0.47 (2) |
C38 | 0.7273 (7) | 0.008 (2) | 0.1161 (9) | 0.067 (6)* | 0.47 (2) |
H38A | 0.7685 | 0.0566 | 0.1567 | 0.080* | 0.47 (2) |
H38B | 0.7467 | −0.0731 | 0.1268 | 0.080* | 0.47 (2) |
C39 | 0.5882 (5) | 0.0289 (5) | 0.1122 (4) | 0.0607 (18) | |
H39A | 0.5441 | −0.0362 | 0.0872 | 0.073* | 0.47 (2) |
H39B | 0.5595 | 0.0420 | 0.1643 | 0.073* | 0.47 (2) |
H36C | 0.7113 | 0.2360 | 0.0238 | 0.069* | 0.53 (2) |
H36D | 0.6710 | 0.1345 | −0.0355 | 0.069* | 0.53 (2) |
C37A | 0.7824 (9) | 0.0733 (12) | 0.0611 (11) | 0.073 (5)* | 0.53 (2) |
H37C | 0.8362 | 0.0425 | 0.0231 | 0.088* | 0.53 (2) |
H37D | 0.8310 | 0.1156 | 0.1016 | 0.088* | 0.53 (2) |
C38A | 0.7126 (9) | −0.0257 (12) | 0.0979 (11) | 0.063 (5)* | 0.53 (2) |
H38C | 0.7539 | −0.0514 | 0.1473 | 0.076* | 0.53 (2) |
H38D | 0.7034 | −0.0919 | 0.0622 | 0.076* | 0.53 (2) |
H39C | 0.5231 | −0.0254 | 0.0971 | 0.073* | 0.53 (2) |
H39D | 0.5839 | 0.0486 | 0.1676 | 0.073* | 0.53 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0382 (4) | 0.0339 (3) | 0.0421 (4) | 0.0065 (3) | 0.0043 (3) | 0.0011 (3) |
O11 | 0.061 (3) | 0.051 (2) | 0.047 (2) | 0.011 (2) | 0.011 (2) | 0.017 (2) |
O12 | 0.055 (3) | 0.064 (3) | 0.056 (3) | 0.007 (2) | 0.016 (2) | 0.016 (2) |
O21 | 0.052 (3) | 0.040 (2) | 0.064 (3) | 0.007 (2) | −0.011 (2) | −0.010 (2) |
O22 | 0.054 (3) | 0.050 (2) | 0.063 (3) | −0.002 (2) | −0.010 (2) | −0.014 (2) |
N31 | 0.038 (3) | 0.038 (2) | 0.041 (3) | 0.005 (2) | 0.002 (2) | 0.005 (2) |
N32 | 0.043 (3) | 0.052 (3) | 0.053 (3) | 0.016 (2) | 0.006 (2) | 0.010 (2) |
C11 | 0.055 (4) | 0.034 (3) | 0.035 (3) | −0.005 (3) | 0.012 (3) | −0.003 (2) |
C12 | 0.053 (4) | 0.037 (3) | 0.039 (3) | −0.004 (3) | 0.012 (3) | −0.004 (3) |
C13 | 0.063 (4) | 0.061 (4) | 0.044 (3) | −0.008 (3) | 0.013 (3) | −0.005 (3) |
C14 | 0.073 (5) | 0.076 (5) | 0.068 (5) | −0.023 (4) | 0.027 (4) | −0.015 (4) |
C15 | 0.135 (8) | 0.071 (5) | 0.066 (5) | −0.035 (5) | 0.046 (6) | 0.000 (4) |
C16 | 0.109 (7) | 0.066 (5) | 0.046 (4) | −0.005 (4) | 0.004 (4) | 0.018 (3) |
C17 | 0.063 (4) | 0.051 (4) | 0.048 (4) | −0.004 (3) | −0.001 (3) | 0.008 (3) |
C21 | 0.062 (4) | 0.035 (3) | 0.037 (3) | −0.002 (3) | 0.017 (3) | 0.004 (2) |
C22 | 0.037 (3) | 0.041 (3) | 0.037 (3) | −0.007 (2) | 0.005 (3) | −0.005 (2) |
C23 | 0.047 (4) | 0.049 (4) | 0.096 (5) | 0.006 (3) | 0.003 (4) | −0.018 (4) |
C24 | 0.062 (5) | 0.060 (5) | 0.128 (7) | 0.012 (4) | −0.026 (5) | −0.038 (5) |
C25 | 0.103 (7) | 0.052 (4) | 0.093 (6) | −0.013 (4) | 0.022 (5) | −0.028 (4) |
C26 | 0.083 (5) | 0.068 (5) | 0.059 (4) | −0.015 (4) | −0.016 (4) | −0.013 (4) |
C27 | 0.080 (5) | 0.038 (3) | 0.054 (4) | 0.000 (3) | 0.000 (4) | 0.002 (3) |
C31 | 0.040 (3) | 0.046 (3) | 0.050 (3) | 0.003 (3) | 0.001 (3) | 0.015 (3) |
C32 | 0.048 (4) | 0.055 (4) | 0.058 (4) | 0.004 (3) | 0.016 (3) | 0.012 (3) |
C33 | 0.042 (3) | 0.041 (3) | 0.044 (3) | 0.009 (3) | 0.001 (3) | −0.001 (3) |
C34 | 0.053 (4) | 0.043 (3) | 0.061 (4) | 0.011 (3) | 0.012 (3) | 0.017 (3) |
C35 | 0.043 (3) | 0.043 (3) | 0.059 (4) | 0.005 (3) | 0.016 (3) | 0.011 (3) |
C36 | 0.047 (4) | 0.064 (4) | 0.062 (4) | 0.015 (3) | 0.013 (3) | 0.006 (3) |
C39 | 0.061 (4) | 0.050 (4) | 0.072 (4) | 0.017 (3) | 0.006 (4) | 0.009 (3) |
C36A | 0.047 (4) | 0.064 (4) | 0.062 (4) | 0.015 (3) | 0.013 (3) | 0.006 (3) |
C39A | 0.061 (4) | 0.050 (4) | 0.072 (4) | 0.017 (3) | 0.006 (4) | 0.009 (3) |
Zn1—N31 | 2.014 (4) | C23—H23 | 0.9300 |
Zn1—O21 | 2.036 (4) | C24—C25 | 1.335 (11) |
Zn1—O12 | 2.048 (4) | C24—H24 | 0.9300 |
Zn1—O22 | 2.053 (4) | C25—C26 | 1.384 (11) |
Zn1—O11 | 2.068 (4) | C25—H25 | 0.9300 |
Zn1—Zn1i | 2.9826 (12) | C26—C27 | 1.380 (8) |
O11—C11 | 1.216 (6) | C26—H26 | 0.9300 |
O12—C11i | 1.270 (6) | C27—H27 | 0.9300 |
O21—C21 | 1.260 (6) | C31—C32 | 1.374 (7) |
O22—C21i | 1.268 (7) | C31—H31 | 0.9300 |
N31—C35 | 1.329 (6) | C32—C33 | 1.404 (7) |
N31—C31 | 1.333 (6) | C32—H32 | 0.9300 |
N32—C33 | 1.330 (6) | C33—C34 | 1.412 (7) |
N32—C39 | 1.454 (7) | C34—C35 | 1.370 (7) |
N32—C36 | 1.470 (7) | C34—H34 | 0.9300 |
C11—O12i | 1.270 (6) | C35—H35 | 0.9300 |
C11—C12 | 1.500 (7) | C36—C37 | 1.536 (7) |
C12—C13 | 1.384 (8) | C36—H36A | 0.9700 |
C12—C17 | 1.413 (8) | C36—H36B | 0.9700 |
C13—C14 | 1.375 (8) | C37—C38 | 1.525 (10) |
C13—H13 | 0.9300 | C37—H37A | 0.9700 |
C14—C15 | 1.403 (11) | C37—H37B | 0.9700 |
C14—H14 | 0.9300 | C38—C39 | 1.545 (7) |
C15—C16 | 1.356 (10) | C38—H38A | 0.9700 |
C15—H15 | 0.9300 | C38—H38B | 0.9700 |
C16—C17 | 1.374 (8) | C39—H39A | 0.9700 |
C16—H16 | 0.9300 | C39—H39B | 0.9700 |
C17—H17 | 0.9300 | C37A—C38A | 1.524 (10) |
C21—O22i | 1.268 (7) | C37A—H37C | 0.9700 |
C21—C22 | 1.504 (7) | C37A—H37D | 0.9700 |
C22—C23 | 1.361 (8) | C38A—H38C | 0.9700 |
C22—C27 | 1.364 (8) | C38A—H38D | 0.9700 |
C23—C24 | 1.380 (9) | ||
N31—Zn1—O21 | 103.14 (17) | C25—C24—H24 | 120.6 |
N31—Zn1—O12 | 101.53 (16) | C23—C24—H24 | 120.6 |
O21—Zn1—O12 | 89.46 (17) | C24—C25—C26 | 122.3 (7) |
N31—Zn1—O22 | 97.95 (17) | C24—C25—H25 | 118.9 |
O21—Zn1—O22 | 158.90 (16) | C26—C25—H25 | 118.9 |
O12—Zn1—O22 | 86.50 (17) | C27—C26—C25 | 117.0 (7) |
N31—Zn1—O11 | 100.06 (16) | C27—C26—H26 | 121.5 |
O21—Zn1—O11 | 88.04 (16) | C25—C26—H26 | 121.5 |
O12—Zn1—O11 | 158.27 (16) | C22—C27—C26 | 122.3 (6) |
O22—Zn1—O11 | 88.11 (16) | C22—C27—H27 | 118.8 |
N31—Zn1—Zn1i | 169.40 (13) | C26—C27—H27 | 118.8 |
O21—Zn1—Zn1i | 87.02 (11) | N31—C31—C32 | 124.7 (5) |
O12—Zn1—Zn1i | 81.31 (12) | N31—C31—H31 | 117.7 |
O22—Zn1—Zn1i | 71.90 (12) | C32—C31—H31 | 117.7 |
O11—Zn1—Zn1i | 77.01 (12) | C31—C32—C33 | 119.5 (5) |
