organic compounds
N′-[(E)-2,6-Dichlorobenzylidene]pyrazine-2-carbohydrazide
aDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB15 5NY, Scotland, bFundação Oswaldo Cruz, Instituto de Tecnologia em Farmacos - FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The title compound, C12H8Cl2N4O, is non-planar, the dihedral angle formed between the pendant pyrazine and benzene rings being 12.55 (11)°. An intramolecular N—H⋯N hydrogen bond occurs. The amide groups self-associate via N—H⋯O hydrogen bonding, forming supramolecular chains with base vector [101], which are stabilized by C—H⋯O contacts. C—H⋯N interactions are formed orthogonal to the chains.
Related literature
For background to the biological activity of pyrazine derivatives, see: Barlin (1982); Dolezal et al. (2002); Krinkova et al. (2002); Özdemir et al. (2009); Chaisson et al. (2002); Gordin et al. (2000); de Souza et al. (2005). For related structures, see: Wardell et al. (2008); Baddeley et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809053343/lh2969sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809053343/lh2969Isup2.hkl
Solutions of 2-[H2NN(H)C(=O)]-pyrazine (0.10 mg, 0.72 mmol) in water (10 ml) and 2,6-dichlorobenzaldehyde (0.125 mg, 0.79 mmol) in ethanol (10 ml) were mixed and the reaction mixture was stirred at ambient temperature until TLC indicated reaction was complete. The solvent was removed under reduced pressure and the residue was washed with cold diethyl ether (30 ml) and recrystallized from ethanol, yield 70%, m.p. 467–469 K. The crystal used in the X-ray δ: 12.66 (1H, s, NH), 9.28 (1H, s), 8.95 (1H, s, H6), 8.87 (1H, s, N=CH), 8.81 (1H, s), 7.58 (2H, d, J = 8.0 Hz), 7.47 (1H, t, J = 8.0 Hz) p.p.m.. 13C NMR (100 MHz, DMSO-d6) δ: 159.8, 147.9, 145.2, 144.5, 143.3, 134.0, 131.4, 130.6, 129.0 p.p.m.. MS/ESI: [M + Na] 317. IR (KBr, cm-1) ν: 3240 (N—H); 1675 (C=O).
was grown from EtOH solution. 1H NMR (400 MHz, DMSO-d6)The N– and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(N, C). Owing to a large disparity between Fo and Fc, the 2 0 0 reflection was omitted in the final cycles of the refinement.
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).C12H8Cl2N4O | F(000) = 600 |
Mr = 295.12 | Dx = 1.625 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 11372 reflections |
a = 6.9325 (3) Å | θ = 2.9–27.5° |
b = 24.5997 (13) Å | µ = 0.53 mm−1 |
c = 7.6136 (4) Å | T = 120 K |
β = 111.709 (3)° | Plate, colourless |
V = 1206.31 (10) Å3 | 0.26 × 0.08 × 0.02 mm |
Z = 4 |
Enraf–Nonius KappaCCD area-detector diffractometer | 2108 independent reflections |
Radiation source: Enraf Nonius FR591 rotating anode | 1858 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.052 |
Detector resolution: 9.091 pixels mm-1 | θmax = 25.0°, θmin = 3.0° |
ϕ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −29→29 |
Tmin = 0.760, Tmax = 1.000 | l = −9→8 |
8211 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0128P)2 + 2.8931P] where P = (Fo2 + 2Fc2)/3 |
2108 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C12H8Cl2N4O | V = 1206.31 (10) Å3 |
Mr = 295.12 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.9325 (3) Å | µ = 0.53 mm−1 |
b = 24.5997 (13) Å | T = 120 K |
c = 7.6136 (4) Å | 0.26 × 0.08 × 0.02 mm |
β = 111.709 (3)° |
Enraf–Nonius KappaCCD area-detector diffractometer | 2108 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 1858 reflections with I > 2σ(I) |
Tmin = 0.760, Tmax = 1.000 | Rint = 0.052 |
8211 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.40 e Å−3 |
2108 reflections | Δρmin = −0.34 e Å−3 |
172 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.21383 (14) | 0.04241 (3) | −0.00147 (12) | 0.0280 (2) | |
Cl2 | 0.35539 (13) | 0.19347 (3) | 0.56395 (11) | 0.0216 (2) | |
O1 | 0.4468 (3) | 0.31301 (9) | 0.2140 (3) | 0.0211 (5) | |
N1 | 0.2594 (4) | 0.41462 (11) | −0.2597 (4) | 0.0229 (6) | |
N2 | 0.2914 (4) | 0.30126 (11) | −0.2806 (4) | 0.0174 (6) | |
N3 | 0.2987 (4) | 0.24065 (10) | 0.0247 (4) | 0.0169 (6) | |
H3N | 0.2381 | 0.2284 | −0.0915 | 0.020* | |
N4 | 0.3326 (4) | 0.20678 (11) | 0.1769 (4) | 0.0177 (6) | |
C1 | 0.3138 (4) | 0.32651 (13) | −0.1186 (4) | 0.0157 (7) | |
C2 | 0.2997 (5) | 0.38272 (13) | −0.1084 (5) | 0.0195 (7) | |
H2 | 0.3195 | 0.3990 | 0.0102 | 0.023* | |
C3 | 0.2393 (5) | 0.38910 (14) | −0.4200 (5) | 0.0216 (7) | |
H3 | 0.2127 | 0.4101 | −0.5312 | 0.026* | |
C4 | 0.2556 (5) | 0.33325 (13) | −0.4310 (4) | 0.0202 (7) | |
H4 | 0.2409 | 0.3172 | −0.5488 | 0.024* | |
C5 | 0.3600 (5) | 0.29311 (12) | 0.0566 (4) | 0.0150 (6) | |
C6 | 0.2611 (5) | 0.15869 (13) | 0.1347 (4) | 0.0171 (7) | |
H6 | 0.1945 | 0.1492 | 0.0053 | 0.020* | |
C7 | 0.2784 (5) | 0.11748 (13) | 0.2801 (4) | 0.0170 (7) | |
C8 | 0.2472 (5) | 0.06223 (14) | 0.2280 (4) | 0.0191 (7) | |
C9 | 0.2446 (5) | 0.02134 (14) | 0.3508 (5) | 0.0231 (7) | |
H9 | 0.2212 | −0.0153 | 0.3084 | 0.028* | |
C10 | 0.2764 (5) | 0.03408 (14) | 0.5368 (5) | 0.0243 (8) | |
H10 | 0.2743 | 0.0063 | 0.6227 | 0.029* | |
C11 | 0.3110 (5) | 0.08741 (13) | 0.5960 (5) | 0.0198 (7) | |
H11 | 0.3330 | 0.0963 | 0.7234 | 0.024* | |
C12 | 0.3142 (5) | 0.12832 (13) | 0.4710 (5) | 0.0184 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0433 (5) | 0.0230 (5) | 0.0214 (5) | −0.0088 (4) | 0.0162 (4) | −0.0058 (3) |
Cl2 | 0.0286 (5) | 0.0192 (4) | 0.0173 (4) | −0.0039 (3) | 0.0090 (3) | −0.0028 (3) |
O1 | 0.0247 (12) | 0.0195 (12) | 0.0159 (12) | −0.0036 (10) | 0.0038 (10) | −0.0034 (9) |
N1 | 0.0225 (15) | 0.0208 (15) | 0.0239 (15) | −0.0005 (12) | 0.0067 (12) | 0.0021 (12) |
N2 | 0.0185 (14) | 0.0170 (14) | 0.0149 (13) | −0.0019 (11) | 0.0042 (11) | −0.0015 (11) |
N3 | 0.0214 (14) | 0.0165 (14) | 0.0110 (13) | −0.0020 (11) | 0.0036 (11) | 0.0011 (10) |
N4 | 0.0210 (14) | 0.0170 (14) | 0.0150 (14) | 0.0006 (11) | 0.0066 (12) | 0.0035 (11) |
C1 | 0.0103 (15) | 0.0203 (17) | 0.0128 (16) | −0.0043 (13) | −0.0002 (12) | −0.0008 (12) |
C2 | 0.0185 (16) | 0.0174 (16) | 0.0199 (17) | 0.0018 (13) | 0.0038 (14) | 0.0000 (13) |
C3 | 0.0198 (17) | 0.0225 (18) | 0.0193 (17) | −0.0004 (14) | 0.0036 (14) | 0.0046 (14) |
C4 | 0.0231 (17) | 0.0234 (18) | 0.0149 (16) | −0.0020 (14) | 0.0081 (14) | −0.0027 (13) |
C5 | 0.0150 (15) | 0.0174 (16) | 0.0120 (15) | 0.0017 (13) | 0.0044 (13) | 0.0008 (12) |
C6 | 0.0174 (16) | 0.0203 (17) | 0.0106 (15) | 0.0001 (13) | 0.0018 (13) | 0.0020 (13) |
C7 | 0.0133 (15) | 0.0187 (16) | 0.0188 (16) | 0.0006 (13) | 0.0056 (13) | 0.0026 (13) |
C8 | 0.0196 (17) | 0.0232 (17) | 0.0161 (17) | −0.0002 (14) | 0.0084 (14) | 0.0017 (13) |
C9 | 0.0242 (18) | 0.0173 (17) | 0.0285 (19) | 0.0007 (14) | 0.0105 (15) | 0.0000 (14) |
C10 | 0.0274 (18) | 0.0228 (19) | 0.0230 (18) | 0.0030 (15) | 0.0098 (15) | 0.0081 (14) |
C11 | 0.0199 (17) | 0.0233 (18) | 0.0174 (16) | 0.0016 (14) | 0.0084 (14) | 0.0042 (13) |
C12 | 0.0154 (15) | 0.0182 (17) | 0.0211 (17) | −0.0012 (13) | 0.0060 (14) | −0.0013 (13) |
Cl1—C8 | 1.745 (3) | C3—C4 | 1.384 (5) |
Cl2—C12 | 1.732 (3) | C3—H3 | 0.9500 |
O1—C5 | 1.227 (4) | C4—H4 | 0.9500 |
N1—C3 | 1.333 (4) | C6—C7 | 1.473 (4) |
N1—C2 | 1.335 (4) | C6—H6 | 0.9500 |
N2—C4 | 1.335 (4) | C7—C12 | 1.407 (4) |
N2—C1 | 1.338 (4) | C7—C8 | 1.410 (5) |
N3—C5 | 1.352 (4) | C8—C9 | 1.378 (5) |
N3—N4 | 1.375 (3) | C9—C10 | 1.386 (5) |
N3—H3N | 0.8800 | C9—H9 | 0.9500 |
N4—C6 | 1.277 (4) | C10—C11 | 1.379 (5) |
C1—C2 | 1.390 (4) | C10—H10 | 0.9500 |
C1—C5 | 1.497 (4) | C11—C12 | 1.391 (4) |
C2—H2 | 0.9500 | C11—H11 | 0.9500 |
C3—N1—C2 | 115.5 (3) | N4—C6—C7 | 122.2 (3) |
C4—N2—C1 | 116.0 (3) | N4—C6—H6 | 118.9 |
C5—N3—N4 | 118.8 (3) | C7—C6—H6 | 118.9 |
C5—N3—H3N | 120.6 | C12—C7—C8 | 115.0 (3) |
N4—N3—H3N | 120.6 | C12—C7—C6 | 125.5 (3) |
C6—N4—N3 | 114.8 (3) | C8—C7—C6 | 119.4 (3) |
N2—C1—C2 | 121.8 (3) | C9—C8—C7 | 123.5 (3) |
N2—C1—C5 | 118.7 (3) | C9—C8—Cl1 | 116.4 (3) |
C2—C1—C5 | 119.5 (3) | C7—C8—Cl1 | 120.0 (2) |
N1—C2—C1 | 122.2 (3) | C8—C9—C10 | 119.4 (3) |
N1—C2—H2 | 118.9 | C8—C9—H9 | 120.3 |
C1—C2—H2 | 118.9 | C10—C9—H9 | 120.3 |
N1—C3—C4 | 122.7 (3) | C11—C10—C9 | 119.5 (3) |
N1—C3—H3 | 118.7 | C11—C10—H10 | 120.3 |
C4—C3—H3 | 118.7 | C9—C10—H10 | 120.3 |
N2—C4—C3 | 121.8 (3) | C10—C11—C12 | 120.6 (3) |
N2—C4—H4 | 119.1 | C10—C11—H11 | 119.7 |
C3—C4—H4 | 119.1 | C12—C11—H11 | 119.7 |
O1—C5—N3 | 124.4 (3) | C11—C12—C7 | 121.9 (3) |
O1—C5—C1 | 121.2 (3) | C11—C12—Cl2 | 115.6 (2) |
N3—C5—C1 | 114.5 (3) | C7—C12—Cl2 | 122.5 (2) |
C5—N3—N4—C6 | 176.7 (3) | N4—C6—C7—C12 | 19.9 (5) |
C4—N2—C1—C2 | 0.2 (4) | N4—C6—C7—C8 | −163.6 (3) |
C4—N2—C1—C5 | −178.4 (3) | C12—C7—C8—C9 | 2.0 (5) |
C3—N1—C2—C1 | −1.8 (5) | C6—C7—C8—C9 | −174.9 (3) |
N2—C1—C2—N1 | 1.3 (5) | C12—C7—C8—Cl1 | −176.8 (2) |
C5—C1—C2—N1 | 179.9 (3) | C6—C7—C8—Cl1 | 6.3 (4) |
C2—N1—C3—C4 | 1.0 (5) | C7—C8—C9—C10 | −0.8 (5) |
C1—N2—C4—C3 | −1.1 (4) | Cl1—C8—C9—C10 | 178.1 (3) |
N1—C3—C4—N2 | 0.5 (5) | C8—C9—C10—C11 | −0.3 (5) |
N4—N3—C5—O1 | 0.7 (5) | C9—C10—C11—C12 | 0.0 (5) |
N4—N3—C5—C1 | −179.4 (3) | C10—C11—C12—C7 | 1.3 (5) |
N2—C1—C5—O1 | 155.9 (3) | C10—C11—C12—Cl2 | 179.0 (3) |
C2—C1—C5—O1 | −22.7 (4) | C8—C7—C12—C11 | −2.2 (4) |
N2—C1—C5—N3 | −24.0 (4) | C6—C7—C12—C11 | 174.4 (3) |
C2—C1—C5—N3 | 157.4 (3) | C8—C7—C12—Cl2 | −179.8 (2) |
N3—N4—C6—C7 | −178.3 (3) | C6—C7—C12—Cl2 | −3.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3n···O1i | 0.88 | 2.26 | 3.003 (3) | 142 |
N3—H3n···N2 | 0.88 | 2.41 | 2.746 (4) | 103 |
C6—H6···O1i | 0.95 | 2.43 | 3.214 (4) | 140 |
C10—H10···N1ii | 0.95 | 2.53 | 3.448 (4) | 162 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H8Cl2N4O |
Mr | 295.12 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 6.9325 (3), 24.5997 (13), 7.6136 (4) |
β (°) | 111.709 (3) |
V (Å3) | 1206.31 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.53 |
Crystal size (mm) | 0.26 × 0.08 × 0.02 |
Data collection | |
Diffractometer | Enraf–Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.760, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8211, 2108, 1858 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.112, 1.14 |
No. of reflections | 2108 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.34 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3n···O1i | 0.88 | 2.26 | 3.003 (3) | 142 |
N3—H3n···N2 | 0.88 | 2.41 | 2.746 (4) | 103 |
C6—H6···O1i | 0.95 | 2.43 | 3.214 (4) | 140 |
C10—H10···N1ii | 0.95 | 2.53 | 3.448 (4) | 162 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, y−1/2, −z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).
References
Baddeley, T. C., Howie, R. A., Lima, C. H. da S., Kaiser, C. R., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 506–514. Web of Science CrossRef CAS Google Scholar
Barlin, G. B. (1982). In Chemistry of Heterocyclic Compounds;, Vol. 41. New York: John Wiley and Sons. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chaisson, R. E., Armstrong, J., Stafford, J., Golub, J. & Bur, S. (2002). J. Am. Med. Assoc. 288, 165–166. Web of Science CrossRef Google Scholar
Dolezal, M., Miroslav Miletin, M., Kunes, J. & Kralova, K. (2002). Molecules, 7, 363–373. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gordin, F., Chaisson, R. E., Matts, J. P., Miller, C., Garcia, M. de L., Hafner, R., Valdespino, J. L., Coberly, J., Schechter, M., Klukowicz, A. J., Barry, M. A. & O'Brien, R. J. (2000). J. Am. Med. Assoc. 283, 1445–1450. Web of Science CrossRef CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Krinkova, J., Dolezal, M., Hartl, J. V., Buchta, V. & Pour, M. (2002). Il Farmaco, 57, 71–78. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Özdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enz. Inhib. Med. Chem. 24, 825–831. Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Souza, M. V. N. de (2005). Mini Rev. Med. Chem. 5, 1009–1017. Web of Science PubMed Google Scholar
Wardell, S. M. S. V., de Souza, M. V. N., Vasconcelos, T. R. A., Ferreira, M. L., Wardell, J. L., Low, J. N. & Glidewell, C. (2008). Acta Cryst. B64, 84–100. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazine derivatives have various biological activities (Barlin, 1982; Dolezal et al., 2002; Krinkova et al., 2002; Özdemir et al., 2009; Chaisson, et al., 2002; Gordin et al., 2000; de Souza et al., 2005). We have studied the structures of N-arylpyrazinecarboxamides (Wardell et al., 2008) and (pyrazinecarbonyl)hydrazones derived from mono-substituted-benzaldehydes (Baddeley et al., 2009). We now report the structure of the title compound, (I).
The molecular structure of (I), Fig. 1, features a planar central C5–N3–N4–C6 core (torsion angle = 176.7 (3)°), but twists are evident in the molecule as evidenced in the O1–C5–C1–N2 and N4–C6–C7–C8 torsion angles of 155.9 (3) and -163.6 (3) °, respectively. This is reflected in the dihedral angle of 12.55 (11) ° formed between the pendant pyrazine and benzene rings. The most prominent intermolecular interactions in the crystal structure involve the amide functionality so that a supramolecular chain mediated by N3–H···O1i [see Table 1 for symmetry codes] interactions is formed, Fig. 2 and Table 1. The chain is stabilized by C6–H···O1i contacts and has base vector [1 0 1]. Interactions of the type C10–H···N1ii are formed orthogonal to the chains formed via hydrogen bonding, Table 1. Globally, the molecules pack into layers, in the ac plane, and stack along the b direction via the hydrogen bonding as well π···π interactions [the ring centroid(N1, N2, C1–C4)···ring centroid(C7–C12)iii distance is 3.630 (2) Å with a dihedral angle of 3.28 (17)° for symmetry operation iii: 1/2 + x, 1/2 - y, -1/2 + z], Fig. 3.