organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o178-o179

N′-[(E)-2,6-Di­chloro­benzyl­­idene]pyrazine-2-carbohydrazide

aDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB15 5NY, Scotland, bFundação Oswaldo Cruz, Instituto de Tecnologia em Farmacos - FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 December 2009; accepted 10 December 2009; online 16 December 2009)

The title compound, C12H8Cl2N4O, is non-planar, the dihedral angle formed between the pendant pyrazine and benzene rings being 12.55 (11)°. An intra­molecular N—H⋯N hydrogen bond occurs. The amide groups self-associate via N—H⋯O hydrogen bonding, forming supra­molecular chains with base vector [101], which are stabilized by C—H⋯O contacts. C—H⋯N inter­actions are formed orthogonal to the chains.

Related literature

For background to the biological activity of pyrazine derivatives, see: Barlin (1982[Barlin, G. B. (1982). In Chemistry of Heterocyclic Compounds;, Vol. 41. New York: John Wiley and Sons.]); Dolezal et al. (2002[Dolezal, M., Miroslav Miletin, M., Kunes, J. & Kralova, K. (2002). Molecules, 7, 363-373.]); Krinkova et al. (2002[Krinkova, J., Dolezal, M., Hartl, J. V., Buchta, V. & Pour, M. (2002). Il Farmaco, 57, 71-78.]); Özdemir et al. (2009[Özdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enz. Inhib. Med. Chem. 24, 825-831.]); Chaisson et al. (2002[Chaisson, R. E., Armstrong, J., Stafford, J., Golub, J. & Bur, S. (2002). J. Am. Med. Assoc. 288, 165-166.]); Gordin et al. (2000[Gordin, F., Chaisson, R. E., Matts, J. P., Miller, C., Garcia, M. de L., Hafner, R., Valdespino, J. L., Coberly, J., Schechter, M., Klukowicz, A. J., Barry, M. A. & O'Brien, R. J. (2000). J. Am. Med. Assoc. 283, 1445-1450.]); de Souza et al. (2005[Souza, M. V. N. de (2005). Mini Rev. Med. Chem. 5, 1009-1017.]). For related structures, see: Wardell et al. (2008[Wardell, S. M. S. V., de Souza, M. V. N., Vasconcelos, T. R. A., Ferreira, M. L., Wardell, J. L., Low, J. N. & Glidewell, C. (2008). Acta Cryst. B64, 84-100.]); Baddeley et al. (2009[Baddeley, T. C., Howie, R. A., Lima, C. H. da S., Kaiser, C. R., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 506-514.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8Cl2N4O

  • Mr = 295.12

  • Monoclinic, P 21 /n

  • a = 6.9325 (3) Å

  • b = 24.5997 (13) Å

  • c = 7.6136 (4) Å

  • β = 111.709 (3)°

  • V = 1206.31 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 120 K

  • 0.26 × 0.08 × 0.02 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.760, Tmax = 1.000

  • 8211 measured reflections

  • 2108 independent reflections

  • 1858 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.112

  • S = 1.14

  • 2108 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯O1i 0.88 2.26 3.003 (3) 142
N3—H3n⋯N2 0.88 2.41 2.746 (4) 103
C6—H6⋯O1i 0.95 2.43 3.214 (4) 140
C10—H10⋯N1ii 0.95 2.53 3.448 (4) 162
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Pyrazine derivatives have various biological activities (Barlin, 1982; Dolezal et al., 2002; Krinkova et al., 2002; Özdemir et al., 2009; Chaisson, et al., 2002; Gordin et al., 2000; de Souza et al., 2005). We have studied the structures of N-arylpyrazinecarboxamides (Wardell et al., 2008) and (pyrazinecarbonyl)hydrazones derived from mono-substituted-benzaldehydes (Baddeley et al., 2009). We now report the structure of the title compound, (I).

The molecular structure of (I), Fig. 1, features a planar central C5–N3–N4–C6 core (torsion angle = 176.7 (3)°), but twists are evident in the molecule as evidenced in the O1–C5–C1–N2 and N4–C6–C7–C8 torsion angles of 155.9 (3) and -163.6 (3) °, respectively. This is reflected in the dihedral angle of 12.55 (11) ° formed between the pendant pyrazine and benzene rings. The most prominent intermolecular interactions in the crystal structure involve the amide functionality so that a supramolecular chain mediated by N3–H···O1i [see Table 1 for symmetry codes] interactions is formed, Fig. 2 and Table 1. The chain is stabilized by C6–H···O1i contacts and has base vector [1 0 1]. Interactions of the type C10–H···N1ii are formed orthogonal to the chains formed via hydrogen bonding, Table 1. Globally, the molecules pack into layers, in the ac plane, and stack along the b direction via the hydrogen bonding as well π···π interactions [the ring centroid(N1, N2, C1–C4)···ring centroid(C7–C12)iii distance is 3.630 (2) Å with a dihedral angle of 3.28 (17)° for symmetry operation iii: 1/2 + x, 1/2 - y, -1/2 + z], Fig. 3.

Related literature top

For background to the biological activity of pyrazine derivatives, see: Barlin (1982); Dolezal et al. (2002); Krinkova et al. (2002); Özdemir et al. (2009); Chaisson et al. (2002); Gordin et al. (2000); de Souza et al. (2005). For related structures, see: Wardell et al. (2008); Baddeley et al. (2009).

Experimental top

Solutions of 2-[H2NN(H)C(=O)]-pyrazine (0.10 mg, 0.72 mmol) in water (10 ml) and 2,6-dichlorobenzaldehyde (0.125 mg, 0.79 mmol) in ethanol (10 ml) were mixed and the reaction mixture was stirred at ambient temperature until TLC indicated reaction was complete. The solvent was removed under reduced pressure and the residue was washed with cold diethyl ether (30 ml) and recrystallized from ethanol, yield 70%, m.p. 467–469 K. The crystal used in the X-ray structure determination was grown from EtOH solution. 1H NMR (400 MHz, DMSO-d6) δ: 12.66 (1H, s, NH), 9.28 (1H, s), 8.95 (1H, s, H6), 8.87 (1H, s, N=CH), 8.81 (1H, s), 7.58 (2H, d, J = 8.0 Hz), 7.47 (1H, t, J = 8.0 Hz) p.p.m.. 13C NMR (100 MHz, DMSO-d6) δ: 159.8, 147.9, 145.2, 144.5, 143.3, 134.0, 131.4, 130.6, 129.0 p.p.m.. MS/ESI: [M + Na] 317. IR (KBr, cm-1) ν: 3240 (N—H); 1675 (C=O).