C11—O11—Zn1 | 130.8 (4) | C31—C32—H32 | 120.2 |
C11i—O12—Zn1 | 124.6 (4) | C33—C32—H32 | 120.2 |
C21—O21—Zn1 | 118.5 (4) | N32—C33—C32 | 122.2 (5) |
C21i—O22—Zn1 | 137.7 (4) | N32—C33—C34 | 122.2 (5) |
C35—N31—C31 | 115.9 (4) | C32—C33—C34 | 115.6 (5) |
C35—N31—Zn1 | 122.0 (3) | C35—C34—C33 | 119.6 (5) |
C31—N31—Zn1 | 122.0 (4) | C35—C34—H34 | 120.2 |
C33—N32—C39 | 124.8 (4) | C33—C34—H34 | 120.2 |
C33—N32—C36 | 122.8 (5) | N31—C35—C34 | 124.7 (5) |
C39—N32—C36 | 112.4 (4) | N31—C35—H35 | 117.6 |
O11—C11—O12i | 125.3 (5) | C34—C35—H35 | 117.6 |
O11—C11—C12 | 118.4 (5) | N32—C36—C37 | 104.2 (6) |
O12i—C11—C12 | 116.3 (5) | N32—C36—H36A | 110.9 |
C13—C12—C17 | 118.6 (5) | C37—C36—H36A | 110.9 |
C13—C12—C11 | 120.5 (6) | N32—C36—H36B | 110.9 |
C17—C12—C11 | 120.8 (5) | C37—C36—H36B | 110.9 |
C14—C13—C12 | 121.2 (7) | H36A—C36—H36B | 108.9 |
C14—C13—H13 | 119.4 | C38—C37—C36 | 100.9 (9) |
C12—C13—H13 | 119.4 | C38—C37—H37A | 111.6 |
C13—C14—C15 | 118.8 (7) | C36—C37—H37A | 111.6 |
C13—C14—H14 | 120.6 | C38—C37—H37B | 111.6 |
C15—C14—H14 | 120.6 | C36—C37—H37B | 111.6 |
C16—C15—C14 | 120.8 (6) | H37A—C37—H37B | 109.4 |
C16—C15—H15 | 119.6 | C37—C38—C39 | 103.7 (8) |
C14—C15—H15 | 119.6 | C37—C38—H38A | 111.0 |
C15—C16—C17 | 120.6 (7) | C39—C38—H38A | 111.0 |
C15—C16—H16 | 119.7 | C37—C38—H38B | 111.0 |
C17—C16—H16 | 119.7 | C39—C38—H38B | 111.0 |
C16—C17—C12 | 119.9 (6) | H38A—C38—H38B | 109.0 |
C16—C17—H17 | 120.0 | N32—C39—C38 | 101.2 (8) |
C12—C17—H17 | 120.0 | N32—C39—H39A | 111.5 |
O21—C21—O22i | 124.9 (5) | C38—C39—H39A | 111.5 |
O21—C21—C22 | 117.3 (6) | N32—C39—H39B | 111.5 |
O22i—C21—C22 | 117.9 (5) | C38—C39—H39B | 111.5 |
C23—C22—C27 | 118.0 (5) | H39A—C39—H39B | 109.3 |
C23—C22—C21 | 120.2 (5) | C38A—C37A—H37C | 110.4 |
C27—C22—C21 | 121.8 (5) | C38A—C37A—H37D | 110.4 |
C22—C23—C24 | 121.6 (7) | H37C—C37A—H37D | 108.6 |
C22—C23—H23 | 119.2 | C37A—C38A—H38C | 111.0 |
C24—C23—H23 | 119.2 | C37A—C38A—H38D | 111.0 |
C25—C24—C23 | 118.8 (7) | H38C—C38A—H38D | 109.0 |
N31—Zn1—O11—C11 | 173.5 (5) | C14—C15—C16—C17 | −2.3 (11) |
O21—Zn1—O11—C11 | −83.5 (5) | C15—C16—C17—C12 | 2.2 (10) |
O12—Zn1—O11—C11 | 0.1 (8) | C13—C12—C17—C16 | −2.8 (9) |
O22—Zn1—O11—C11 | 75.8 (5) | C11—C12—C17—C16 | 175.6 (5) |
Zn1i—Zn1—O11—C11 | 3.9 (5) | Zn1—O21—C21—O22i | 0.0 (7) |
N31—Zn1—O12—C11i | −162.7 (4) | Zn1—O21—C21—C22 | −179.7 (3) |
O21—Zn1—O12—C11i | 94.0 (5) | O21—C21—C22—C23 | 174.1 (5) |
O22—Zn1—O12—C11i | −65.2 (5) | O22i—C21—C22—C23 | −5.6 (7) |
O11—Zn1—O12—C11i | 10.7 (8) | O21—C21—C22—C27 | −6.7 (7) |
Zn1i—Zn1—O12—C11i | 7.0 (4) | O22i—C21—C22—C27 | 173.6 (5) |
N31—Zn1—O21—C21 | 176.1 (4) | C27—C22—C23—C24 | 0.3 (9) |
O12—Zn1—O21—C21 | −82.2 (4) | C21—C22—C23—C24 | 179.5 (6) |
O22—Zn1—O21—C21 | −3.3 (7) | C22—C23—C24—C25 | −2.0 (12) |
O11—Zn1—O21—C21 | 76.2 (4) | C23—C24—C25—C26 | 2.4 (13) |
Zn1i—Zn1—O21—C21 | −0.8 (4) | C24—C25—C26—C27 | −1.0 (12) |
N31—Zn1—O22—C21i | −175.1 (5) | C23—C22—C27—C26 | 1.1 (9) |
O21—Zn1—O22—C21i | 4.4 (8) | C21—C22—C27—C26 | −178.1 (5) |
O12—Zn1—O22—C21i | 83.8 (5) | C25—C26—C27—C22 | −0.8 (10) |
O11—Zn1—O22—C21i | −75.2 (5) | C35—N31—C31—C32 | −0.5 (9) |
Zn1i—Zn1—O22—C21i | 1.8 (5) | Zn1—N31—C31—C32 | −175.5 (5) |
O21—Zn1—N31—C35 | 110.2 (4) | N31—C31—C32—C33 | 0.8 (10) |
O12—Zn1—N31—C35 | 18.1 (5) | C39—N32—C33—C32 | 178.5 (6) |
O22—Zn1—N31—C35 | −70.0 (4) | C36—N32—C33—C32 | −1.1 (9) |
O11—Zn1—N31—C35 | −159.4 (4) | C39—N32—C33—C34 | −3.7 (9) |
Zn1i—Zn1—N31—C35 | −86.5 (8) | C36—N32—C33—C34 | 176.7 (6) |
O21—Zn1—N31—C31 | −75.2 (5) | C31—C32—C33—N32 | 176.6 (6) |
O12—Zn1—N31—C31 | −167.3 (4) | C31—C32—C33—C34 | −1.3 (9) |
O22—Zn1—N31—C31 | 104.7 (4) | N32—C33—C34—C35 | −176.4 (6) |
O11—Zn1—N31—C31 | 15.2 (5) | C32—C33—C34—C35 | 1.6 (9) |
Zn1i—Zn1—N31—C31 | 88.1 (8) | C31—N31—C35—C34 | 0.8 (9) |
Zn1—O11—C11—O12i | −10.9 (9) | Zn1—N31—C35—C34 | 175.8 (5) |
Zn1—O11—C11—C12 | 171.0 (3) | C33—C34—C35—N31 | −1.4 (10) |
O11—C11—C12—C13 | −4.1 (8) | C33—N32—C36—C37 | −172.3 (9) |
O12i—C11—C12—C13 | 177.6 (5) | C39—N32—C36—C37 | 8.1 (10) |
O11—C11—C12—C17 | 177.5 (5) | N32—C36—C37—C38 | −30.5 (16) |
O12i—C11—C12—C17 | −0.7 (7) | C36—C37—C38—C39 | 42 (2) |
C17—C12—C13—C14 | 3.6 (9) | C33—N32—C39—C38 | −162.0 (9) |
C11—C12—C13—C14 | −174.8 (5) | C36—N32—C39—C38 | 17.6 (10) |
C12—C13—C14—C15 | −3.6 (9) | C37—C38—C39—N32 | −36.8 (17) |
C13—C14—C15—C16 | 3.0 (11) |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Zn2(C7H5O2)4(C9H12N2)2] |
Mr | 911.59 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 11.0021 (11), 11.4303 (11), 16.9508 (16) |
β (°) | 93.869 (2) |
V (Å3) | 2126.8 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.19 |
Crystal size (mm) | 0.08 × 0.08 × 0.01 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.909, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11271, 4159, 2284 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.179, 0.90 |
No. of reflections | 4159 |
No. of parameters | 270 |
No. of restraints | 7 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.94, −0.71 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
Financial support from Korea Ministry Environment `ET-Human resource development Project' and the Korean Science & Engineering Foundation (2009–0074066) is gratefully acknowledged.
References
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107. Web of Science CrossRef CAS Google Scholar
Karmakar, A., Sarma, R. J. & Baruah, J. B. (2006). Inorg. Chem. Commun. 9, 1169–1172. Web of Science CSD CrossRef CAS Google Scholar
Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. Web of Science CSD CrossRef IUCr Journals Google Scholar
Necefoglu, H., Clegg, W. & Scott, A. J. (2002). Acta Cryst. E58, m121–m122. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ohmura, T., Mori, W., Takei, T., Ikeda, T. & Maeda, A. (2005). Mater. Sci. Pol. 23, 729–736. CAS Google Scholar
Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parkin, G. (2004). Chem. Rev. 104, 699–767. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659. Web of Science CSD CrossRef IUCr Journals Google Scholar
Song, Y. J., Lee, S.-W., Jang, K. H., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1495–m1496. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012. Web of Science CrossRef PubMed CAS Google Scholar
Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zeleňák, V., Sabo, M., Massa, W. & Černák, J. (2004). Acta Cryst. C60, m85–m87. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, great attention has been paid to transition metal ions as the major cation contributors to the inorganic composition of natural water and biological fluids (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). Some biologically active molecules that have potential interactions with transition metal ions are amino acids, proteins, sugars, nucleotides, fulvic acids and humic acids. In particular, the study on the interaction of transition metal ions with fulvic acids and humic acids, mainly found in soil, is being extensively investigated. As models to examine these interactions we have previously used copper(II) and zinc(II) benzoates as building blocks and reported the structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, di-2-pyridylketone, andtrans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al., 2009; Yu, et al., 2009; Song, et al., 2009). The related paddle-wheel type structures for Zn complexes have been previouly reported (Necefoglu, et al., 2002; Zeleňák, et al.,2004; Kamakar, et al., 2006; Ohmura, et al., 2005). In this work, we have employed zinc(II) benzoate as a building block and 4-(pyrrolidin-1-yl)pyridine as a ligand. We report herein the structure of the title complex.
The molecular structure of the title complex is shown in Fig. 1. The asymmetric unit contains half of the complex with the formula unit being generated by an inversion center. The central part of the complex had a paddle-wheel type conformation four benzoate ligands bridging two symmetry related ZnII ions. The distorted square-pyramidal coordination environment around the unique ZnII ion is completed by an N atom from a 4-(pyrrolidin-1-yl)pyridine ligand. The ZnII ion is displaced by 0.381 (1) Å from the mean plane of the four basal oxygen atoms.