organic compounds
11-[3-(Dimethylamino)propyl]-6,11-dihydrodibenzo[b,e]thiepin-11-ol
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, 570 006, India, and dRL Fine Chem, Bangalore, 560 064, India
*Correspondence e-mail: jjasinski@keene.edu
There are two independent molecules (A and B) in the of the title compound, C19H23NOS. In each molecule, the seven-membered thiepine ring is bent into a slightly twisted V-shape. The dihedral angles between the mean planes of the two benzene rings fused to the thiepine ring are 75.7 (5) in molecule A and 73.8 (4)° in molecule B. In both molecules, an intramolecular O—H⋯N hydrogen bond occurs. In the crystal, weak intermolecular C—H⋯O and C—H⋯π-ring interactions are observed.
Related literature
For related structures, see: Bandoli & Nicolini, (1982); Blaton et al. (1995); Ieawsuwan et al. (2006); Linden et al. (2004); Portalone et al. (2007); Roszak et al. (1996); Rudorf et al. (1999); Yoshinari & Konno, (2009); Zhang et al. (2008,2008a). For related background, see: Rudorf et al. (1999). For antidepressant and anti-inflammatory properties, see: Rajsner et al. (1969, 1971); Rooks et al. (1980); Tomascovic et al. (2000); Truce et al. (1956). For pharmacological synthesis and studies, see: Ikuo et al. (1978); Uchida et al. (1979); Wyatt et al. (2006). For NMR, Ir and X-ray studies, see: Kolehmainen et al. (2007). For density functional theory (DFT), see: Becke (1988, 1993); Frisch et al. (2004); Hehre et al. (1986); Lee et al. (1988); Schmidt & Polik (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809053434/lh2968sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809053434/lh2968Isup2.hkl
The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore, India. The compound was used without further purification. X-ray quality crystals (m.p. 433–435 K) of the title compound, (I), were obtained by slow evaporation from acetone solution.
The hydroxy H atoms, H1A and H1B, were found in a difference map and refined freely. All of the C-bonded H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 to 0.99 Å, and with Uiso(H) = 1.18–1.50 Ueq(C). Methyl groups were allowed to rotate about their N—C bonds.
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of molecule A in (I) showing the atom labeling scheme and 50% probability displacement ellipsoids. | |
Fig. 2. Molecular structure of molecule B in (I) showing the atom labeling scheme and 50% probability displacement ellipsoids. | |
Fig. 3. Packing diagram of (I), viewed along the c axis. Dashed lines indicate O—H···N intramolecular interactions in molecules A & B. |
C19H23NOS | F(000) = 1344 |
Mr = 313.44 | Dx = 1.262 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2yn | Cell parameters from 6805 reflections |
a = 7.7215 (4) Å | θ = 4.3–74.0° |
b = 15.3729 (10) Å | µ = 1.74 mm−1 |
c = 27.9274 (16) Å | T = 110 K |
β = 95.401 (6)° | Plate, colorless |
V = 3300.3 (3) Å3 | 0.51 × 0.42 × 0.14 mm |
Z = 8 |
Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector | 6565 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 5490 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 74.2°, θmin = 4.3° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −13→19 |
Tmin = 0.432, Tmax = 1.000 | l = −17→34 |
14666 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1079P)2 + 0.6589P] where P = (Fo2 + 2Fc2)/3 |
6565 reflections | (Δ/σ)max = 0.001 |
403 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.56 e Å−3 |
C19H23NOS | V = 3300.3 (3) Å3 |
Mr = 313.44 | Z = 8 |
Monoclinic, P21/n | Cu Kα radiation |
a = 7.7215 (4) Å | µ = 1.74 mm−1 |
b = 15.3729 (10) Å | T = 110 K |
c = 27.9274 (16) Å | 0.51 × 0.42 × 0.14 mm |
β = 95.401 (6)° |
Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector | 6565 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 5490 reflections with I > 2σ(I) |
Tmin = 0.432, Tmax = 1.000 | Rint = 0.029 |
14666 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.58 e Å−3 |
6565 reflections | Δρmin = −0.56 e Å−3 |
403 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1A | 0.69626 (7) | 0.25999 (3) | 0.288172 (19) | 0.02978 (15) | |
O1A | 0.91923 (17) | 0.54941 (9) | 0.28401 (5) | 0.0240 (3) | |
H1A | 1.0075 | 0.5603 | 0.2696 | 0.029* | |
N1A | 1.2061 (2) | 0.56334 (11) | 0.23664 (6) | 0.0242 (4) | |
C1A | 0.7385 (2) | 0.44069 (13) | 0.31337 (6) | 0.0189 (4) | |
C2A | 0.6889 (2) | 0.50798 (13) | 0.34289 (6) | 0.0230 (4) | |
H2AA | 0.7418 | 0.5635 | 0.3408 | 0.028* | |
C3A | 0.5643 (3) | 0.49613 (15) | 0.37524 (7) | 0.0276 (4) | |
H3AA | 0.5350 | 0.5429 | 0.3952 | 0.033* | |
C4A | 0.4833 (3) | 0.41658 (15) | 0.37828 (7) | 0.0284 (4) | |
H4AA | 0.3984 | 0.4079 | 0.4003 | 0.034* | |
C5A | 0.5275 (3) | 0.34982 (14) | 0.34876 (7) | 0.0264 (4) | |
H5AA | 0.4697 | 0.2955 | 0.3502 | 0.032* | |
C6A | 0.6554 (2) | 0.35985 (13) | 0.31669 (6) | 0.0202 (4) | |
C7A | 0.7862 (3) | 0.28132 (13) | 0.23129 (7) | 0.0238 (4) | |
H7AA | 0.9147 | 0.2814 | 0.2370 | 0.029* | |
H7AB | 0.7527 | 0.2330 | 0.2089 | 0.029* | |
C8A | 0.7295 (2) | 0.36527 (13) | 0.20746 (6) | 0.0202 (4) | |
C9A | 0.6275 (3) | 0.36079 (15) | 0.16343 (7) | 0.0280 (4) | |
H9AA | 0.5927 | 0.3055 | 0.1508 | 0.034* | |
C10A | 0.5764 (3) | 0.43455 (17) | 0.13802 (7) | 0.0331 (5) | |
H10A | 0.5075 | 0.4301 | 0.1081 | 0.040* | |
C11A | 0.6263 (3) | 0.51514 (16) | 0.15646 (7) | 0.0306 (5) | |
H11A | 0.5926 | 0.5665 | 0.1391 | 0.037* | |
C12A | 0.7258 (2) | 0.52091 (13) | 0.20050 (7) | 0.0232 (4) | |
H12A | 0.7588 | 0.5766 | 0.2129 | 0.028* | |
C13A | 0.7782 (2) | 0.44720 (12) | 0.22683 (6) | 0.0170 (4) | |
C14A | 0.8737 (2) | 0.46053 (12) | 0.27754 (6) | 0.0181 (4) | |
C15A | 1.0403 (2) | 0.40533 (13) | 0.28923 (6) | 0.0207 (4) | |
H15A | 1.1021 | 0.4278 | 0.3194 | 0.025* | |
H15B | 1.0046 | 0.3448 | 0.2955 | 0.025* | |
C16A | 1.1698 (2) | 0.40312 (13) | 0.25052 (7) | 0.0218 (4) | |
H16A | 1.2402 | 0.3494 | 0.2550 | 0.026* | |
H16B | 1.1027 | 0.3994 | 0.2186 | 0.026* | |
C17A | 1.2933 (2) | 0.48049 (13) | 0.25020 (7) | 0.0241 (4) | |
H17A | 1.3558 | 0.4868 | 0.2826 | 0.029* | |
H17B | 1.3810 | 0.4683 | 0.2274 | 0.029* | |
C18A | 1.1570 (3) | 0.56816 (15) | 0.18463 (7) | 0.0296 (5) | |
H18A | 1.0974 | 0.6234 | 0.1769 | 0.044* | |
H18B | 1.0791 | 0.5197 | 0.1748 | 0.044* | |
H18C | 1.2618 | 0.5646 | 0.1675 | 0.044* | |
C19A | 1.3169 (3) | 0.63736 (16) | 0.25201 (10) | 0.0396 (6) | |
H19A | 1.2540 | 0.6917 | 0.2442 | 0.059* | |
H19B | 1.4230 | 0.6358 | 0.2353 | 0.059* | |
H19C | 1.3477 | 0.6342 | 0.2868 | 0.059* | |
S1B | 0.66729 (7) | 0.22246 (4) | 0.627252 (18) | 0.03356 (16) | |
O1B | 0.39362 (17) | 0.32974 (9) | 0.47928 (5) | 0.0224 (3) | |
H1B | 0.2941 | 0.3119 | 0.4691 | 0.027* | |
N1B | 0.0713 (2) | 0.27183 (13) | 0.45327 (6) | 0.0272 (4) | |
C1B | 0.6076 (2) | 0.33566 (12) | 0.54588 (6) | 0.0194 (4) | |
C2B | 0.6575 (2) | 0.41167 (13) | 0.52343 (7) | 0.0225 (4) | |
H2BA | 0.5966 | 0.4284 | 0.4937 | 0.027* | |
C3B | 0.7936 (3) | 0.46361 (14) | 0.54324 (8) | 0.0269 (4) | |
H3BA | 0.8237 | 0.5154 | 0.5274 | 0.032* | |
C4B | 0.8849 (3) | 0.43913 (14) | 0.58631 (8) | 0.0296 (5) | |
H4BA | 0.9773 | 0.4743 | 0.6003 | 0.036* | |
C5B | 0.8406 (3) | 0.36365 (14) | 0.60857 (7) | 0.0279 (4) | |
H5BA | 0.9048 | 0.3467 | 0.6378 | 0.033* | |
C6B | 0.7032 (2) | 0.31114 (13) | 0.58920 (7) | 0.0227 (4) | |
C7B | 0.5684 (3) | 0.13299 (14) | 0.59244 (7) | 0.0292 (4) | |
H7BA | 0.6145 | 0.0780 | 0.6070 | 0.035* | |
H7BB | 0.4418 | 0.1340 | 0.5955 | 0.035* | |
C8B | 0.5951 (2) | 0.13126 (13) | 0.53919 (7) | 0.0249 (4) | |
C9B | 0.6839 (3) | 0.05921 (14) | 0.52276 (9) | 0.0340 (5) | |
H9BA | 0.7316 | 0.0173 | 0.5453 | 0.041* | |
C10B | 0.7035 (3) | 0.04778 (15) | 0.47439 (10) | 0.0382 (6) | |
H10B | 0.7637 | −0.0015 | 0.4638 | 0.046* | |
C11B | 0.6349 (3) | 0.10843 (16) | 0.44183 (8) | 0.0341 (5) | |
H11B | 0.6440 | 0.1002 | 0.4084 | 0.041* | |
C12B | 0.5524 (2) | 0.18169 (14) | 0.45762 (7) | 0.0257 (4) | |
H12B | 0.5087 | 0.2240 | 0.4348 | 0.031* | |
C13B | 0.5316 (2) | 0.19501 (13) | 0.50640 (7) | 0.0199 (4) | |
C14B | 0.4538 (2) | 0.28306 (12) | 0.52111 (6) | 0.0187 (4) | |
C15B | 0.3036 (2) | 0.27781 (14) | 0.55385 (7) | 0.0231 (4) | |
H15C | 0.3525 | 0.2592 | 0.5863 | 0.028* | |
H15D | 0.2554 | 0.3370 | 0.5570 | 0.028* | |
C16B | 0.1534 (2) | 0.21639 (14) | 0.53708 (7) | 0.0258 (4) | |
H16C | 0.2030 | 0.1642 | 0.5227 | 0.031* | |
H16D | 0.0976 | 0.1970 | 0.5657 | 0.031* | |
C17B | 0.0125 (2) | 0.25346 (13) | 0.50080 (7) | 0.0220 (4) | |
H17C | −0.0853 | 0.2116 | 0.4968 | 0.026* | |
H17D | −0.0321 | 0.3080 | 0.5140 | 0.026* | |
C18B | 0.0944 (3) | 0.1914 (2) | 0.42672 (9) | 0.0515 (8) | |
H18D | 0.1890 | 0.1573 | 0.4433 | 0.077* | |
H18E | 0.1232 | 0.2054 | 0.3942 | 0.077* | |
H18F | −0.0136 | 0.1575 | 0.4248 | 0.077* | |
C19B | −0.0530 (3) | 0.3298 (2) | 0.42629 (9) | 0.0479 (7) | |
H19D | −0.0118 | 0.3430 | 0.3950 | 0.072* | |
H19E | −0.0635 | 0.3839 | 0.4444 | 0.072* | |
H19F | −0.1668 | 0.3012 | 0.4215 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0386 (3) | 0.0189 (2) | 0.0344 (3) | −0.0007 (2) | 0.0165 (2) | 0.00348 (19) |
O1A | 0.0191 (7) | 0.0210 (7) | 0.0333 (7) | −0.0042 (5) | 0.0094 (5) | −0.0068 (6) |
N1A | 0.0208 (8) | 0.0233 (8) | 0.0293 (8) | −0.0028 (6) | 0.0070 (6) | −0.0039 (7) |
C1A | 0.0150 (8) | 0.0269 (9) | 0.0148 (8) | 0.0016 (7) | 0.0015 (6) | 0.0003 (7) |
C2A | 0.0194 (9) | 0.0291 (10) | 0.0208 (8) | 0.0002 (7) | 0.0025 (7) | −0.0039 (8) |
C3A | 0.0247 (10) | 0.0398 (12) | 0.0188 (8) | 0.0059 (9) | 0.0047 (7) | −0.0055 (8) |
C4A | 0.0240 (10) | 0.0434 (12) | 0.0189 (8) | 0.0055 (9) | 0.0078 (7) | 0.0078 (8) |
C5A | 0.0249 (10) | 0.0315 (11) | 0.0234 (9) | 0.0026 (8) | 0.0059 (7) | 0.0092 (8) |
C6A | 0.0209 (9) | 0.0222 (9) | 0.0177 (8) | 0.0033 (7) | 0.0022 (7) | 0.0030 (7) |
C7A | 0.0269 (10) | 0.0198 (9) | 0.0258 (9) | 0.0003 (7) | 0.0088 (7) | −0.0037 (7) |
C8A | 0.0184 (9) | 0.0251 (10) | 0.0177 (8) | −0.0006 (7) | 0.0051 (7) | −0.0007 (7) |
C9A | 0.0237 (10) | 0.0395 (12) | 0.0210 (9) | −0.0004 (9) | 0.0031 (7) | −0.0090 (8) |
C10A | 0.0236 (10) | 0.0594 (15) | 0.0164 (8) | 0.0080 (10) | 0.0018 (7) | 0.0004 (9) |
C11A | 0.0210 (10) | 0.0468 (13) | 0.0254 (9) | 0.0101 (9) | 0.0091 (7) | 0.0159 (9) |
C12A | 0.0166 (8) | 0.0265 (10) | 0.0277 (9) | 0.0028 (7) | 0.0089 (7) | 0.0068 (8) |
C13A | 0.0121 (8) | 0.0230 (9) | 0.0169 (8) | 0.0016 (7) | 0.0065 (6) | 0.0015 (7) |
C14A | 0.0166 (8) | 0.0192 (9) | 0.0190 (8) | −0.0008 (7) | 0.0041 (6) | −0.0021 (7) |
C15A | 0.0168 (8) | 0.0257 (10) | 0.0198 (8) | 0.0013 (7) | 0.0026 (6) | −0.0003 (7) |
C16A | 0.0171 (9) | 0.0246 (9) | 0.0242 (9) | 0.0036 (7) | 0.0049 (7) | 0.0001 (7) |
C17A | 0.0160 (8) | 0.0306 (10) | 0.0260 (9) | 0.0008 (8) | 0.0033 (7) | −0.0002 (8) |
C18A | 0.0264 (10) | 0.0345 (11) | 0.0293 (10) | 0.0043 (8) | 0.0103 (8) | 0.0074 (9) |
C19A | 0.0314 (12) | 0.0322 (12) | 0.0572 (14) | −0.0121 (10) | 0.0155 (11) | −0.0117 (11) |
S1B | 0.0336 (3) | 0.0426 (3) | 0.0233 (3) | 0.0001 (2) | −0.00317 (19) | 0.0080 (2) |
O1B | 0.0184 (6) | 0.0281 (7) | 0.0199 (6) | −0.0033 (5) | −0.0022 (5) | 0.0059 (5) |
N1B | 0.0221 (8) | 0.0414 (10) | 0.0180 (7) | −0.0099 (7) | 0.0010 (6) | 0.0005 (7) |
C1B | 0.0158 (8) | 0.0226 (9) | 0.0200 (8) | 0.0041 (7) | 0.0026 (7) | −0.0039 (7) |
C2B | 0.0179 (9) | 0.0246 (9) | 0.0248 (9) | 0.0030 (7) | 0.0018 (7) | −0.0044 (8) |
C3B | 0.0213 (9) | 0.0237 (9) | 0.0357 (10) | 0.0016 (8) | 0.0033 (8) | −0.0048 (8) |
C4B | 0.0206 (9) | 0.0308 (11) | 0.0362 (11) | 0.0004 (8) | −0.0034 (8) | −0.0133 (9) |
C5B | 0.0222 (10) | 0.0354 (11) | 0.0250 (9) | 0.0063 (8) | −0.0038 (7) | −0.0070 (8) |
C6B | 0.0213 (9) | 0.0254 (9) | 0.0212 (8) | 0.0062 (7) | 0.0014 (7) | −0.0019 (8) |
C7B | 0.0353 (11) | 0.0253 (10) | 0.0283 (10) | −0.0100 (9) | 0.0094 (8) | 0.0047 (8) |
C8B | 0.0171 (9) | 0.0241 (10) | 0.0336 (10) | −0.0039 (7) | 0.0027 (7) | 0.0009 (8) |
C9B | 0.0218 (10) | 0.0223 (10) | 0.0581 (14) | −0.0020 (8) | 0.0040 (9) | 0.0019 (10) |
C10B | 0.0218 (10) | 0.0288 (11) | 0.0657 (16) | −0.0039 (9) | 0.0135 (10) | −0.0190 (11) |
C11B | 0.0229 (10) | 0.0411 (12) | 0.0403 (11) | −0.0105 (9) | 0.0127 (9) | −0.0188 (10) |
C12B | 0.0175 (9) | 0.0341 (11) | 0.0264 (9) | −0.0067 (8) | 0.0061 (7) | −0.0057 (8) |
C13B | 0.0117 (8) | 0.0243 (9) | 0.0241 (9) | −0.0032 (7) | 0.0045 (6) | −0.0036 (7) |
C14B | 0.0169 (9) | 0.0228 (9) | 0.0163 (8) | 0.0010 (7) | 0.0014 (6) | 0.0015 (7) |
C15B | 0.0168 (9) | 0.0341 (10) | 0.0184 (8) | 0.0037 (8) | 0.0022 (7) | 0.0015 (8) |
C16B | 0.0178 (9) | 0.0327 (11) | 0.0274 (9) | −0.0008 (8) | 0.0048 (7) | 0.0102 (8) |
C17B | 0.0169 (9) | 0.0289 (10) | 0.0206 (8) | −0.0005 (7) | 0.0038 (7) | −0.0008 (7) |
C18B | 0.0343 (13) | 0.079 (2) | 0.0434 (13) | −0.0256 (13) | 0.0172 (11) | −0.0361 (14) |
C19B | 0.0280 (12) | 0.0747 (19) | 0.0382 (12) | −0.0149 (12) | −0.0115 (9) | 0.0277 (13) |
S1A—C6A | 1.7713 (19) | S1B—C6B | 1.766 (2) |
S1A—C7A | 1.822 (2) | S1B—C7B | 1.811 (2) |
O1A—C14A | 1.418 (2) | O1B—C14B | 1.412 (2) |
O1A—H1A | 0.8400 | O1B—H1B | 0.8400 |
N1A—C19A | 1.463 (3) | N1B—C18B | 1.461 (3) |
N1A—C18A | 1.468 (3) | N1B—C19B | 1.465 (3) |
N1A—C17A | 1.473 (3) | N1B—C17B | 1.470 (2) |
C1A—C2A | 1.398 (3) | C1B—C2B | 1.397 (3) |
C1A—C6A | 1.406 (3) | C1B—C6B | 1.408 (2) |
C1A—C14A | 1.543 (2) | C1B—C14B | 1.545 (2) |
C2A—C3A | 1.393 (3) | C2B—C3B | 1.393 (3) |
C2A—H2AA | 0.9500 | C2B—H2BA | 0.9500 |
C3A—C4A | 1.380 (3) | C3B—C4B | 1.388 (3) |
C3A—H3AA | 0.9500 | C3B—H3BA | 0.9500 |
C4A—C5A | 1.380 (3) | C4B—C5B | 1.375 (3) |
C4A—H4AA | 0.9500 | C4B—H4BA | 0.9500 |
C5A—C6A | 1.402 (3) | C5B—C6B | 1.401 (3) |
C5A—H5AA | 0.9500 | C5B—H5BA | 0.9500 |
C7A—C8A | 1.498 (3) | C7B—C8B | 1.521 (3) |
C7A—H7AA | 0.9900 | C7B—H7BA | 0.9900 |
C7A—H7AB | 0.9900 | C7B—H7BB | 0.9900 |
C8A—C9A | 1.398 (3) | C8B—C13B | 1.398 (3) |
C8A—C13A | 1.408 (3) | C8B—C9B | 1.402 (3) |
C9A—C10A | 1.376 (3) | C9B—C10B | 1.384 (4) |
C9A—H9AA | 0.9500 | C9B—H9BA | 0.9500 |
C10A—C11A | 1.382 (3) | C10B—C11B | 1.373 (4) |
C10A—H10A | 0.9500 | C10B—H10B | 0.9500 |
C11A—C12A | 1.390 (3) | C11B—C12B | 1.386 (3) |
C11A—H11A | 0.9500 | C11B—H11B | 0.9500 |
C12A—C13A | 1.390 (3) | C12B—C13B | 1.402 (3) |
C12A—H12A | 0.9500 | C12B—H12B | 0.9500 |
C13A—C14A | 1.548 (2) | C13B—C14B | 1.552 (3) |
C14A—C15A | 1.550 (2) | C14B—C15B | 1.545 (2) |
C15A—C16A | 1.540 (2) | C15B—C16B | 1.534 (3) |
C15A—H15A | 0.9900 | C15B—H15C | 0.9900 |
C15A—H15B | 0.9900 | C15B—H15D | 0.9900 |
C16A—C17A | 1.525 (3) | C16B—C17B | 1.525 (3) |
C16A—H16A | 0.9900 | C16B—H16C | 0.9900 |
C16A—H16B | 0.9900 | C16B—H16D | 0.9900 |
C17A—H17A | 0.9900 | C17B—H17C | 0.9900 |
C17A—H17B | 0.9900 | C17B—H17D | 0.9900 |
C18A—H18A | 0.9800 | C18B—H18D | 0.9800 |
C18A—H18B | 0.9800 | C18B—H18E | 0.9800 |
C18A—H18C | 0.9800 | C18B—H18F | 0.9800 |
C19A—H19A | 0.9800 | C19B—H19D | 0.9800 |
C19A—H19B | 0.9800 | C19B—H19E | 0.9800 |
C19A—H19C | 0.9800 | C19B—H19F | 0.9800 |
C6A—S1A—C7A | 109.55 (9) | C6B—S1B—C7B | 110.20 (9) |
C14A—O1A—H1A | 109.5 | C14B—O1B—H1B | 109.5 |
C19A—N1A—C18A | 109.89 (18) | C18B—N1B—C19B | 111.0 (2) |
C19A—N1A—C17A | 110.88 (17) | C18B—N1B—C17B | 111.00 (19) |
C18A—N1A—C17A | 111.53 (16) | C19B—N1B—C17B | 109.77 (18) |
C2A—C1A—C6A | 117.58 (17) | C2B—C1B—C6B | 117.73 (17) |
C2A—C1A—C14A | 118.41 (17) | C2B—C1B—C14B | 118.00 (15) |
C6A—C1A—C14A | 123.95 (16) | C6B—C1B—C14B | 124.27 (17) |
C3A—C2A—C1A | 122.01 (19) | C3B—C2B—C1B | 122.07 (18) |
C3A—C2A—H2AA | 119.0 | C3B—C2B—H2BA | 119.0 |
C1A—C2A—H2AA | 119.0 | C1B—C2B—H2BA | 119.0 |
C4A—C3A—C2A | 120.05 (19) | C4B—C3B—C2B | 119.4 (2) |
C4A—C3A—H3AA | 120.0 | C4B—C3B—H3BA | 120.3 |
C2A—C3A—H3AA | 120.0 | C2B—C3B—H3BA | 120.3 |
C5A—C4A—C3A | 118.91 (18) | C5B—C4B—C3B | 119.56 (19) |
C5A—C4A—H4AA | 120.5 | C5B—C4B—H4BA | 120.2 |
C3A—C4A—H4AA | 120.5 | C3B—C4B—H4BA | 120.2 |
C4A—C5A—C6A | 121.9 (2) | C4B—C5B—C6B | 121.55 (18) |
C4A—C5A—H5AA | 119.0 | C4B—C5B—H5BA | 119.2 |
C6A—C5A—H5AA | 119.0 | C6B—C5B—H5BA | 119.2 |
C5A—C6A—C1A | 119.50 (18) | C5B—C6B—C1B | 119.62 (19) |
C5A—C6A—S1A | 110.96 (15) | C5B—C6B—S1B | 111.62 (14) |
C1A—C6A—S1A | 129.40 (14) | C1B—C6B—S1B | 128.64 (16) |
C8A—C7A—S1A | 115.01 (13) | C8B—C7B—S1B | 116.69 (14) |
C8A—C7A—H7AA | 108.5 | C8B—C7B—H7BA | 108.1 |
S1A—C7A—H7AA | 108.5 | S1B—C7B—H7BA | 108.1 |
C8A—C7A—H7AB | 108.5 | C8B—C7B—H7BB | 108.1 |
S1A—C7A—H7AB | 108.5 | S1B—C7B—H7BB | 108.1 |
H7AA—C7A—H7AB | 107.5 | H7BA—C7B—H7BB | 107.3 |
C9A—C8A—C13A | 119.34 (18) | C13B—C8B—C9B | 119.4 (2) |
C9A—C8A—C7A | 117.71 (18) | C13B—C8B—C7B | 123.82 (18) |
C13A—C8A—C7A | 122.93 (16) | C9B—C8B—C7B | 116.7 (2) |
C10A—C9A—C8A | 121.6 (2) | C10B—C9B—C8B | 121.4 (2) |
C10A—C9A—H9AA | 119.2 | C10B—C9B—H9BA | 119.3 |
C8A—C9A—H9AA | 119.2 | C8B—C9B—H9BA | 119.3 |
C9A—C10A—C11A | 119.35 (18) | C11B—C10B—C9B | 119.3 (2) |
C9A—C10A—H10A | 120.3 | C11B—C10B—H10B | 120.3 |
C11A—C10A—H10A | 120.3 | C9B—C10B—H10B | 120.3 |
C10A—C11A—C12A | 119.9 (2) | C10B—C11B—C12B | 120.1 (2) |
C10A—C11A—H11A | 120.1 | C10B—C11B—H11B | 120.0 |
C12A—C11A—H11A | 120.1 | C12B—C11B—H11B | 120.0 |
C13A—C12A—C11A | 121.7 (2) | C11B—C12B—C13B | 121.7 (2) |
C13A—C12A—H12A | 119.2 | C11B—C12B—H12B | 119.1 |
C11A—C12A—H12A | 119.2 | C13B—C12B—H12B | 119.1 |
C12A—C13A—C8A | 118.18 (17) | C8B—C13B—C12B | 117.96 (18) |
C12A—C13A—C14A | 117.78 (17) | C8B—C13B—C14B | 123.96 (16) |
C8A—C13A—C14A | 123.85 (16) | C12B—C13B—C14B | 117.86 (17) |
O1A—C14A—C1A | 106.40 (14) | O1B—C14B—C1B | 106.49 (15) |
O1A—C14A—C13A | 109.58 (15) | O1B—C14B—C15B | 108.00 (14) |
C1A—C14A—C13A | 105.90 (14) | C1B—C14B—C15B | 110.53 (14) |
O1A—C14A—C15A | 108.06 (14) | O1B—C14B—C13B | 109.25 (14) |
C1A—C14A—C15A | 110.73 (14) | C1B—C14B—C13B | 105.96 (14) |
C13A—C14A—C15A | 115.78 (14) | C15B—C14B—C13B | 116.21 (16) |
C16A—C15A—C14A | 116.41 (15) | C16B—C15B—C14B | 116.08 (16) |
C16A—C15A—H15A | 108.2 | C16B—C15B—H15C | 108.3 |
C14A—C15A—H15A | 108.2 | C14B—C15B—H15C | 108.3 |
C16A—C15A—H15B | 108.2 | C16B—C15B—H15D | 108.3 |
C14A—C15A—H15B | 108.2 | C14B—C15B—H15D | 108.3 |
H15A—C15A—H15B | 107.3 | H15C—C15B—H15D | 107.4 |
C17A—C16A—C15A | 115.75 (16) | C17B—C16B—C15B | 116.37 (17) |
C17A—C16A—H16A | 108.3 | C17B—C16B—H16C | 108.2 |
C15A—C16A—H16A | 108.3 | C15B—C16B—H16C | 108.2 |
C17A—C16A—H16B | 108.3 | C17B—C16B—H16D | 108.2 |
C15A—C16A—H16B | 108.3 | C15B—C16B—H16D | 108.2 |
H16A—C16A—H16B | 107.4 | H16C—C16B—H16D | 107.3 |
N1A—C17A—C16A | 113.87 (15) | N1B—C17B—C16B | 114.20 (16) |
N1A—C17A—H17A | 108.8 | N1B—C17B—H17C | 108.7 |
C16A—C17A—H17A | 108.8 | C16B—C17B—H17C | 108.7 |
N1A—C17A—H17B | 108.8 | N1B—C17B—H17D | 108.7 |
C16A—C17A—H17B | 108.8 | C16B—C17B—H17D | 108.7 |
H17A—C17A—H17B | 107.7 | H17C—C17B—H17D | 107.6 |
N1A—C18A—H18A | 109.5 | N1B—C18B—H18D | 109.5 |
N1A—C18A—H18B | 109.5 | N1B—C18B—H18E | 109.5 |
H18A—C18A—H18B | 109.5 | H18D—C18B—H18E | 109.5 |
N1A—C18A—H18C | 109.5 | N1B—C18B—H18F | 109.5 |
H18A—C18A—H18C | 109.5 | H18D—C18B—H18F | 109.5 |
H18B—C18A—H18C | 109.5 | H18E—C18B—H18F | 109.5 |
N1A—C19A—H19A | 109.5 | N1B—C19B—H19D | 109.5 |
N1A—C19A—H19B | 109.5 | N1B—C19B—H19E | 109.5 |
H19A—C19A—H19B | 109.5 | H19D—C19B—H19E | 109.5 |
N1A—C19A—H19C | 109.5 | N1B—C19B—H19F | 109.5 |
H19A—C19A—H19C | 109.5 | H19D—C19B—H19F | 109.5 |
H19B—C19A—H19C | 109.5 | H19E—C19B—H19F | 109.5 |
C6A—C1A—C2A—C3A | 1.2 (3) | C6B—C1B—C2B—C3B | −1.7 (3) |
C14A—C1A—C2A—C3A | 178.23 (17) | C14B—C1B—C2B—C3B | 179.50 (17) |
C1A—C2A—C3A—C4A | −1.2 (3) | C1B—C2B—C3B—C4B | 0.8 (3) |
C2A—C3A—C4A—C5A | −0.2 (3) | C2B—C3B—C4B—C5B | 0.6 (3) |
C3A—C4A—C5A—C6A | 1.6 (3) | C3B—C4B—C5B—C6B | −1.0 (3) |
C4A—C5A—C6A—C1A | −1.6 (3) | C4B—C5B—C6B—C1B | 0.1 (3) |
C4A—C5A—C6A—S1A | 174.51 (16) | C4B—C5B—C6B—S1B | −176.25 (16) |
C2A—C1A—C6A—C5A | 0.2 (3) | C2B—C1B—C6B—C5B | 1.2 (3) |
C14A—C1A—C6A—C5A | −176.66 (16) | C14B—C1B—C6B—C5B | 179.94 (17) |
C2A—C1A—C6A—S1A | −175.12 (14) | C2B—C1B—C6B—S1B | 176.89 (15) |
C14A—C1A—C6A—S1A | 8.0 (3) | C14B—C1B—C6B—S1B | −4.4 (3) |
C7A—S1A—C6A—C5A | 156.28 (14) | C7B—S1B—C6B—C5B | −153.88 (15) |
C7A—S1A—C6A—C1A | −28.0 (2) | C7B—S1B—C6B—C1B | 30.1 (2) |
C6A—S1A—C7A—C8A | −29.24 (17) | C6B—S1B—C7B—C8B | 22.7 (2) |
S1A—C7A—C8A—C9A | −114.43 (17) | S1B—C7B—C8B—C13B | −63.9 (2) |
S1A—C7A—C8A—C13A | 67.3 (2) | S1B—C7B—C8B—C9B | 118.40 (19) |
C13A—C8A—C9A—C10A | 1.4 (3) | C13B—C8B—C9B—C10B | −2.9 (3) |
C7A—C8A—C9A—C10A | −176.99 (18) | C7B—C8B—C9B—C10B | 174.94 (19) |
C8A—C9A—C10A—C11A | −0.3 (3) | C8B—C9B—C10B—C11B | 0.2 (3) |
C9A—C10A—C11A—C12A | −0.6 (3) | C9B—C10B—C11B—C12B | 2.2 (3) |
C10A—C11A—C12A—C13A | 0.3 (3) | C10B—C11B—C12B—C13B | −1.9 (3) |
C11A—C12A—C13A—C8A | 0.7 (3) | C9B—C8B—C13B—C12B | 3.1 (3) |
C11A—C12A—C13A—C14A | −174.38 (16) | C7B—C8B—C13B—C12B | −174.58 (17) |
C9A—C8A—C13A—C12A | −1.6 (3) | C9B—C8B—C13B—C14B | −171.44 (17) |
C7A—C8A—C13A—C12A | 176.71 (17) | C7B—C8B—C13B—C14B | 10.9 (3) |
C9A—C8A—C13A—C14A | 173.24 (17) | C11B—C12B—C13B—C8B | −0.7 (3) |
C7A—C8A—C13A—C14A | −8.5 (3) | C11B—C12B—C13B—C14B | 174.11 (17) |
C2A—C1A—C14A—O1A | 0.3 (2) | C2B—C1B—C14B—O1B | −1.8 (2) |
C6A—C1A—C14A—O1A | 177.21 (16) | C6B—C1B—C14B—O1B | 179.50 (16) |
C2A—C1A—C14A—C13A | −116.21 (17) | C2B—C1B—C14B—C15B | −118.81 (18) |
C6A—C1A—C14A—C13A | 60.7 (2) | C6B—C1B—C14B—C15B | 62.4 (2) |
C2A—C1A—C14A—C15A | 117.54 (18) | C2B—C1B—C14B—C13B | 114.50 (18) |
C6A—C1A—C14A—C15A | −65.6 (2) | C6B—C1B—C14B—C13B | −64.2 (2) |
C12A—C13A—C14A—O1A | −11.1 (2) | C8B—C13B—C14B—O1B | −176.78 (16) |
C8A—C13A—C14A—O1A | 174.06 (15) | C12B—C13B—C14B—O1B | 8.7 (2) |
C12A—C13A—C14A—C1A | 103.27 (18) | C8B—C13B—C14B—C1B | 68.8 (2) |
C8A—C13A—C14A—C1A | −71.5 (2) | C12B—C13B—C14B—C1B | −105.66 (18) |
C12A—C13A—C14A—C15A | −133.61 (17) | C8B—C13B—C14B—C15B | −54.3 (2) |
C8A—C13A—C14A—C15A | 51.6 (2) | C12B—C13B—C14B—C15B | 131.16 (17) |
O1A—C14A—C15A—C16A | −76.66 (19) | O1B—C14B—C15B—C16B | 72.5 (2) |
C1A—C14A—C15A—C16A | 167.18 (15) | C1B—C14B—C15B—C16B | −171.34 (16) |
C13A—C14A—C15A—C16A | 46.6 (2) | C13B—C14B—C15B—C16B | −50.6 (2) |
C14A—C15A—C16A—C17A | 81.9 (2) | C14B—C15B—C16B—C17B | −84.3 (2) |
C19A—N1A—C17A—C16A | 161.24 (17) | C18B—N1B—C17B—C16B | 73.7 (2) |
C18A—N1A—C17A—C16A | −75.9 (2) | C19B—N1B—C17B—C16B | −163.21 (19) |
C15A—C16A—C17A—N1A | −66.7 (2) | C15B—C16B—C17B—N1B | 67.5 (2) |
Cg1, Cg2, Cg7 and Cg8 are the centroids of the C1A—C6A, C8A—C13A, C1B–C6B and C8B—C13B rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···N1A | 0.84 | 1.86 | 2.693 (2) | 170 |
O1B—H1B···N1B | 0.84 | 1.84 | 2.679 (2) | 174 |
C4A—H4AA···O1B | 0.95 | 2.51 | 3.253 (2) | 135 |
C3A—H3AA···Cg7i | 0.95 | 2.74 | 3.526 (6) | 140 |
C17A—H17A···Cg1ii | 0.99 | 2.67 | 3.537 (7) | 147 |
C17A—H17B···Cg2ii | 0.99 | 2.75 | 3.720 (3) | 167 |
C17B—H17C···Cg8iii | 0.99 | 2.68 | 3.663 (6) | 170 |
C17B—17D···Cg7iii | 0.99 | 2.64 | 3.538 (1) | 149 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C19H23NOS |
Mr | 313.44 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 110 |
a, b, c (Å) | 7.7215 (4), 15.3729 (10), 27.9274 (16) |
β (°) | 95.401 (6) |
V (Å3) | 3300.3 (3) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 1.74 |
Crystal size (mm) | 0.51 × 0.42 × 0.14 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.432, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14666, 6565, 5490 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.153, 1.05 |
No. of reflections | 6565 |
No. of parameters | 403 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.56 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cg1, Cg2, Cg7 and Cg8 are the centroids of the C1A—C6A, C8A—C13A, C1B–C6B and C8B—C13B rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···N1A | 0.84 | 1.86 | 2.693 (2) | 169.9 |
O1B—H1B···N1B | 0.84 | 1.84 | 2.679 (2) | 174.1 |
C4A—H4AA···O1B | 0.95 | 2.51 | 3.253 (2) | 134.7 |
C3A—H3AA···Cg7i | 0.95 | 2.74 | 3.526 (6) | 140 |
C17A—H17A···Cg1ii | 0.99 | 2.67 | 3.537 (7) | 147 |
C17A—H17B···Cg2ii | 0.99 | 2.75 | 3.720 (3) | 167 |
C17B—H17C···Cg8iii | 0.99 | 2.68 | 3.663 (6) | 170 |
C17B—17D···Cg7iii | 0.99 | 2.64 | 3.538 (1) | 149 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) x−1, y, z. |
Acknowledgements
QNMHA thanks the University of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (Grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Bandoli, G. & Nicolini, M. (1982). J. Chem. Crystallogr. 12, 425–447. CAS Google Scholar
Becke, A. D. (1988). Phys. Rev. A, 38, 3098–100. CrossRef CAS PubMed Web of Science Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 777–780. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Frisch, M. J. et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Hehre, W.J., Random, L., Schleyer, P. R. & Pople, J.A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley. Google Scholar
Ieawsuwan, W., Bru Roig, M. & Bolte, M. (2006). Acta Cryst. E62, o1478–o1479. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ikuo, U., Yoshinari, S., Shizuo, M. & Suminori, U. (1978). Chem. Pharm. Bull. 26, 3058–3070. PubMed Google Scholar
Kolehmainen, E., Laihia, K., Valkonen, A., Sievänen, E., Nissinen, M., Rudorf, W.-D., Loos, D., Perjéssy, A., Samaliková, M., Susteková, Z., Florea, S. & Wybraziec, J. (2007). J. Mol. Struct. 839, 94–98. Web of Science CSD CrossRef CAS Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Linden, A., Furegati, M. & Rippert, A. J. (2004). Acta Cryst. C60, o223–o225. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Portalone, G., Colapietro, M., Bindya, S., Ashok, M. A. & Yathirajan, H. S. (2007). Acta Cryst. E63, o746–o747. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rajsner, M., Protiva, M. & Metysová, J. (1971). Czech. Pat. Appl. CS 143737. Google Scholar
Rajsner, M., Svatek, E., Seidlová, V., Adlerová, E. & Protiva, M. (1969). Coll. Czech. Chem. Commun. 34, 1278. Google Scholar
Rooks, W. H. II, Tomolonis, A. J., Maloney, P. J., Roszkowski, A. & Wallach, M. B. (1980). Inflamm. Res. 10, 266–273. CAS Google Scholar
Roszak, A. W., Williams, V. E. & Lemieux, R. P. (1996). Acta Cryst. C52, 3190–3193. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rudorf, W. D., Baumeister, U., Florea, S., Nicolae, A. & Maior, O. (1999). Monatch. Chem. 130, 1475–1480. CrossRef CAS Google Scholar
Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493. Google Scholar
Truce, W. E. & Emrick, D. D. (1956). J. Am. Chem. Soc. 78, 6130–6137. CrossRef CAS Web of Science Google Scholar
Uchida, S., Honda, F., Otsuka, M., Satoh, Y., Mori, J., Ono, T. & Hitomi, M. (1979). Arzneimittelforschung, 29, 1588–1594. CAS PubMed Web of Science Google Scholar
Wyatt, P., Hudson, A., Charmant, J., Orpen, A. G. & Phetmung, H. (2006). Org. Biomol. Chem. 4, 2218–2232. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yoshinari, N. & Konno, T. (2009). Acta Cryst. E65, o774. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008a). Acta Cryst. E64, o1304. Google Scholar
Zhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008). Acta Cryst. E64, o1027. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (I), C19H23NOS, is a derivative of 6,11-dihydrodibenzo[b,e]thiepin-11-one, which is used as an intermediate for the synthesis of dosulepin, an antidepressant of the tricyclic family. The dibenzo[c,e]thiepine derivatives (Truce et al., 1956) exhibit remarkable chiroptical properties (Tomascovic et al., 2000). The anti-inflammatory and analgesic profile of 6,11-dihydrodibenzo[b,e]thiepin-11-one-3-acetic acid (Tiopinac) is reported (Rooks II et al., 1980). Dibenzo[b,e]thiepin-5,5-dioxide derivatives are known to possess antihistaminic and antiallergenic activities (Rajsner et al., 1971). In addition, by aminoalkylation of 6,11-dihydrodibenzo[b,e]thiepin-5,5-dioxide and the corresponding 11-ketone, compounds with neurotropic and psychotropic activities have been reported (Rajsner et al., 1969). Also, the comparative NMR and IR spectral, X-ray structural and theoretical studies of eight 6-arylidenedibenzo[b,e]thiepin-11-one-5,5-dioxides have been reported (Kolehmainen et al., 2007). A pharmacological study of [2-chloro-11-(2-dimethylaminoethoxy)dibenzo(b,f)thiepine] (zotepine), and a new neuroleptic drug are also reported (Uchida et al., 1979). In addition, the synthesis and chemistry of enantiomerically pure 10,11-dihydrobenzo[b,f]thiepines (Wyatt et al., 2006) and the synthesis and pharmacological properties of 8-chloro-10-(2-dimethylaminoethoxy) dibenzo[b,f]thiepine and related compounds have been reported (Ikuo et al., 1978). In view of the importance of thiepines, this paper reports the crystal structure of the title compound, C19H23NOS, (I).
The title compound, C19H23NOS, (I), crystallizes with two independent molecules (A, Fig. 1 & B, Fig. 2) in the asymmetric unit. The seven-membered thiepine ring is bent into a slightly twisted V-shaped arrangement with sp3 hybridized atoms at C7(A & B), C14(A & B)and S1(A & B). The dihedral angles between the mean planes of the two benzene rings fused to the thiepine ring are 75.7 (5)° (A) and 73.8 (4)° (B), respectively. An intramolecular O—H···N hydrogen bond exists between the hydroxy group and the N atom from the (dimethylamino)propyl group both bonded to the C14 atom of the thiepine ring (O1A—H1A···N1A & O1B—H1B···N1; Table 1). While no classical intermolecular hydrogen bonds are present, weak C–H···O and C–H···π-ring intermolecular interactions are observed which contribute to the stability of crystal packing (Fig.3, Table 1,2).
Following a geometry optimization density functional theory calculation (Schmidt & Polik 2007) at the B3LYP 6–31-G(d) level (Becke, 1988, 1993; Lee et al. 1988; Hehre et al. 1986) with the Gaussian03 program package (Frisch at al. 2004) the angle between the mean planes of the two benzene rings changes to 73.4 (4)°, a difference of -2.32° (A) and + 0.40° (B), respectively. These results support the collective effects of the intra and intermolecular hydrogen bonding described above slightly influencing crystal packing.