Refinement top

The N– and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(N, C). Owing to a large disparity between Fo and Fc, the 2 0 0 reflection was omitted in the final cycles of the refinement.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) mediated by N–H···O hydrogen bonding (orange dashed lines). Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view of the global crystal packing in (I) with N–H···O hydrogen bonding and C–H···N contacts shown as orange and blue dashed lines, respectively. Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
N'-[(E)-2,6-Dichlorobenzylidene]pyrazine-2-carbohydrazide top
Crystal data top
C12H8Cl2N4OF(000) = 600
Mr = 295.12Dx = 1.625 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11372 reflections
a = 6.9325 (3) Åθ = 2.9–27.5°
b = 24.5997 (13) ŵ = 0.53 mm1
c = 7.6136 (4) ÅT = 120 K
β = 111.709 (3)°Plate, colourless
V = 1206.31 (10) Å30.26 × 0.08 × 0.02 mm
Z = 4
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
2108 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1858 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.052
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2929
Tmin = 0.760, Tmax = 1.000l = 98
8211 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0128P)2 + 2.8931P]
where P = (Fo2 + 2Fc2)/3
2108 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C12H8Cl2N4OV = 1206.31 (10) Å3
Mr = 295.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9325 (3) ŵ = 0.53 mm1
b = 24.5997 (13) ÅT = 120 K
c = 7.6136 (4) Å0.26 × 0.08 × 0.02 mm
β = 111.709 (3)°
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
2108 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1858 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 1.000Rint = 0.052
8211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.14Δρmax = 0.40 e Å3
2108 reflectionsΔρmin = 0.34 e Å3
172 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21383 (14)0.04241 (3)0.00147 (12)0.0280 (2)
Cl20.35539 (13)0.19347 (3)0.56395 (11)0.0216 (2)
O10.4468 (3)0.31301 (9)0.2140 (3)0.0211 (5)
N10.2594 (4)0.41462 (11)0.2597 (4)0.0229 (6)
N20.2914 (4)0.30126 (11)0.2806 (4)0.0174 (6)
N30.2987 (4)0.24065 (10)0.0247 (4)0.0169 (6)
H3N0.23810.22840.09150.020*
N40.3326 (4)0.20678 (11)0.1769 (4)0.0177 (6)
C10.3138 (4)0.32651 (13)0.1186 (4)0.0157 (7)
C20.2997 (5)0.38272 (13)0.1084 (5)0.0195 (7)
H20.31950.39900.01020.023*
C30.2393 (5)0.38910 (14)0.4200 (5)0.0216 (7)
H30.21270.41010.53120.026*
C40.2556 (5)0.33325 (13)0.4310 (4)0.0202 (7)
H40.24090.31720.54880.024*
C50.3600 (5)0.29311 (12)0.0566 (4)0.0150 (6)
C60.2611 (5)0.15869 (13)0.1347 (4)0.0171 (7)
H60.19450.14920.00530.020*
C70.2784 (5)0.11748 (13)0.2801 (4)0.0170 (7)
C80.2472 (5)0.06223 (14)0.2280 (4)0.0191 (7)
C90.2446 (5)0.02134 (14)0.3508 (5)0.0231 (7)
H90.22120.01530.30840.028*
C100.2764 (5)0.03408 (14)0.5368 (5)0.0243 (8)
H100.27430.00630.62270.029*
C110.3110 (5)0.08741 (13)0.5960 (5)0.0198 (7)
H110.33300.09630.72340.024*
C120.3142 (5)0.12832 (13)0.4710 (5)0.0184 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0433 (5)0.0230 (5)0.0214 (5)0.0088 (4)0.0162 (4)0.0058 (3)
Cl20.0286 (5)0.0192 (4)0.0173 (4)0.0039 (3)0.0090 (3)0.0028 (3)
O10.0247 (12)0.0195 (12)0.0159 (12)0.0036 (10)0.0038 (10)0.0034 (9)
N10.0225 (15)0.0208 (15)0.0239 (15)0.0005 (12)0.0067 (12)0.0021 (12)
N20.0185 (14)0.0170 (14)0.0149 (13)0.0019 (11)0.0042 (11)0.0015 (11)
N30.0214 (14)0.0165 (14)0.0110 (13)0.0020 (11)0.0036 (11)0.0011 (10)
N40.0210 (14)0.0170 (14)0.0150 (14)0.0006 (11)0.0066 (12)0.0035 (11)
C10.0103 (15)0.0203 (17)0.0128 (16)0.0043 (13)0.0002 (12)0.0008 (12)
C20.0185 (16)0.0174 (16)0.0199 (17)0.0018 (13)0.0038 (14)0.0000 (13)
C30.0198 (17)0.0225 (18)0.0193 (17)0.0004 (14)0.0036 (14)0.0046 (14)
C40.0231 (17)0.0234 (18)0.0149 (16)0.0020 (14)0.0081 (14)0.0027 (13)
C50.0150 (15)0.0174 (16)0.0120 (15)0.0017 (13)0.0044 (13)0.0008 (12)
C60.0174 (16)0.0203 (17)0.0106 (15)0.0001 (13)0.0018 (13)0.0020 (13)
C70.0133 (15)0.0187 (16)0.0188 (16)0.0006 (13)0.0056 (13)0.0026 (13)
C80.0196 (17)0.0232 (17)0.0161 (17)0.0002 (14)0.0084 (14)0.0017 (13)
C90.0242 (18)0.0173 (17)0.0285 (19)0.0007 (14)0.0105 (15)0.0000 (14)
C100.0274 (18)0.0228 (19)0.0230 (18)0.0030 (15)0.0098 (15)0.0081 (14)
C110.0199 (17)0.0233 (18)0.0174 (16)0.0016 (14)0.0084 (14)0.0042 (13)
C120.0154 (15)0.0182 (17)0.0211 (17)0.0012 (13)0.0060 (14)0.0013 (13)
Geometric parameters (Å, º) top
Cl1—C81.745 (3)C3—C41.384 (5)
Cl2—C121.732 (3)C3—H30.9500
O1—C51.227 (4)C4—H40.9500
N1—C31.333 (4)C6—C71.473 (4)
N1—C21.335 (4)C6—H60.9500
N2—C41.335 (4)C7—C121.407 (4)
N2—C11.338 (4)C7—C81.410 (5)
N3—C51.352 (4)C8—C91.378 (5)
N3—N41.375 (3)C9—C101.386 (5)
N3—H3N0.8800C9—H90.9500
N4—C61.277 (4)C10—C111.379 (5)
C1—C21.390 (4)C10—H100.9500
C1—C51.497 (4)C11—C121.391 (4)
C2—H20.9500C11—H110.9500
C3—N1—C2115.5 (3)N4—C6—C7122.2 (3)
C4—N2—C1116.0 (3)N4—C6—H6118.9
C5—N3—N4118.8 (3)C7—C6—H6118.9
C5—N3—H3N120.6C12—C7—C8115.0 (3)
N4—N3—H3N120.6C12—C7—C6125.5 (3)
C6—N4—N3114.8 (3)C8—C7—C6119.4 (3)
N2—C1—C2121.8 (3)C9—C8—C7123.5 (3)
N2—C1—C5118.7 (3)C9—C8—Cl1116.4 (3)
C2—C1—C5119.5 (3)C7—C8—Cl1120.0 (2)
N1—C2—C1122.2 (3)C8—C9—C10119.4 (3)
N1—C2—H2118.9C8—C9—H9120.3
C1—C2—H2118.9C10—C9—H9120.3
N1—C3—C4122.7 (3)C11—C10—C9119.5 (3)
N1—C3—H3118.7C11—C10—H10120.3
C4—C3—H3118.7C9—C10—H10120.3
N2—C4—C3121.8 (3)C10—C11—C12120.6 (3)
N2—C4—H4119.1C10—C11—H11119.7
C3—C4—H4119.1C12—C11—H11119.7
O1—C5—N3124.4 (3)C11—C12—C7121.9 (3)
O1—C5—C1121.2 (3)C11—C12—Cl2115.6 (2)
N3—C5—C1114.5 (3)C7—C12—Cl2122.5 (2)
C5—N3—N4—C6176.7 (3)N4—C6—C7—C1219.9 (5)
C4—N2—C1—C20.2 (4)N4—C6—C7—C8163.6 (3)
C4—N2—C1—C5178.4 (3)C12—C7—C8—C92.0 (5)
C3—N1—C2—C11.8 (5)C6—C7—C8—C9174.9 (3)
N2—C1—C2—N11.3 (5)C12—C7—C8—Cl1176.8 (2)
C5—C1—C2—N1179.9 (3)C6—C7—C8—Cl16.3 (4)
C2—N1—C3—C41.0 (5)C7—C8—C9—C100.8 (5)
C1—N2—C4—C31.1 (4)Cl1—C8—C9—C10178.1 (3)
N1—C3—C4—N20.5 (5)C8—C9—C10—C110.3 (5)
N4—N3—C5—O10.7 (5)C9—C10—C11—C120.0 (5)
N4—N3—C5—C1179.4 (3)C10—C11—C12—C71.3 (5)
N2—C1—C5—O1155.9 (3)C10—C11—C12—Cl2179.0 (3)
C2—C1—C5—O122.7 (4)C8—C7—C12—C112.2 (4)
N2—C1—C5—N324.0 (4)C6—C7—C12—C11174.4 (3)
C2—C1—C5—N3157.4 (3)C8—C7—C12—Cl2179.8 (2)
N3—N4—C6—C7178.3 (3)C6—C7—C12—Cl23.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···O1i0.882.263.003 (3)142
N3—H3n···N20.882.412.746 (4)103
C6—H6···O1i0.952.433.214 (4)140
C10—H10···N1ii0.952.533.448 (4)162
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H8Cl2N4O
Mr295.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)6.9325 (3), 24.5997 (13), 7.6136 (4)
β (°) 111.709 (3)
V3)1206.31 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.26 × 0.08 × 0.02
Data collection
DiffractometerEnraf–Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.760, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8211, 2108, 1858
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.112, 1.14
No. of reflections2108
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.34

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···O1i0.882.263.003 (3)142
N3—H3n···N20.882.412.746 (4)103
C6—H6···O1i0.952.433.214 (4)140
C10—H10···N1ii0.952.533.448 (4)162
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBaddeley, T. C., Howie, R. A., Lima, C. H. da S., Kaiser, C. R., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 506–514.  Web of Science CrossRef CAS Google Scholar
First citationBarlin, G. B. (1982). In Chemistry of Heterocyclic Compounds;, Vol. 41. New York: John Wiley and Sons.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChaisson, R. E., Armstrong, J., Stafford, J., Golub, J. & Bur, S. (2002). J. Am. Med. Assoc. 288, 165–166.  Web of Science CrossRef Google Scholar
First citationDolezal, M., Miroslav Miletin, M., Kunes, J. & Kralova, K. (2002). Molecules, 7, 363–373.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGordin, F., Chaisson, R. E., Matts, J. P., Miller, C., Garcia, M. de L., Hafner, R., Valdespino, J. L., Coberly, J., Schechter, M., Klukowicz, A. J., Barry, M. A. & O'Brien, R. J. (2000). J. Am. Med. Assoc. 283, 1445–1450.  Web of Science CrossRef CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKrinkova, J., Dolezal, M., Hartl, J. V., Buchta, V. & Pour, M. (2002). Il Farmaco, 57, 71–78.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enz. Inhib. Med. Chem. 24, 825–831.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de (2005). Mini Rev. Med. Chem. 5, 1009–1017.  Web of Science PubMed Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Vasconcelos, T. R. A., Ferreira, M. L., Wardell, J. L., Low, J. N. & Glidewell, C. (2008). Acta Cryst. B64, 84–100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o178-o179
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds