organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o161-o162

11-[3-(Di­methyl­amino)prop­yl]-6,11-di­hydro­dibenzo[b,e]thiepin-11-ol

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, 570 006, India, and dRL Fine Chem, Bangalore, 560 064, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 6 December 2009; accepted 11 December 2009; online 16 December 2009)

There are two independent mol­ecules (A and B) in the asymmetric unit of the title compound, C19H23NOS. In each mol­ecule, the seven-membered thiepine ring is bent into a slightly twisted V-shape. The dihedral angles between the mean planes of the two benzene rings fused to the thiepine ring are 75.7 (5) in mol­ecule A and 73.8 (4)° in mol­ecule B. In both mol­ecules, an intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, weak inter­molecular C—H⋯O and C—H⋯π-ring inter­actions are observed.

Related literature

For related structures, see: Bandoli & Nicolini, (1982[Bandoli, G. & Nicolini, M. (1982). J. Chem. Crystallogr. 12, 425-447.]); Blaton et al. (1995[Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 777-780.]); Ieawsuwan et al. (2006[Ieawsuwan, W., Bru Roig, M. & Bolte, M. (2006). Acta Cryst. E62, o1478-o1479.]); Linden et al. (2004[Linden, A., Furegati, M. & Rippert, A. J. (2004). Acta Cryst. C60, o223-o225.]); Portalone et al. (2007[Portalone, G., Colapietro, M., Bindya, S., Ashok, M. A. & Yathirajan, H. S. (2007). Acta Cryst. E63, o746-o747.]); Roszak et al. (1996[Roszak, A. W., Williams, V. E. & Lemieux, R. P. (1996). Acta Cryst. C52, 3190-3193.]); Rudorf et al. (1999[Rudorf, W. D., Baumeister, U., Florea, S., Nicolae, A. & Maior, O. (1999). Monatch. Chem. 130, 1475-1480.]); Yoshinari & Konno, (2009[Yoshinari, N. & Konno, T. (2009). Acta Cryst. E65, o774.]); Zhang et al. (2008[Zhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008). Acta Cryst. E64, o1027.],2008a[Zhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008a). Acta Cryst. E64, o1304.]). For related background, see: Rudorf et al. (1999[Rudorf, W. D., Baumeister, U., Florea, S., Nicolae, A. & Maior, O. (1999). Monatch. Chem. 130, 1475-1480.]). For antidepressant and anti-inflammatory properties, see: Rajsner et al. (1969[Rajsner, M., Svatek, E., Seidlová, V., Adlerová, E. & Protiva, M. (1969). Coll. Czech. Chem. Commun. 34, 1278.], 1971[Rajsner, M., Protiva, M. & Metysová, J. (1971). Czech. Pat. Appl. CS 143737.]); Rooks et al. (1980[Rooks, W. H. II, Tomolonis, A. J., Maloney, P. J., Roszkowski, A. & Wallach, M. B. (1980). Inflamm. Res. 10, 266-273.]); Tomascovic et al. (2000[Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479-493.]); Truce et al. (1956[Truce, W. E. & Emrick, D. D. (1956). J. Am. Chem. Soc. 78, 6130-6137.]). For pharmacological synthesis and studies, see: Ikuo et al. (1978[Ikuo, U., Yoshinari, S., Shizuo, M. & Suminori, U. (1978). Chem. Pharm. Bull. 26, 3058-3070.]); Uchida et al. (1979[Uchida, S., Honda, F., Otsuka, M., Satoh, Y., Mori, J., Ono, T. & Hitomi, M. (1979). Arzneimittelforschung, 29, 1588-1594.]); Wyatt et al. (2006[Wyatt, P., Hudson, A., Charmant, J., Orpen, A. G. & Phetmung, H. (2006). Org. Biomol. Chem. 4, 2218-2232.]). For NMR, Ir and X-ray studies, see: Kolehmainen et al. (2007[Kolehmainen, E., Laihia, K., Valkonen, A., Sievänen, E., Nissinen, M., Rudorf, W.-D., Loos, D., Perjéssy, A., Samaliková, M., Susteková, Z., Florea, S. & Wybraziec, J. (2007). J. Mol. Struct. 839, 94-98.]). For density functional theory (DFT), see: Becke (1988[Becke, A. D. (1988). Phys. Rev. A, 38, 3098-100.], 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]); Frisch et al. (2004[Frisch, M. J. et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]); Hehre et al. (1986[Hehre, W.J., Random, L., Schleyer, P. R. & Pople, J.A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley.]); Lee et al. (1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]); Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23NOS

  • Mr = 313.44

  • Monoclinic, P 21 /n

  • a = 7.7215 (4) Å

  • b = 15.3729 (10) Å

  • c = 27.9274 (16) Å

  • β = 95.401 (6)°

  • V = 3300.3 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.74 mm−1

  • T = 110 K

  • 0.51 × 0.42 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.432, Tmax = 1.000

  • 14666 measured reflections

  • 6565 independent reflections

  • 5490 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.153

  • S = 1.05

  • 6565 reflections

  • 403 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N1A 0.84 1.86 2.693 (2) 170
O1B—H1B⋯N1B 0.84 1.84 2.679 (2) 174
C4A—H4AA⋯O1B 0.95 2.51 3.253 (2) 135
C3A—H3AACg7i 0.95 2.74 3.526 (6) 140
C17A—H17ACg1ii 0.99 2.67 3.537 (7) 147
C17A—H17BCg2ii 0.99 2.75 3.720 (3) 167
C17B—H17CCg8iii 0.99 2.68 3.663 (6) 170
C17B—17D⋯Cg7iii 0.99 2.64 3.538 (1) 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) x-1, y, z. Cg1, Cg2, Cg7 and Cg8 are the centroids of the C1A—C6A, C8A—C13A, C1B–C6B and C8B—C13B rings, respectively.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, (I), C19H23NOS, is a derivative of 6,11-dihydrodibenzo[b,e]thiepin-11-one, which is used as an intermediate for the synthesis of dosulepin, an antidepressant of the tricyclic family. The dibenzo[c,e]thiepine derivatives (Truce et al., 1956) exhibit remarkable chiroptical properties (Tomascovic et al., 2000). The anti-inflammatory and analgesic profile of 6,11-dihydrodibenzo[b,e]thiepin-11-one-3-acetic acid (Tiopinac) is reported (Rooks II et al., 1980). Dibenzo[b,e]thiepin-5,5-dioxide derivatives are known to possess antihistaminic and antiallergenic activities (Rajsner et al., 1971). In addition, by aminoalkylation of 6,11-dihydrodibenzo[b,e]thiepin-5,5-dioxide and the corresponding 11-ketone, compounds with neurotropic and psychotropic activities have been reported (Rajsner et al., 1969). Also, the comparative NMR and IR spectral, X-ray structural and theoretical studies of eight 6-arylidenedibenzo[b,e]thiepin-11-one-5,5-dioxides have been reported (Kolehmainen et al., 2007). A pharmacological study of [2-chloro-11-(2-dimethylaminoethoxy)dibenzo(b,f)thiepine] (zotepine), and a new neuroleptic drug are also reported (Uchida et al., 1979). In addition, the synthesis and chemistry of enantiomerically pure 10,11-dihydrobenzo[b,f]thiepines (Wyatt et al., 2006) and the synthesis and pharmacological properties of 8-chloro-10-(2-dimethylaminoethoxy) dibenzo[b,f]thiepine and related compounds have been reported (Ikuo et al., 1978). In view of the importance of thiepines, this paper reports the crystal structure of the title compound, C19H23NOS, (I).

The title compound, C19H23NOS, (I), crystallizes with two independent molecules (A, Fig. 1 & B, Fig. 2) in the asymmetric unit. The seven-membered thiepine ring is bent into a slightly twisted V-shaped arrangement with sp3 hybridized atoms at C7(A & B), C14(A & B)and S1(A & B). The dihedral angles between the mean planes of the two benzene rings fused to the thiepine ring are 75.7 (5)° (A) and 73.8 (4)° (B), respectively. An intramolecular O—H···N hydrogen bond exists between the hydroxy group and the N atom from the (dimethylamino)propyl group both bonded to the C14 atom of the thiepine ring (O1A—H1A···N1A & O1B—H1B···N1; Table 1). While no classical intermolecular hydrogen bonds are present, weak C–H···O and C–H···π-ring intermolecular interactions are observed which contribute to the stability of crystal packing (Fig.3, Table 1,2).

Following a geometry optimization density functional theory calculation (Schmidt & Polik 2007) at the B3LYP 6–31-G(d) level (Becke, 1988, 1993; Lee et al. 1988; Hehre et al. 1986) with the Gaussian03 program package (Frisch at al. 2004) the angle between the mean planes of the two benzene rings changes to 73.4 (4)°, a difference of -2.32° (A) and + 0.40° (B), respectively. These results support the collective effects of the intra and intermolecular hydrogen bonding described above slightly influencing crystal packing.

Related literature top

For related structures, see: Bandoli & Nicolini, (1982); Blaton et al. (1995); Ieawsuwan et al. (2006); Linden et al. (2004); Portalone et al. (2007); Roszak et al. (1996); Rudorf et al. (1999); Yoshinari & Konno, (2009); Zhang et al. (2008,2008a). For related background, see: Ikuo et al. (1978); Kolehmainen et al. (2007); Rajsner et al. (1969, 1971); Rooks et al. (1980); Rudorf et al. (1999); Tomascovic et al. (2000); Truce et al. (1956); Uchida et al. (1979); Wyatt et al. (2006). For density functional theory (DFT), see: Becke (1988, 1993); Frisch et al., (2004); Hehre et al. (1986); Lee et al. (1988); Schmidt & Polik (2007).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore, India. The compound was used without further purification. X-ray quality crystals (m.p. 433–435 K) of the title compound, (I), were obtained by slow evaporation from acetone solution.

Refinement top

The hydroxy H atoms, H1A and H1B, were found in a difference map and refined freely. All of the C-bonded H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 to 0.99 Å, and with Uiso(H) = 1.18–1.50 Ueq(C). Methyl groups were allowed to rotate about their N—C bonds.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of molecule A in (I) showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular structure of molecule B in (I) showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Packing diagram of (I), viewed along the c axis. Dashed lines indicate O—H···N intramolecular interactions in molecules A & B.
11-[3-(Dimethylamino)propyl]-6,11-dihydrodibenzo[b,e]thiepin- 11-ol top
Crystal data top
C19H23NOSF(000) = 1344
Mr = 313.44Dx = 1.262 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 6805 reflections
a = 7.7215 (4) Åθ = 4.3–74.0°
b = 15.3729 (10) ŵ = 1.74 mm1
c = 27.9274 (16) ÅT = 110 K
β = 95.401 (6)°Plate, colorless
V = 3300.3 (3) Å30.51 × 0.42 × 0.14 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
6565 independent reflections
Radiation source: Enhance (Cu) X-ray Source5490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.5081 pixels mm-1θmax = 74.2°, θmin = 4.3°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1319
Tmin = 0.432, Tmax = 1.000l = 1734
14666 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1079P)2 + 0.6589P]
where P = (Fo2 + 2Fc2)/3
6565 reflections(Δ/σ)max = 0.001
403 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C19H23NOSV = 3300.3 (3) Å3
Mr = 313.44Z = 8
Monoclinic, P21/nCu Kα radiation
a = 7.7215 (4) ŵ = 1.74 mm1
b = 15.3729 (10) ÅT = 110 K
c = 27.9274 (16) Å0.51 × 0.42 × 0.14 mm
β = 95.401 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
6565 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
5490 reflections with I > 2σ(I)
Tmin = 0.432, Tmax = 1.000Rint = 0.029
14666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.05Δρmax = 0.58 e Å3
6565 reflectionsΔρmin = 0.56 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.69626 (7)0.25999 (3)0.288172 (19)0.02978 (15)
O1A0.91923 (17)0.54941 (9)0.28401 (5)0.0240 (3)
H1A1.00750.56030.26960.029*
N1A1.2061 (2)0.56334 (11)0.23664 (6)0.0242 (4)
C1A0.7385 (2)0.44069 (13)0.31337 (6)0.0189 (4)
C2A0.6889 (2)0.50798 (13)0.34289 (6)0.0230 (4)
H2AA0.74180.56350.34080.028*
C3A0.5643 (3)0.49613 (15)0.37524 (7)0.0276 (4)
H3AA0.53500.54290.39520.033*
C4A0.4833 (3)0.41658 (15)0.37828 (7)0.0284 (4)
H4AA0.39840.40790.40030.034*
C5A0.5275 (3)0.34982 (14)0.34876 (7)0.0264 (4)
H5AA0.46970.29550.35020.032*
C6A0.6554 (2)0.35985 (13)0.31669 (6)0.0202 (4)
C7A0.7862 (3)0.28132 (13)0.23129 (7)0.0238 (4)
H7AA0.91470.28140.23700.029*
H7AB0.75270.23300.20890.029*
C8A0.7295 (2)0.36527 (13)0.20746 (6)0.0202 (4)
C9A0.6275 (3)0.36079 (15)0.16343 (7)0.0280 (4)
H9AA0.59270.30550.15080.034*
C10A0.5764 (3)0.43455 (17)0.13802 (7)0.0331 (5)
H10A0.50750.43010.10810.040*
C11A0.6263 (3)0.51514 (16)0.15646 (7)0.0306 (5)
H11A0.59260.56650.13910.037*
C12A0.7258 (2)0.52091 (13)0.20050 (7)0.0232 (4)
H12A0.75880.57660.21290.028*
C13A0.7782 (2)0.44720 (12)0.22683 (6)0.0170 (4)
C14A0.8737 (2)0.46053 (12)0.27754 (6)0.0181 (4)
C15A1.0403 (2)0.40533 (13)0.28923 (6)0.0207 (4)
H15A1.10210.42780.31940.025*
H15B1.00460.34480.29550.025*
C16A1.1698 (2)0.40312 (13)0.25052 (7)0.0218 (4)
H16A1.24020.34940.25500.026*
H16B1.10270.39940.21860.026*
C17A1.2933 (2)0.48049 (13)0.25020 (7)0.0241 (4)
H17A1.35580.48680.28260.029*
H17B1.38100.46830.22740.029*
C18A1.1570 (3)0.56816 (15)0.18463 (7)0.0296 (5)
H18A1.09740.62340.17690.044*
H18B1.07910.51970.17480.044*
H18C1.26180.56460.16750.044*
C19A1.3169 (3)0.63736 (16)0.25201 (10)0.0396 (6)
H19A1.25400.69170.24420.059*
H19B1.42300.63580.23530.059*
H19C1.34770.63420.28680.059*
S1B0.66729 (7)0.22246 (4)0.627252 (18)0.03356 (16)
O1B0.39362 (17)0.32974 (9)0.47928 (5)0.0224 (3)
H1B0.29410.31190.46910.027*
N1B0.0713 (2)0.27183 (13)0.45327 (6)0.0272 (4)
C1B0.6076 (2)0.33566 (12)0.54588 (6)0.0194 (4)
C2B0.6575 (2)0.41167 (13)0.52343 (7)0.0225 (4)
H2BA0.59660.42840.49370.027*
C3B0.7936 (3)0.46361 (14)0.54324 (8)0.0269 (4)
H3BA0.82370.51540.52740.032*
C4B0.8849 (3)0.43913 (14)0.58631 (8)0.0296 (5)
H4BA0.97730.47430.60030.036*
C5B0.8406 (3)0.36365 (14)0.60857 (7)0.0279 (4)
H5BA0.90480.34670.63780.033*
C6B0.7032 (2)0.31114 (13)0.58920 (7)0.0227 (4)
C7B0.5684 (3)0.13299 (14)0.59244 (7)0.0292 (4)
H7BA0.61450.07800.60700.035*
H7BB0.44180.13400.59550.035*
C8B0.5951 (2)0.13126 (13)0.53919 (7)0.0249 (4)
C9B0.6839 (3)0.05921 (14)0.52276 (9)0.0340 (5)
H9BA0.73160.01730.54530.041*
C10B0.7035 (3)0.04778 (15)0.47439 (10)0.0382 (6)
H10B0.76370.00150.46380.046*
C11B0.6349 (3)0.10843 (16)0.44183 (8)0.0341 (5)
H11B0.64400.10020.40840.041*
C12B0.5524 (2)0.18169 (14)0.45762 (7)0.0257 (4)
H12B0.50870.22400.43480.031*
C13B0.5316 (2)0.19501 (13)0.50640 (7)0.0199 (4)
C14B0.4538 (2)0.28306 (12)0.52111 (6)0.0187 (4)
C15B0.3036 (2)0.27781 (14)0.55385 (7)0.0231 (4)
H15C0.35250.25920.58630.028*
H15D0.25540.33700.55700.028*
C16B0.1534 (2)0.21639 (14)0.53708 (7)0.0258 (4)
H16C0.20300.16420.52270.031*
H16D0.09760.19700.56570.031*
C17B0.0125 (2)0.25346 (13)0.50080 (7)0.0220 (4)
H17C0.08530.21160.49680.026*
H17D0.03210.30800.51400.026*
C18B0.0944 (3)0.1914 (2)0.42672 (9)0.0515 (8)
H18D0.18900.15730.44330.077*
H18E0.12320.20540.39420.077*
H18F0.01360.15750.42480.077*
C19B0.0530 (3)0.3298 (2)0.42629 (9)0.0479 (7)
H19D0.01180.34300.39500.072*
H19E0.06350.38390.44440.072*
H19F0.16680.30120.42150.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0386 (3)0.0189 (2)0.0344 (3)0.0007 (2)0.0165 (2)0.00348 (19)
O1A0.0191 (7)0.0210 (7)0.0333 (7)0.0042 (5)0.0094 (5)0.0068 (6)
N1A0.0208 (8)0.0233 (8)0.0293 (8)0.0028 (6)0.0070 (6)0.0039 (7)
C1A0.0150 (8)0.0269 (9)0.0148 (8)0.0016 (7)0.0015 (6)0.0003 (7)
C2A0.0194 (9)0.0291 (10)0.0208 (8)0.0002 (7)0.0025 (7)0.0039 (8)
C3A0.0247 (10)0.0398 (12)0.0188 (8)0.0059 (9)0.0047 (7)0.0055 (8)
C4A0.0240 (10)0.0434 (12)0.0189 (8)0.0055 (9)0.0078 (7)0.0078 (8)
C5A0.0249 (10)0.0315 (11)0.0234 (9)0.0026 (8)0.0059 (7)0.0092 (8)
C6A0.0209 (9)0.0222 (9)0.0177 (8)0.0033 (7)0.0022 (7)0.0030 (7)
C7A0.0269 (10)0.0198 (9)0.0258 (9)0.0003 (7)0.0088 (7)0.0037 (7)
C8A0.0184 (9)0.0251 (10)0.0177 (8)0.0006 (7)0.0051 (7)0.0007 (7)
C9A0.0237 (10)0.0395 (12)0.0210 (9)0.0004 (9)0.0031 (7)0.0090 (8)
C10A0.0236 (10)0.0594 (15)0.0164 (8)0.0080 (10)0.0018 (7)0.0004 (9)
C11A0.0210 (10)0.0468 (13)0.0254 (9)0.0101 (9)0.0091 (7)0.0159 (9)
C12A0.0166 (8)0.0265 (10)0.0277 (9)0.0028 (7)0.0089 (7)0.0068 (8)
C13A0.0121 (8)0.0230 (9)0.0169 (8)0.0016 (7)0.0065 (6)0.0015 (7)
C14A0.0166 (8)0.0192 (9)0.0190 (8)0.0008 (7)0.0041 (6)0.0021 (7)
C15A0.0168 (8)0.0257 (10)0.0198 (8)0.0013 (7)0.0026 (6)0.0003 (7)
C16A0.0171 (9)0.0246 (9)0.0242 (9)0.0036 (7)0.0049 (7)0.0001 (7)
C17A0.0160 (8)0.0306 (10)0.0260 (9)0.0008 (8)0.0033 (7)0.0002 (8)
C18A0.0264 (10)0.0345 (11)0.0293 (10)0.0043 (8)0.0103 (8)0.0074 (9)
C19A0.0314 (12)0.0322 (12)0.0572 (14)0.0121 (10)0.0155 (11)0.0117 (11)
S1B0.0336 (3)0.0426 (3)0.0233 (3)0.0001 (2)0.00317 (19)0.0080 (2)
O1B0.0184 (6)0.0281 (7)0.0199 (6)0.0033 (5)0.0022 (5)0.0059 (5)
N1B0.0221 (8)0.0414 (10)0.0180 (7)0.0099 (7)0.0010 (6)0.0005 (7)
C1B0.0158 (8)0.0226 (9)0.0200 (8)0.0041 (7)0.0026 (7)0.0039 (7)
C2B0.0179 (9)0.0246 (9)0.0248 (9)0.0030 (7)0.0018 (7)0.0044 (8)
C3B0.0213 (9)0.0237 (9)0.0357 (10)0.0016 (8)0.0033 (8)0.0048 (8)
C4B0.0206 (9)0.0308 (11)0.0362 (11)0.0004 (8)0.0034 (8)0.0133 (9)
C5B0.0222 (10)0.0354 (11)0.0250 (9)0.0063 (8)0.0038 (7)0.0070 (8)
C6B0.0213 (9)0.0254 (9)0.0212 (8)0.0062 (7)0.0014 (7)0.0019 (8)
C7B0.0353 (11)0.0253 (10)0.0283 (10)0.0100 (9)0.0094 (8)0.0047 (8)
C8B0.0171 (9)0.0241 (10)0.0336 (10)0.0039 (7)0.0027 (7)0.0009 (8)
C9B0.0218 (10)0.0223 (10)0.0581 (14)0.0020 (8)0.0040 (9)0.0019 (10)
C10B0.0218 (10)0.0288 (11)0.0657 (16)0.0039 (9)0.0135 (10)0.0190 (11)
C11B0.0229 (10)0.0411 (12)0.0403 (11)0.0105 (9)0.0127 (9)0.0188 (10)
C12B0.0175 (9)0.0341 (11)0.0264 (9)0.0067 (8)0.0061 (7)0.0057 (8)
C13B0.0117 (8)0.0243 (9)0.0241 (9)0.0032 (7)0.0045 (6)0.0036 (7)
C14B0.0169 (9)0.0228 (9)0.0163 (8)0.0010 (7)0.0014 (6)0.0015 (7)
C15B0.0168 (9)0.0341 (10)0.0184 (8)0.0037 (8)0.0022 (7)0.0015 (8)
C16B0.0178 (9)0.0327 (11)0.0274 (9)0.0008 (8)0.0048 (7)0.0102 (8)
C17B0.0169 (9)0.0289 (10)0.0206 (8)0.0005 (7)0.0038 (7)0.0008 (7)
C18B0.0343 (13)0.079 (2)0.0434 (13)0.0256 (13)0.0172 (11)0.0361 (14)
C19B0.0280 (12)0.0747 (19)0.0382 (12)0.0149 (12)0.0115 (9)0.0277 (13)
Geometric parameters (Å, º) top
S1A—C6A1.7713 (19)S1B—C6B1.766 (2)
S1A—C7A1.822 (2)S1B—C7B1.811 (2)
O1A—C14A1.418 (2)O1B—C14B1.412 (2)
O1A—H1A0.8400O1B—H1B0.8400
N1A—C19A1.463 (3)N1B—C18B1.461 (3)
N1A—C18A1.468 (3)N1B—C19B1.465 (3)
N1A—C17A1.473 (3)N1B—C17B1.470 (2)
C1A—C2A1.398 (3)C1B—C2B1.397 (3)
C1A—C6A1.406 (3)C1B—C6B1.408 (2)
C1A—C14A1.543 (2)C1B—C14B1.545 (2)
C2A—C3A1.393 (3)C2B—C3B1.393 (3)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.380 (3)C3B—C4B1.388 (3)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.380 (3)C4B—C5B1.375 (3)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.402 (3)C5B—C6B1.401 (3)
C5A—H5AA0.9500C5B—H5BA0.9500
C7A—C8A1.498 (3)C7B—C8B1.521 (3)
C7A—H7AA0.9900C7B—H7BA0.9900
C7A—H7AB0.9900C7B—H7BB0.9900
C8A—C9A1.398 (3)C8B—C13B1.398 (3)
C8A—C13A1.408 (3)C8B—C9B1.402 (3)
C9A—C10A1.376 (3)C9B—C10B1.384 (4)
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—C11A1.382 (3)C10B—C11B1.373 (4)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.390 (3)C11B—C12B1.386 (3)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.390 (3)C12B—C13B1.402 (3)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.548 (2)C13B—C14B1.552 (3)
C14A—C15A1.550 (2)C14B—C15B1.545 (2)
C15A—C16A1.540 (2)C15B—C16B1.534 (3)
C15A—H15A0.9900C15B—H15C0.9900
C15A—H15B0.9900C15B—H15D0.9900
C16A—C17A1.525 (3)C16B—C17B1.525 (3)
C16A—H16A0.9900C16B—H16C0.9900
C16A—H16B0.9900C16B—H16D0.9900
C17A—H17A0.9900C17B—H17C0.9900
C17A—H17B0.9900C17B—H17D0.9900
C18A—H18A0.9800C18B—H18D0.9800
C18A—H18B0.9800C18B—H18E0.9800
C18A—H18C0.9800C18B—H18F0.9800
C19A—H19A0.9800C19B—H19D0.9800
C19A—H19B0.9800C19B—H19E0.9800
C19A—H19C0.9800C19B—H19F0.9800
C6A—S1A—C7A109.55 (9)C6B—S1B—C7B110.20 (9)
C14A—O1A—H1A109.5C14B—O1B—H1B109.5
C19A—N1A—C18A109.89 (18)C18B—N1B—C19B111.0 (2)
C19A—N1A—C17A110.88 (17)C18B—N1B—C17B111.00 (19)
C18A—N1A—C17A111.53 (16)C19B—N1B—C17B109.77 (18)
C2A—C1A—C6A117.58 (17)C2B—C1B—C6B117.73 (17)
C2A—C1A—C14A118.41 (17)C2B—C1B—C14B118.00 (15)
C6A—C1A—C14A123.95 (16)C6B—C1B—C14B124.27 (17)
C3A—C2A—C1A122.01 (19)C3B—C2B—C1B122.07 (18)
C3A—C2A—H2AA119.0C3B—C2B—H2BA119.0
C1A—C2A—H2AA119.0C1B—C2B—H2BA119.0
C4A—C3A—C2A120.05 (19)C4B—C3B—C2B119.4 (2)
C4A—C3A—H3AA120.0C4B—C3B—H3BA120.3
C2A—C3A—H3AA120.0C2B—C3B—H3BA120.3
C5A—C4A—C3A118.91 (18)C5B—C4B—C3B119.56 (19)
C5A—C4A—H4AA120.5C5B—C4B—H4BA120.2
C3A—C4A—H4AA120.5C3B—C4B—H4BA120.2
C4A—C5A—C6A121.9 (2)C4B—C5B—C6B121.55 (18)
C4A—C5A—H5AA119.0C4B—C5B—H5BA119.2
C6A—C5A—H5AA119.0C6B—C5B—H5BA119.2
C5A—C6A—C1A119.50 (18)C5B—C6B—C1B119.62 (19)
C5A—C6A—S1A110.96 (15)C5B—C6B—S1B111.62 (14)
C1A—C6A—S1A129.40 (14)C1B—C6B—S1B128.64 (16)
C8A—C7A—S1A115.01 (13)C8B—C7B—S1B116.69 (14)
C8A—C7A—H7AA108.5C8B—C7B—H7BA108.1
S1A—C7A—H7AA108.5S1B—C7B—H7BA108.1
C8A—C7A—H7AB108.5C8B—C7B—H7BB108.1
S1A—C7A—H7AB108.5S1B—C7B—H7BB108.1
H7AA—C7A—H7AB107.5H7BA—C7B—H7BB107.3
C9A—C8A—C13A119.34 (18)C13B—C8B—C9B119.4 (2)
C9A—C8A—C7A117.71 (18)C13B—C8B—C7B123.82 (18)
C13A—C8A—C7A122.93 (16)C9B—C8B—C7B116.7 (2)
C10A—C9A—C8A121.6 (2)C10B—C9B—C8B121.4 (2)
C10A—C9A—H9AA119.2C10B—C9B—H9BA119.3
C8A—C9A—H9AA119.2C8B—C9B—H9BA119.3
C9A—C10A—C11A119.35 (18)C11B—C10B—C9B119.3 (2)
C9A—C10A—H10A120.3C11B—C10B—H10B120.3
C11A—C10A—H10A120.3C9B—C10B—H10B120.3
C10A—C11A—C12A119.9 (2)C10B—C11B—C12B120.1 (2)
C10A—C11A—H11A120.1C10B—C11B—H11B120.0
C12A—C11A—H11A120.1C12B—C11B—H11B120.0
C13A—C12A—C11A121.7 (2)C11B—C12B—C13B121.7 (2)
C13A—C12A—H12A119.2C11B—C12B—H12B119.1
C11A—C12A—H12A119.2C13B—C12B—H12B119.1
C12A—C13A—C8A118.18 (17)C8B—C13B—C12B117.96 (18)
C12A—C13A—C14A117.78 (17)C8B—C13B—C14B123.96 (16)
C8A—C13A—C14A123.85 (16)C12B—C13B—C14B117.86 (17)
O1A—C14A—C1A106.40 (14)O1B—C14B—C1B106.49 (15)
O1A—C14A—C13A109.58 (15)O1B—C14B—C15B108.00 (14)
C1A—C14A—C13A105.90 (14)C1B—C14B—C15B110.53 (14)
O1A—C14A—C15A108.06 (14)O1B—C14B—C13B109.25 (14)
C1A—C14A—C15A110.73 (14)C1B—C14B—C13B105.96 (14)
C13A—C14A—C15A115.78 (14)C15B—C14B—C13B116.21 (16)
C16A—C15A—C14A116.41 (15)C16B—C15B—C14B116.08 (16)
C16A—C15A—H15A108.2C16B—C15B—H15C108.3
C14A—C15A—H15A108.2C14B—C15B—H15C108.3
C16A—C15A—H15B108.2C16B—C15B—H15D108.3
C14A—C15A—H15B108.2C14B—C15B—H15D108.3
H15A—C15A—H15B107.3H15C—C15B—H15D107.4
C17A—C16A—C15A115.75 (16)C17B—C16B—C15B116.37 (17)
C17A—C16A—H16A108.3C17B—C16B—H16C108.2
C15A—C16A—H16A108.3C15B—C16B—H16C108.2
C17A—C16A—H16B108.3C17B—C16B—H16D108.2
C15A—C16A—H16B108.3C15B—C16B—H16D108.2
H16A—C16A—H16B107.4H16C—C16B—H16D107.3
N1A—C17A—C16A113.87 (15)N1B—C17B—C16B114.20 (16)
N1A—C17A—H17A108.8N1B—C17B—H17C108.7
C16A—C17A—H17A108.8C16B—C17B—H17C108.7
N1A—C17A—H17B108.8N1B—C17B—H17D108.7
C16A—C17A—H17B108.8C16B—C17B—H17D108.7
H17A—C17A—H17B107.7H17C—C17B—H17D107.6
N1A—C18A—H18A109.5N1B—C18B—H18D109.5
N1A—C18A—H18B109.5N1B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
N1A—C18A—H18C109.5N1B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
N1A—C19A—H19A109.5N1B—C19B—H19D109.5
N1A—C19A—H19B109.5N1B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
N1A—C19A—H19C109.5N1B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
C6A—C1A—C2A—C3A1.2 (3)C6B—C1B—C2B—C3B1.7 (3)
C14A—C1A—C2A—C3A178.23 (17)C14B—C1B—C2B—C3B179.50 (17)
C1A—C2A—C3A—C4A1.2 (3)C1B—C2B—C3B—C4B0.8 (3)
C2A—C3A—C4A—C5A0.2 (3)C2B—C3B—C4B—C5B0.6 (3)
C3A—C4A—C5A—C6A1.6 (3)C3B—C4B—C5B—C6B1.0 (3)
C4A—C5A—C6A—C1A1.6 (3)C4B—C5B—C6B—C1B0.1 (3)
C4A—C5A—C6A—S1A174.51 (16)C4B—C5B—C6B—S1B176.25 (16)
C2A—C1A—C6A—C5A0.2 (3)C2B—C1B—C6B—C5B1.2 (3)
C14A—C1A—C6A—C5A176.66 (16)C14B—C1B—C6B—C5B179.94 (17)
C2A—C1A—C6A—S1A175.12 (14)C2B—C1B—C6B—S1B176.89 (15)
C14A—C1A—C6A—S1A8.0 (3)C14B—C1B—C6B—S1B4.4 (3)
C7A—S1A—C6A—C5A156.28 (14)C7B—S1B—C6B—C5B153.88 (15)
C7A—S1A—C6A—C1A28.0 (2)C7B—S1B—C6B—C1B30.1 (2)
C6A—S1A—C7A—C8A29.24 (17)C6B—S1B—C7B—C8B22.7 (2)
S1A—C7A—C8A—C9A114.43 (17)S1B—C7B—C8B—C13B63.9 (2)
S1A—C7A—C8A—C13A67.3 (2)S1B—C7B—C8B—C9B118.40 (19)
C13A—C8A—C9A—C10A1.4 (3)C13B—C8B—C9B—C10B2.9 (3)
C7A—C8A—C9A—C10A176.99 (18)C7B—C8B—C9B—C10B174.94 (19)
C8A—C9A—C10A—C11A0.3 (3)C8B—C9B—C10B—C11B0.2 (3)
C9A—C10A—C11A—C12A0.6 (3)C9B—C10B—C11B—C12B2.2 (3)
C10A—C11A—C12A—C13A0.3 (3)C10B—C11B—C12B—C13B1.9 (3)
C11A—C12A—C13A—C8A0.7 (3)C9B—C8B—C13B—C12B3.1 (3)
C11A—C12A—C13A—C14A174.38 (16)C7B—C8B—C13B—C12B174.58 (17)
C9A—C8A—C13A—C12A1.6 (3)C9B—C8B—C13B—C14B171.44 (17)
C7A—C8A—C13A—C12A176.71 (17)C7B—C8B—C13B—C14B10.9 (3)
C9A—C8A—C13A—C14A173.24 (17)C11B—C12B—C13B—C8B0.7 (3)
C7A—C8A—C13A—C14A8.5 (3)C11B—C12B—C13B—C14B174.11 (17)
C2A—C1A—C14A—O1A0.3 (2)C2B—C1B—C14B—O1B1.8 (2)
C6A—C1A—C14A—O1A177.21 (16)C6B—C1B—C14B—O1B179.50 (16)
C2A—C1A—C14A—C13A116.21 (17)C2B—C1B—C14B—C15B118.81 (18)
C6A—C1A—C14A—C13A60.7 (2)C6B—C1B—C14B—C15B62.4 (2)
C2A—C1A—C14A—C15A117.54 (18)C2B—C1B—C14B—C13B114.50 (18)
C6A—C1A—C14A—C15A65.6 (2)C6B—C1B—C14B—C13B64.2 (2)
C12A—C13A—C14A—O1A11.1 (2)C8B—C13B—C14B—O1B176.78 (16)
C8A—C13A—C14A—O1A174.06 (15)C12B—C13B—C14B—O1B8.7 (2)
C12A—C13A—C14A—C1A103.27 (18)C8B—C13B—C14B—C1B68.8 (2)
C8A—C13A—C14A—C1A71.5 (2)C12B—C13B—C14B—C1B105.66 (18)
C12A—C13A—C14A—C15A133.61 (17)C8B—C13B—C14B—C15B54.3 (2)
C8A—C13A—C14A—C15A51.6 (2)C12B—C13B—C14B—C15B131.16 (17)
O1A—C14A—C15A—C16A76.66 (19)O1B—C14B—C15B—C16B72.5 (2)
C1A—C14A—C15A—C16A167.18 (15)C1B—C14B—C15B—C16B171.34 (16)
C13A—C14A—C15A—C16A46.6 (2)C13B—C14B—C15B—C16B50.6 (2)
C14A—C15A—C16A—C17A81.9 (2)C14B—C15B—C16B—C17B84.3 (2)
C19A—N1A—C17A—C16A161.24 (17)C18B—N1B—C17B—C16B73.7 (2)
C18A—N1A—C17A—C16A75.9 (2)C19B—N1B—C17B—C16B163.21 (19)
C15A—C16A—C17A—N1A66.7 (2)C15B—C16B—C17B—N1B67.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg7 and Cg8 are the centroids of the C1A—C6A, C8A—C13A, C1B–C6B and C8B—C13B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.841.862.693 (2)170
O1B—H1B···N1B0.841.842.679 (2)174
C4A—H4AA···O1B0.952.513.253 (2)135
C3A—H3AA···Cg7i0.952.743.526 (6)140
C17A—H17A···Cg1ii0.992.673.537 (7)147
C17A—H17B···Cg2ii0.992.753.720 (3)167
C17B—H17C···Cg8iii0.992.683.663 (6)170
C17B—17D···Cg7iii0.992.643.538 (1)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H23NOS
Mr313.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)7.7215 (4), 15.3729 (10), 27.9274 (16)
β (°) 95.401 (6)
V3)3300.3 (3)
Z8
Radiation typeCu Kα
µ (mm1)1.74
Crystal size (mm)0.51 × 0.42 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.432, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14666, 6565, 5490
Rint0.029
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.153, 1.05
No. of reflections6565
No. of parameters403
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.56

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg7 and Cg8 are the centroids of the C1A—C6A, C8A—C13A, C1B–C6B and C8B—C13B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.841.862.693 (2)169.9
O1B—H1B···N1B0.841.842.679 (2)174.1
C4A—H4AA···O1B0.952.513.253 (2)134.7
C3A—H3AA···Cg7i0.952.743.526 (6)140
C17A—H17A···Cg1ii0.992.673.537 (7)147
C17A—H17B···Cg2ii0.992.753.720 (3)167
C17B—H17C···Cg8iii0.992.683.663 (6)170
C17B—17D···Cg7iii0.992.643.538 (1)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

QNMHA thanks the University of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (Grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBandoli, G. & Nicolini, M. (1982). J. Chem. Crystallogr. 12, 425–447.  CAS Google Scholar
First citationBecke, A. D. (1988). Phys. Rev. A, 38, 3098–100.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBlaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 777–780.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrisch, M. J. et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationHehre, W.J., Random, L., Schleyer, P. R. & Pople, J.A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley.  Google Scholar
First citationIeawsuwan, W., Bru Roig, M. & Bolte, M. (2006). Acta Cryst. E62, o1478–o1479.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIkuo, U., Yoshinari, S., Shizuo, M. & Suminori, U. (1978). Chem. Pharm. Bull. 26, 3058–3070.  PubMed Google Scholar
First citationKolehmainen, E., Laihia, K., Valkonen, A., Sievänen, E., Nissinen, M., Rudorf, W.-D., Loos, D., Perjéssy, A., Samaliková, M., Susteková, Z., Florea, S. & Wybraziec, J. (2007). J. Mol. Struct. 839, 94–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationLinden, A., Furegati, M. & Rippert, A. J. (2004). Acta Cryst. C60, o223–o225.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPortalone, G., Colapietro, M., Bindya, S., Ashok, M. A. & Yathirajan, H. S. (2007). Acta Cryst. E63, o746–o747.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajsner, M., Protiva, M. & Metysová, J. (1971). Czech. Pat. Appl. CS 143737.  Google Scholar
First citationRajsner, M., Svatek, E., Seidlová, V., Adlerová, E. & Protiva, M. (1969). Coll. Czech. Chem. Commun. 34, 1278.  Google Scholar
First citationRooks, W. H. II, Tomolonis, A. J., Maloney, P. J., Roszkowski, A. & Wallach, M. B. (1980). Inflamm. Res. 10, 266–273.  CAS Google Scholar
First citationRoszak, A. W., Williams, V. E. & Lemieux, R. P. (1996). Acta Cryst. C52, 3190–3193.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRudorf, W. D., Baumeister, U., Florea, S., Nicolae, A. & Maior, O. (1999). Monatch. Chem. 130, 1475–1480.  CrossRef CAS Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.  Google Scholar
First citationTruce, W. E. & Emrick, D. D. (1956). J. Am. Chem. Soc. 78, 6130–6137.  CrossRef CAS Web of Science Google Scholar
First citationUchida, S., Honda, F., Otsuka, M., Satoh, Y., Mori, J., Ono, T. & Hitomi, M. (1979). Arzneimittelforschung, 29, 1588–1594.  CAS PubMed Web of Science Google Scholar
First citationWyatt, P., Hudson, A., Charmant, J., Orpen, A. G. & Phetmung, H. (2006). Org. Biomol. Chem. 4, 2218–2232.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoshinari, N. & Konno, T. (2009). Acta Cryst. E65, o774.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008a). Acta Cryst. E64, o1304.  Google Scholar
First citationZhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008). Acta Cryst. E64, o1027.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o161-o162
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds