organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­phenyl (benzyl­amido)phosphate

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartment of Physics, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad, Serbia
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 29 November 2009; accepted 14 December 2009; online 19 December 2009)

The title compound, C19H18NO3P, was prepared by the reaction of diphenyl phospho­rochloridate and benzyl­amine. In the crystal structure, mol­ecules are linked via N—H⋯O=P hydrogen bonds into extended chains parallel to the c axis.

Related literature

For related structures, see: Bao & Wulff (1993[Bao, J. & Wulff, W. D. (1993). J. Am. Chem. Soc. 115, 3814-3815.]); Gholivand et al. (2005[Gholivand, K., Shariatinia, Z. & Pourayoubi, M. (2005). Z. Naturforsch. Teil B, 60, 67-74.]); Karolak-Wojciechowska et al. (1979[Karolak-Wojciechowska, J., Wieczorek, M., Mikołajczyk, M., Kiełbasiński, P., Struchkov, Yu. T. & Antipin, M. Yu. (1979). Acta Cryst. B35, 877-881.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18NO3P

  • Mr = 339.31

  • Monoclinic, P 21 /c

  • a = 10.0226 (5) Å

  • b = 19.2450 (8) Å

  • c = 10.2273 (5) Å

  • β = 115.375 (6)°

  • V = 1782.38 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 295 K

  • 0.43 × 0.28 × 0.17 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire3 (Gemini Mo) detector

  • Absorption correction: multi-scan CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.977, Tmax = 1.000

  • 8248 measured reflections

  • 4105 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 0.91

  • 4105 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H⋯O3i 0.86 1.97 2.8241 (15) 175
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In previous work, the synthesis and X-ray structures of some amidophosphoric acid ester compounds, such as [(C6H5)(CH3)CH—NH]P(O)(p—OC6H4CH3)2 (Gholivand et al., 2005) and P(O)[OC6H5]2[N(CH2C6H5)(C(S)NHCH2C6H5)] (Karolak-Wojciechowska et al., 1979) have been investigated. We report here on the synthesis and crystal structure of a new amido bis(phosphoric acid ester) compound, [C6H5—CH2—NH]P(O)[O—C6H5]2. The title compound was synthesized from the reaction of diphenyl phosphorochloridate with an excess amount of benzylamine. The P—O3 bond length of 1.4567 (10) Å and the P—N bond length of 1.5952 (14) Å are standard for this type of compound [for example for two crystallographically different [(C6H5)(CH3)CH—NH]P(O)(p—OC6H4CH3)2 molecules (Gholivand et al., 2005), PO = 1.462 (3) Å and 1.469 (3) Å and P—N = 1.610 (5) Å and 1.614 (5) Å and for the heterocyclic phosphorus compound obtained from sequential treatment of (+)2,2'-diphenyl-3,3'-biphenanthrol with phosphorus oxychloride and (S)-(-)-α-methylbenzylamine (Bao & Wulff, 1993) PO = 1.456 (6) Å, P—N = 1.612 (7)]. In the title copmound, the P—O1 and P—O2 bond lengths are slightly different (1.5844 (12) Å and 1.5880 (12) Å) and the P atom has a distorted tetrahedral configuration (Fig. 1); the bond angles around the P atom are in the range of 98.80 (6)° [for the O1—P—O2 angle] to 114.84 (7)° [for the O3—P—O1 angle]. Molecules are linked via N—H···OP hydrogen bonds (N···O3 = 2.8241 (15) Å) into extended chains parallel to the c axis (Fig. 2).

Related literature top

For related structures, see: Bao & Wulff (1993); Gholivand et al. (2005); Karolak-Wojciechowska et al. (1979).

Experimental top

To a solution of diphenyl phosphorochloridate (0.572 g, 2.13 mmol) in chloroform (15 ml), a solution of benzylamine (0.456 g, 4.26 mmol) in chloroform (30 ml) was added at 273K. After 4 h of stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals were obtained from a solution of the title compound in chloroform and n-heptane (4:1) after slow evaporation at room temperature. IR (KBr, cm-1): 3165 s, 2891 m, 2680 w, 2221 w, 1952 w, 1592 m, 1475 s, 1242 vs, 1198 vs, 1116 s, 1004 m, 931 vs, 759 s, 687 s.

Refinement top

H atoms were placed in the calculated positions and included in the refinement in a riding-model approximation with C-H = 0.93-0.97Å, N-H = 0.86Å and Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, indicating the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Diphenyl (benzylamido)phosphate top
Crystal data top
C19H18NO3PF(000) = 712
Mr = 339.31Dx = 1.264 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3418 reflections
a = 10.0226 (5) Åθ = 3.2–29.1°
b = 19.2450 (8) ŵ = 0.17 mm1
c = 10.2273 (5) ÅT = 295 K
β = 115.375 (6)°Prism, colorless
V = 1782.38 (17) Å30.43 × 0.28 × 0.17 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 (Gemini Mo) detector
4105 independent reflections
Radiation source: Enhance (Mo) X-ray Source2568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.3280 pixels mm-1θmax = 29.2°, θmin = 3.2°
ω scansh = 713
Absorption correction: multi-scan
CrysAlis (Oxford Diffraction, 2009)
k = 1724
Tmin = 0.977, Tmax = 1.000l = 1313
8248 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0573P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
4105 reflectionsΔρmax = 0.19 e Å3
218 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (10)
Crystal data top
C19H18NO3PV = 1782.38 (17) Å3
Mr = 339.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0226 (5) ŵ = 0.17 mm1
b = 19.2450 (8) ÅT = 295 K
c = 10.2273 (5) Å0.43 × 0.28 × 0.17 mm
β = 115.375 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 (Gemini Mo) detector
4105 independent reflections
Absorption correction: multi-scan
CrysAlis (Oxford Diffraction, 2009)
2568 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 1.000Rint = 0.019
8248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.91Δρmax = 0.19 e Å3
4105 reflectionsΔρmin = 0.31 e Å3
218 parameters
Special details top

Experimental. #__ type_ start__ end____ width___ exp.time_ 1 omega -51.00 47.00 1.0000 19.0400 omega____ theta____ kappa____ phi______ frames - 21.0423 - 37.0000 300.0000 98

#__ type_ start__ end____ width___ exp.time_ 2 omega 5.00 91.00 1.0000 19.0400 omega____ theta____ kappa____ phi______ frames - 21.0423 77.0000 150.0000 86

#__ type_ start__ end____ width___ exp.time_ 3 omega -6.00 41.00 1.0000 19.0400 omega____ theta____ kappa____ phi______ frames - 21.0423 - 77.0000 240.0000 47

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.97981 (4)0.22655 (2)0.06013 (4)0.04171 (14)
O10.87224 (12)0.16886 (6)0.04116 (11)0.0509 (3)
O21.13289 (12)0.18955 (6)0.09457 (11)0.0514 (3)
O30.95622 (13)0.24405 (6)0.18721 (10)0.0563 (3)
N0.97260 (16)0.29192 (7)0.03860 (13)0.0491 (4)
H0.96600.28360.12380.059*
C171.2659 (3)0.00509 (17)0.3197 (5)0.1137 (12)
H171.29970.03630.37010.136*
C20.84557 (18)0.40475 (9)0.10133 (16)0.0458 (4)
C10.97616 (19)0.36437 (9)0.00303 (17)0.0507 (4)
H1A1.06610.38560.00840.061*
H1B0.97820.36670.09860.061*
C80.71826 (18)0.17787 (9)0.09973 (17)0.0490 (4)
C141.17229 (17)0.12655 (9)0.17145 (18)0.0495 (4)
C130.6460 (2)0.20013 (13)0.2392 (2)0.0841 (7)
H130.69730.21080.29390.101*
C30.7036 (2)0.38616 (11)0.1264 (2)0.0617 (5)
H30.68850.34740.08020.074*
C70.8641 (2)0.46219 (10)0.17277 (18)0.0576 (5)
H70.95850.47530.15890.069*
C90.6453 (2)0.16092 (11)0.0180 (2)0.0638 (5)
H90.69720.14560.07680.077*
C151.2344 (2)0.12743 (12)0.3197 (2)0.0668 (5)
H151.24510.16900.36970.080*
C50.6047 (2)0.48142 (13)0.2871 (2)0.0779 (6)
H50.52390.50740.34870.094*
C191.1552 (2)0.06622 (12)0.0974 (2)0.0756 (6)
H191.11220.06620.00320.091*
C60.7436 (2)0.50035 (11)0.2647 (2)0.0735 (6)
H60.75760.53920.31160.088*
C100.4937 (2)0.16685 (13)0.0781 (3)0.0870 (7)
H100.44230.15530.02400.104*
C181.2022 (3)0.00495 (13)0.1733 (5)0.1065 (10)
H181.19010.03670.12340.128*
C40.5843 (2)0.42419 (14)0.2187 (2)0.0765 (6)
H40.48930.41090.23470.092*
C161.2806 (3)0.06559 (18)0.3931 (3)0.0959 (9)
H161.32210.06520.49370.115*
C110.4196 (3)0.18955 (14)0.2160 (4)0.1061 (10)
H110.31730.19370.25620.127*
C120.4943 (3)0.20642 (15)0.2968 (3)0.1170 (11)
H120.44230.22220.39120.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0509 (2)0.0414 (3)0.0336 (2)0.0017 (2)0.01886 (17)0.0016 (2)
O10.0523 (7)0.0403 (7)0.0545 (6)0.0012 (5)0.0175 (5)0.0030 (5)
O20.0500 (6)0.0496 (8)0.0554 (6)0.0035 (6)0.0234 (5)0.0076 (6)
O30.0751 (8)0.0621 (9)0.0367 (6)0.0050 (7)0.0287 (5)0.0045 (6)
N0.0775 (9)0.0403 (9)0.0341 (6)0.0033 (7)0.0283 (6)0.0005 (6)
C170.0716 (17)0.080 (2)0.198 (4)0.0297 (16)0.067 (2)0.068 (3)
C20.0540 (9)0.0409 (10)0.0455 (8)0.0013 (8)0.0242 (7)0.0057 (8)
C10.0614 (10)0.0417 (11)0.0466 (9)0.0041 (9)0.0210 (8)0.0025 (8)
C80.0525 (10)0.0325 (10)0.0494 (9)0.0007 (8)0.0097 (8)0.0013 (8)
C140.0388 (8)0.0452 (11)0.0628 (11)0.0030 (8)0.0202 (8)0.0040 (9)
C130.0884 (16)0.0824 (17)0.0522 (11)0.0214 (13)0.0022 (10)0.0109 (11)
C30.0655 (12)0.0597 (13)0.0704 (11)0.0050 (10)0.0390 (10)0.0001 (10)
C70.0605 (11)0.0512 (12)0.0630 (11)0.0032 (10)0.0282 (9)0.0037 (10)
C90.0561 (11)0.0623 (14)0.0643 (10)0.0019 (10)0.0177 (9)0.0007 (10)
C150.0664 (11)0.0729 (15)0.0637 (11)0.0193 (11)0.0305 (9)0.0141 (11)
C50.0683 (14)0.0810 (18)0.0751 (14)0.0245 (13)0.0216 (11)0.0064 (13)
C190.0555 (11)0.0584 (15)0.0963 (15)0.0033 (11)0.0167 (10)0.0175 (13)
C60.0884 (16)0.0574 (14)0.0726 (13)0.0109 (12)0.0325 (12)0.0164 (11)
C100.0579 (13)0.0773 (18)0.1166 (18)0.0056 (12)0.0286 (13)0.0169 (15)
C180.0680 (15)0.0452 (16)0.190 (3)0.0061 (13)0.0401 (19)0.005 (2)
C40.0524 (11)0.0902 (18)0.0894 (14)0.0068 (12)0.0326 (11)0.0006 (14)
C160.0857 (16)0.116 (2)0.0997 (17)0.0436 (17)0.0529 (14)0.0563 (19)
C110.0530 (13)0.0567 (16)0.153 (3)0.0022 (12)0.0092 (16)0.0056 (17)
C120.093 (2)0.090 (2)0.0937 (18)0.0231 (16)0.0313 (15)0.0330 (15)
Geometric parameters (Å, º) top
P—O31.4567 (10)C3—C41.375 (3)
P—O11.5844 (12)C3—H30.9300
P—O21.5880 (12)C7—C61.381 (3)
P—N1.5952 (14)C7—H70.9300
O1—C81.4065 (19)C9—C101.379 (3)
O2—C141.406 (2)C9—H90.9300
N—C11.454 (2)C15—C161.377 (3)
N—H0.8600C15—H150.9300
C17—C181.353 (4)C5—C61.360 (3)
C17—C161.359 (4)C5—C41.366 (3)
C17—H170.9300C5—H50.9300
C2—C31.381 (2)C19—C181.379 (4)
C2—C71.381 (2)C19—H190.9300
C2—C11.503 (2)C6—H60.9300
C1—H1A0.9700C10—C111.355 (4)
C1—H1B0.9700C10—H100.9300
C8—C131.363 (2)C18—H180.9300
C8—C91.365 (3)C4—H40.9300
C14—C191.356 (3)C16—H160.9300
C14—C151.370 (2)C11—C121.370 (4)
C13—C121.381 (3)C11—H110.9300
C13—H130.9300C12—H120.9300
O3—P—O1114.84 (7)C2—C7—H7119.7
O3—P—O2114.62 (6)C6—C7—H7119.7
O1—P—O298.80 (6)C8—C9—C10119.0 (2)
O3—P—N113.69 (7)C8—C9—H9120.5
O1—P—N107.77 (6)C10—C9—H9120.5
O2—P—N105.75 (7)C14—C15—C16118.7 (2)
C8—O1—P120.47 (10)C14—C15—H15120.7
C14—O2—P121.58 (10)C16—C15—H15120.7
C1—N—P125.61 (10)C6—C5—C4119.8 (2)
C1—N—H117.2C6—C5—H5120.1
P—N—H117.2C4—C5—H5120.1
C18—C17—C16120.1 (3)C14—C19—C18119.2 (2)
C18—C17—H17120.0C14—C19—H19120.4
C16—C17—H17120.0C18—C19—H19120.4
C3—C2—C7118.08 (17)C5—C6—C7120.3 (2)
C3—C2—C1120.83 (16)C5—C6—H6119.8
C7—C2—C1121.08 (16)C7—C6—H6119.8
N—C1—C2112.54 (13)C11—C10—C9119.9 (2)
N—C1—H1A109.1C11—C10—H10120.1
C2—C1—H1A109.1C9—C10—H10120.1
N—C1—H1B109.1C17—C18—C19120.4 (3)
C2—C1—H1B109.1C17—C18—H18119.8
H1A—C1—H1B107.8C19—C18—H18119.8
C13—C8—C9122.16 (18)C5—C4—C3120.2 (2)
C13—C8—O1118.58 (17)C5—C4—H4119.9
C9—C8—O1119.17 (15)C3—C4—H4119.9
C19—C14—C15121.14 (19)C17—C16—C15120.5 (3)
C19—C14—O2119.20 (16)C17—C16—H16119.7
C15—C14—O2119.57 (17)C15—C16—H16119.7
C8—C13—C12117.9 (2)C10—C11—C12120.5 (2)
C8—C13—H13121.0C10—C11—H11119.8
C12—C13—H13121.0C12—C11—H11119.8
C4—C3—C2120.91 (19)C11—C12—C13120.5 (2)
C4—C3—H3119.5C11—C12—H12119.7
C2—C3—H3119.5C13—C12—H12119.7
C2—C7—C6120.63 (18)
O3—P—O1—C856.68 (13)C3—C2—C7—C61.0 (3)
O2—P—O1—C8179.11 (11)C1—C2—C7—C6177.78 (16)
N—P—O1—C871.14 (13)C13—C8—C9—C100.4 (3)
O3—P—O2—C1458.59 (14)O1—C8—C9—C10177.10 (18)
O1—P—O2—C1463.99 (12)C19—C14—C15—C160.5 (3)
N—P—O2—C14175.37 (11)O2—C14—C15—C16176.02 (16)
O3—P—N—C113.52 (17)C15—C14—C19—C180.5 (3)
O1—P—N—C1142.00 (14)O2—C14—C19—C18176.05 (17)
O2—P—N—C1113.09 (14)C4—C5—C6—C70.3 (3)
P—N—C1—C2124.33 (14)C2—C7—C6—C50.6 (3)
C3—C2—C1—N60.3 (2)C8—C9—C10—C110.3 (4)
C7—C2—C1—N120.96 (17)C16—C17—C18—C191.7 (4)
P—O1—C8—C1399.80 (18)C14—C19—C18—C170.6 (3)
P—O1—C8—C983.34 (19)C6—C5—C4—C30.7 (3)
P—O2—C14—C1999.71 (17)C2—C3—C4—C50.2 (3)
P—O2—C14—C1583.73 (17)C18—C17—C16—C151.7 (4)
C9—C8—C13—C121.0 (3)C14—C15—C16—C170.6 (3)
O1—C8—C13—C12177.8 (2)C9—C10—C11—C120.3 (4)
C7—C2—C3—C40.7 (3)C10—C11—C12—C130.4 (4)
C1—C2—C3—C4178.17 (17)C8—C13—C12—C111.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···O3i0.861.972.8241 (15)175
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H18NO3P
Mr339.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.0226 (5), 19.2450 (8), 10.2273 (5)
β (°) 115.375 (6)
V3)1782.38 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.43 × 0.28 × 0.17
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire3 (Gemini Mo) detector
Absorption correctionMulti-scan
CrysAlis (Oxford Diffraction, 2009)
Tmin, Tmax0.977, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8248, 4105, 2568
Rint0.019
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 0.91
No. of reflections4105
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···O3i0.861.972.8241 (15)174.9
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBao, J. & Wulff, W. D. (1993). J. Am. Chem. Soc. 115, 3814–3815.  CSD CrossRef CAS Web of Science Google Scholar
First citationGholivand, K., Shariatinia, Z. & Pourayoubi, M. (2005). Z. Naturforsch. Teil B, 60, 67–74.  CAS Google Scholar
First citationKarolak-Wojciechowska, J., Wieczorek, M., Mikołajczyk, M., Kiełbasiński, P., Struchkov, Yu. T. & Antipin, M. Yu. (1979). Acta Cryst. B35, 877–881.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds