metal-organic compounds
Aqua(6,6′-oxydipicolinato-κ2O,N,N′,O′)copper(II)
aCollege of Marine Sciences, Zhejiang Ocean University, Zhoushan 316000, People's Republic of China
*Correspondence e-mail: jingyasun2009@163.com
In the title complex, [Cu(C12H6N2O5)(H2O)], the CuII ion is in a slightly distorted square-pyramidal coordination environment with two N and two O atoms from a 6,6′-oxydipicolinate ligand occupying the basal plane and a water ligand in the apical site. The dihedral angle between the two pyridine rings is 5.51 (6)°. In the intermolecular O—H⋯O hydrogen bonds link molecules into a two-dimensional network. In addition, weak intermolecular C—H⋯O and C=O(lone pair)⋯π(ring) interactions, with O⋯ring-centroid distances of 3.697 (4) and 3.094 (4) Å, provide additional stabilization.
Related literature
For intermolecular interactions, see: Choudhury et al. (2008). For the applications of picolinic acid compounds, see: Mann et al. (1992).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680905346X/lh2964sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680905346X/lh2964Isup2.hkl
All reagents were available commercially and were used without further purification. 6,6'-Oxydipicolinic acid (260 mg) was added to 1 mmol (132 mg) of CuCl2 in 10 ml of water. The suspension was stirred for 4 h and filtered. After leaving the filtrate in air for one week, blue block-shaped crystals of (I) were formed. The crystals were isolated, washed with water three times and dried in a vacuum desicator using silica gel (Yield 75%). Elemental analysis: found C, 42.05; H, 2.96; N, 8.18%; calc. for C12H8CuN2O6; C, 42.17; H, 2.95; N, 8.20%.
H atoms bonded to C atoms were positioned geometrically and refined using a riding-model approximation with C–H = 0.93 Å, and Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were found in difference Fourier maps and included as riding with O—H = 0.85Å and Uiso(H) = 1.2Ueq(O).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C12H6N2O5)(H2O)] | F(000) = 684 |
Mr = 339.74 | Dx = 1.915 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2501 reflections |
a = 7.2487 (16) Å | θ = 2.8–27.5° |
b = 21.055 (4) Å | µ = 1.89 mm−1 |
c = 8.2269 (17) Å | T = 296 K |
β = 110.201 (9)° | Block, blue |
V = 1178.4 (4) Å3 | 0.40 × 0.35 × 0.30 mm |
Z = 4 |
Siemens SMART CCD diffractometer | 2074 independent reflections |
Radiation source: fine-focus sealed tube | 1806 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.519, Tmax = 0.602 | k = −24→24 |
6790 measured reflections | l = −9→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + (0.0671P)2 + 0.1209P] where P = (Fo2 + 2Fc2)/3 |
2074 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Cu(C12H6N2O5)(H2O)] | V = 1178.4 (4) Å3 |
Mr = 339.74 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2487 (16) Å | µ = 1.89 mm−1 |
b = 21.055 (4) Å | T = 296 K |
c = 8.2269 (17) Å | 0.40 × 0.35 × 0.30 mm |
β = 110.201 (9)° |
Siemens SMART CCD diffractometer | 2074 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1806 reflections with I > 2σ(I) |
Tmin = 0.519, Tmax = 0.602 | Rint = 0.027 |
6790 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.18 | Δρmax = 0.48 e Å−3 |
2074 reflections | Δρmin = −0.37 e Å−3 |
190 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.33165 (5) | 0.109980 (17) | 0.96148 (4) | 0.02725 (18) | |
O3 | 0.2907 (3) | 0.05841 (10) | 1.1417 (3) | 0.0327 (5) | |
N2 | 0.4163 (4) | 0.14875 (12) | 0.7848 (3) | 0.0265 (6) | |
O1 | 0.4318 (3) | 0.18774 (11) | 1.0899 (3) | 0.0336 (5) | |
O5 | 0.3272 (4) | 0.06644 (11) | 0.5777 (3) | 0.0368 (6) | |
N1 | 0.2837 (4) | 0.03042 (12) | 0.8315 (3) | 0.0254 (6) | |
O4 | 0.2158 (4) | −0.04040 (11) | 1.1935 (3) | 0.0409 (6) | |
O2 | 0.5275 (4) | 0.28511 (11) | 1.0481 (3) | 0.0410 (6) | |
C12 | 0.2463 (4) | 0.00062 (15) | 1.1003 (4) | 0.0268 (7) | |
C1 | 0.4833 (5) | 0.23022 (15) | 1.0031 (4) | 0.0297 (7) | |
O6 | 0.0171 (3) | 0.14739 (11) | 0.8390 (3) | 0.0382 (6) | |
H6A | −0.0120 | 0.1623 | 0.7373 | 0.046* | |
H6B | −0.0521 | 0.1144 | 0.8010 | 0.046* | |
C2 | 0.4850 (5) | 0.20891 (14) | 0.8261 (4) | 0.0284 (7) | |
C5 | 0.4587 (5) | 0.15934 (17) | 0.5117 (4) | 0.0342 (8) | |
H5 | 0.4473 | 0.1419 | 0.4048 | 0.041* | |
C11 | 0.2346 (4) | −0.01770 (15) | 0.9187 (4) | 0.0258 (7) | |
C10 | 0.1814 (5) | −0.07640 (16) | 0.8462 (4) | 0.0348 (8) | |
H10 | 0.1481 | −0.1089 | 0.9075 | 0.042* | |
C6 | 0.4036 (5) | 0.12555 (15) | 0.6311 (4) | 0.0298 (7) | |
C8 | 0.2272 (5) | −0.03744 (16) | 0.5894 (4) | 0.0358 (8) | |
H8 | 0.2241 | −0.0430 | 0.4763 | 0.043* | |
C7 | 0.2808 (5) | 0.02011 (15) | 0.6721 (4) | 0.0280 (7) | |
C9 | 0.1787 (5) | −0.08608 (16) | 0.6763 (4) | 0.0374 (8) | |
H9 | 0.1441 | −0.1255 | 0.6235 | 0.045* | |
C3 | 0.5440 (5) | 0.24521 (16) | 0.7162 (4) | 0.0366 (8) | |
H3 | 0.5919 | 0.2861 | 0.7470 | 0.044* | |
C4 | 0.5311 (5) | 0.21967 (17) | 0.5561 (5) | 0.0407 (9) | |
H4 | 0.5715 | 0.2435 | 0.4793 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0409 (3) | 0.0226 (3) | 0.0216 (3) | −0.00293 (15) | 0.01511 (19) | −0.00212 (14) |
O3 | 0.0481 (14) | 0.0300 (13) | 0.0229 (11) | −0.0044 (10) | 0.0161 (10) | −0.0017 (9) |
N2 | 0.0309 (14) | 0.0253 (14) | 0.0242 (13) | 0.0005 (11) | 0.0105 (10) | 0.0002 (11) |
O1 | 0.0470 (14) | 0.0288 (12) | 0.0267 (11) | −0.0051 (10) | 0.0150 (10) | −0.0053 (9) |
O5 | 0.0589 (16) | 0.0326 (13) | 0.0237 (11) | −0.0090 (11) | 0.0203 (11) | −0.0052 (10) |
N1 | 0.0327 (14) | 0.0225 (13) | 0.0220 (12) | −0.0009 (11) | 0.0108 (10) | −0.0010 (10) |
O4 | 0.0594 (16) | 0.0381 (14) | 0.0303 (12) | −0.0093 (12) | 0.0219 (11) | 0.0034 (11) |
O2 | 0.0495 (15) | 0.0263 (13) | 0.0471 (15) | −0.0071 (10) | 0.0166 (12) | −0.0104 (11) |
C12 | 0.0283 (16) | 0.0302 (18) | 0.0215 (15) | 0.0000 (13) | 0.0082 (13) | 0.0033 (13) |
C1 | 0.0275 (16) | 0.0285 (19) | 0.0323 (16) | 0.0031 (13) | 0.0094 (13) | −0.0018 (14) |
O6 | 0.0378 (13) | 0.0339 (13) | 0.0400 (13) | 0.0015 (10) | 0.0098 (11) | 0.0019 (11) |
C2 | 0.0286 (16) | 0.0233 (16) | 0.0310 (16) | −0.0001 (13) | 0.0075 (13) | 0.0014 (13) |
C5 | 0.0361 (18) | 0.040 (2) | 0.0298 (17) | 0.0017 (14) | 0.0164 (14) | 0.0037 (14) |
C11 | 0.0289 (16) | 0.0250 (16) | 0.0234 (15) | 0.0026 (12) | 0.0087 (12) | 0.0014 (12) |
C10 | 0.048 (2) | 0.0268 (18) | 0.0324 (18) | −0.0054 (14) | 0.0167 (15) | −0.0001 (14) |
C6 | 0.0361 (18) | 0.0305 (18) | 0.0246 (16) | 0.0025 (14) | 0.0130 (13) | 0.0022 (13) |
C8 | 0.046 (2) | 0.036 (2) | 0.0277 (16) | −0.0008 (15) | 0.0161 (15) | −0.0095 (15) |
C7 | 0.0348 (17) | 0.0279 (17) | 0.0227 (15) | 0.0012 (13) | 0.0117 (13) | −0.0001 (13) |
C9 | 0.050 (2) | 0.0285 (18) | 0.0346 (18) | −0.0074 (16) | 0.0160 (16) | −0.0114 (15) |
C3 | 0.0374 (19) | 0.0310 (18) | 0.042 (2) | −0.0050 (15) | 0.0142 (15) | 0.0034 (16) |
C4 | 0.043 (2) | 0.042 (2) | 0.042 (2) | −0.0028 (16) | 0.0217 (16) | 0.0123 (17) |
Cu1—O3 | 1.942 (2) | O6—H6A | 0.8500 |
Cu1—N2 | 1.942 (3) | O6—H6B | 0.8501 |
Cu1—O1 | 1.948 (2) | C2—C3 | 1.361 (5) |
Cu1—N1 | 1.953 (2) | C5—C4 | 1.375 (5) |
Cu1—O6 | 2.290 (2) | C5—C6 | 1.379 (4) |
O3—C12 | 1.275 (4) | C5—H5 | 0.9300 |
N2—C6 | 1.328 (4) | C11—C10 | 1.368 (5) |
N2—C2 | 1.361 (4) | C10—C9 | 1.406 (5) |
O1—C1 | 1.278 (4) | C10—H10 | 0.9300 |
O5—C7 | 1.359 (4) | C8—C9 | 1.363 (5) |
O5—C6 | 1.371 (4) | C8—C7 | 1.378 (5) |
N1—C7 | 1.323 (4) | C8—H8 | 0.9300 |
N1—C11 | 1.358 (4) | C9—H9 | 0.9300 |
O4—C12 | 1.225 (4) | C3—C4 | 1.395 (5) |
O2—C1 | 1.222 (4) | C3—H3 | 0.9300 |
C12—C11 | 1.517 (4) | C4—H4 | 0.9300 |
C1—C2 | 1.528 (4) | ||
O3—Cu1—N2 | 167.91 (10) | N2—C2—C1 | 112.9 (3) |
O3—Cu1—O1 | 100.51 (9) | C3—C2—C1 | 125.2 (3) |
N2—Cu1—O1 | 84.13 (10) | C4—C5—C6 | 117.7 (3) |
O3—Cu1—N1 | 83.87 (9) | C4—C5—H5 | 121.1 |
N2—Cu1—N1 | 89.62 (10) | C6—C5—H5 | 121.1 |
O1—Cu1—N1 | 168.68 (10) | N1—C11—C10 | 122.0 (3) |
O3—Cu1—O6 | 97.86 (10) | N1—C11—C12 | 113.2 (3) |
N2—Cu1—O6 | 92.86 (10) | C10—C11—C12 | 124.8 (3) |
O1—Cu1—O6 | 94.45 (9) | C11—C10—C9 | 118.0 (3) |
N1—Cu1—O6 | 95.29 (10) | C11—C10—H10 | 121.0 |
C12—O3—Cu1 | 114.87 (19) | C9—C10—H10 | 121.0 |
C6—N2—C2 | 118.7 (3) | N2—C6—O5 | 121.8 (3) |
C6—N2—Cu1 | 128.4 (2) | N2—C6—C5 | 123.1 (3) |
C2—N2—Cu1 | 112.8 (2) | O5—C6—C5 | 115.1 (3) |
C1—O1—Cu1 | 114.29 (19) | C9—C8—C7 | 118.8 (3) |
C7—O5—C6 | 128.3 (2) | C9—C8—H8 | 120.6 |
C7—N1—C11 | 118.9 (3) | C7—C8—H8 | 120.6 |
C7—N1—Cu1 | 128.5 (2) | N1—C7—O5 | 121.8 (3) |
C11—N1—Cu1 | 112.4 (2) | N1—C7—C8 | 122.6 (3) |
O4—C12—O3 | 126.1 (3) | O5—C7—C8 | 115.6 (3) |
O4—C12—C11 | 118.5 (3) | C8—C9—C10 | 119.7 (3) |
O3—C12—C11 | 115.4 (3) | C8—C9—H9 | 120.2 |
O2—C1—O1 | 126.1 (3) | C10—C9—H9 | 120.2 |
O2—C1—C2 | 118.6 (3) | C2—C3—C4 | 118.5 (3) |
O1—C1—C2 | 115.3 (3) | C2—C3—H3 | 120.8 |
Cu1—O6—H6A | 115.6 | C4—C3—H3 | 120.8 |
Cu1—O6—H6B | 104.6 | C5—C4—C3 | 120.1 (3) |
H6A—O6—H6B | 91.5 | C5—C4—H4 | 119.9 |
N2—C2—C3 | 121.9 (3) | C3—C4—H4 | 119.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O4i | 0.93 | 2.31 | 3.229 (4) | 171 |
C9—H9···O2ii | 0.93 | 2.42 | 3.331 (4) | 165 |
C4—H4···O6iii | 0.93 | 2.54 | 3.303 (4) | 140 |
O6—H6B···O4iv | 0.85 | 1.97 | 2.772 (3) | 157 |
O6—H6A···O2v | 0.85 | 2.01 | 2.807 (3) | 156 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1/2, y−1/2, −z+3/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x, −y, −z+2; (v) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C12H6N2O5)(H2O)] |
Mr | 339.74 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 7.2487 (16), 21.055 (4), 8.2269 (17) |
β (°) | 110.201 (9) |
V (Å3) | 1178.4 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.89 |
Crystal size (mm) | 0.40 × 0.35 × 0.30 |
Data collection | |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.519, 0.602 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6790, 2074, 1806 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.110, 1.18 |
No. of reflections | 2074 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.37 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O4i | 0.93 | 2.31 | 3.229 (4) | 171.4 |
C9—H9···O2ii | 0.93 | 2.42 | 3.331 (4) | 165.2 |
C4—H4···O6iii | 0.93 | 2.54 | 3.303 (4) | 139.5 |
O6—H6B···O4iv | 0.85 | 1.97 | 2.772 (3) | 157.2 |
O6—H6A···O2v | 0.85 | 2.01 | 2.807 (3) | 156.0 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1/2, y−1/2, −z+3/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x, −y, −z+2; (v) x−1/2, −y+1/2, z−1/2. |
References
Choudhury, S. R., Gamez, P., Robertazzi, A., Chen, C. Y., Lee, H. M. & Mukhopadhyay, S. (2008). Cryst. Growth Des. 8, 3773–3784. Web of Science CSD CrossRef CAS Google Scholar
Mann, Y., Chiment, F., Balasco, A., Cenicola, M. L., Amico, M. D., Parrilo, C., Rossi, F. & Marmo, E. (1992). Eur. J. Med. Chem. 27, 633–639. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Picolinic acid compounds play an vital role in the development of coordination chemistry related to catalysis, magnetism and molecular architectures (Mann et al., 1992). As part of our studies on the synthesis and characterization of these types of compounds, we report here the synthesis and crystal structure of the title compound (I).
The molecular structure of the title compound (I) is shown in Fig. 1. The CuII ion is in a slightly distorted square-pyramidal coordination environment with two N and two O atoms from a 6,6'-oxydipicolinato ligand occupying the basal plane and one water ligand in the apical site. The dihedral angle between the two pyridine rings is 5.51 (6)°. The delocalization of electrons within the carboxylate groups is reflected in the C═O lengths. In the crystal structure, there are intermolecular O—H···O hydrogen bonds involving the carboxyl oxygen atoms and coordinated water molecules (Fig. 2) forming a two-dimensional network (see Table 1 for hydrogen bond geometries). In addition to weak intermolecular C-H···O interactions, further stabilization appears to be provided by weak C=O(lone pair)···π(ring) stacking interactions (Choudhury et al., 2008). The relevant distances are C12—O4···Cg1i = 3.697 (4) Å, Cg1 is the centroid of the ring defined by the atoms N1/C7-C11 [symmetry code: (i) -x, -y, 2-z] and the angle C12—O4···Cg1i is 98.95 (34)°; C1—O2···Cg2ii = 3.094 (4) Å, Cg2 is the centroid of the ring defined by the atoms N2/C2-C6 [symmetry code: (ii) 0.5+x, 0.5-y, 0.5+z] and the angle C1—O2···Cg2ii is 115.48 (4)° (see Fig. 3).