organic compounds
7-Chloro-4-[(E)-N′-(4-fluorobenzylidene)hydrazinyl]quinoline monohydrate
aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com
The molecule of the title hydrate, C16H11ClFN3·H2O, is slightly twisted, as indicated by the dihedral angle of 9.55 (10)° formed between the quinoline ring system and the benzene ring. The conformation about the C=N double bond is E, and the amine-H atom is oriented towards the quinoline residue. In the the water molecule accepts an N—H⋯O and makes two O—H⋯Nquinoline hydrogen bonds, generating a two-dimensional array in the ab plane, which is further stabilized by C—H⋯O interactions. The most significant contacts between layers are of the type C—H⋯F.
Related literature
For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969); Font et al. (1997); Kaminsky & Meltzer (1968); Musiol et al. (2006); Nakamura et al. (1999); Palmer et al. (1993); Ridley (2002); Sloboda et al. (1991); Tanenbaum & Tuffanelli (1980); Warshakoon et al. (2006). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007); Cunico et al. (2006); da Silva et al. (2003); de Souza et al. (2005). For crystallographic studies on molecules related to the title compound, see: Kaiser et al. (2009); de Souza et al. (2009); de Ferreira et al. (2009). For the synthesis, see: Pellerano et al. (1976).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809053367/lh2970sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809053367/lh2970Isup2.hkl
A solution of 7-chloro-4-hydrazinoquinoline (0.20 g, 1.0 mmol) and 4-fluorobenzaldehyde (0.15 g, 1.2 mmol) in EtOH (5 ml) was maintained at room temperature overnight and rotary evaporated. The solid residue, was washed with cold Et2O (3 x 10 ml) and recrystallized from EtOH m.pt. 518–519 K, lit. value 518 K (Pellerano et al., 1976), yield 74%. The sample for the X-ray study was slowly grown from moist EtOH and was found to be the monohydrate. 1H NMR (400 MHz, DMSO-d6) δ: 7.28–7.32 (3H, m), 7.54 (1H, d, J = 8.4 Hz), 7.84–7.88 (3H, m), 8.34–8.40 (3H, m), 11.3 (1H, br.s, NH). MS/ESI: [M+. - H]: 298. IR νmax (cm-1; KBr disc): 3232 (N–H), 1585 (C═N), 817 (C–F).
The amine- and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The water-bound H atoms were located from a difference map and refined (O–H = 0.84 (1) Å) with Uiso(H) = 1.5Ueq(O).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).Fig. 1. The molecular structure of both components comprising the asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. | |
Fig. 2. A view of the 2-D supramolecular array in (I) showing the O–H···N and N–H···O hydrogen bonds as orange and blue dashed lines, respectively. Colour code: Cl, cyan; F, pink; O, red; N, blue; C, grey; and H, green. | |
Fig. 3. A view in projection along the a axis of the unit-cell contents in (I) showing the stacking of layers along the c direction. The O–H···N and N–H···O hydrogen bonds are shown as orange and blue dashed lines, respectively, and the C–H···F contacts are represented by pink dashed lines. One of the 2-D arrays, as shown in Fig. 2, has been highlighted in space-filling mode. Colour code: Cl, cyan; F, pink; O, red; N, blue; C, grey; and H, green. |
C16H11ClFN3·H2O | F(000) = 656 |
Mr = 317.74 | Dx = 1.457 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 13530 reflections |
a = 3.7795 (2) Å | θ = 2.9–27.5° |
b = 15.4188 (11) Å | µ = 0.28 mm−1 |
c = 24.8576 (16) Å | T = 120 K |
β = 90.286 (4)° | Needle, colourless |
V = 1448.57 (16) Å3 | 0.90 × 0.04 × 0.04 mm |
Z = 4 |
Enraf–Nonius KappaCCD area-detector diffractometer | 3291 independent reflections |
Radiation source: Enraf Nonius FR591 rotating anode | 2009 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.098 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ϕ and ω scans | h = −4→4 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −20→19 |
Tmin = 0.614, Tmax = 0.746 | l = −32→32 |
19494 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.131 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0463P)2 + 0.5902P] where P = (Fo2 + 2Fc2)/3 |
3291 reflections | (Δ/σ)max < 0.001 |
205 parameters | Δρmax = 0.33 e Å−3 |
3 restraints | Δρmin = −0.37 e Å−3 |
C16H11ClFN3·H2O | V = 1448.57 (16) Å3 |
Mr = 317.74 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.7795 (2) Å | µ = 0.28 mm−1 |
b = 15.4188 (11) Å | T = 120 K |
c = 24.8576 (16) Å | 0.90 × 0.04 × 0.04 mm |
β = 90.286 (4)° |
Enraf–Nonius KappaCCD area-detector diffractometer | 3291 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 2009 reflections with I > 2σ(I) |
Tmin = 0.614, Tmax = 0.746 | Rint = 0.098 |
19494 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 3 restraints |
wR(F2) = 0.131 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.33 e Å−3 |
3291 reflections | Δρmin = −0.37 e Å−3 |
205 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.85154 (18) | −0.01273 (5) | 0.43677 (3) | 0.0319 (2) | |
F1 | 0.1997 (4) | 0.22958 (11) | −0.11624 (6) | 0.0367 (5) | |
N1 | 0.3942 (5) | −0.13713 (14) | 0.26095 (9) | 0.0214 (5) | |
N2 | 0.6585 (5) | 0.08516 (14) | 0.17189 (8) | 0.0221 (5) | |
H2N | 0.7847 | 0.1268 | 0.1867 | 0.027* | |
N3 | 0.5476 (5) | 0.09163 (15) | 0.11914 (8) | 0.0212 (5) | |
C1 | 0.3270 (7) | −0.12969 (18) | 0.20855 (11) | 0.0225 (6) | |
H1 | 0.2176 | −0.1776 | 0.1911 | 0.027* | |
C2 | 0.4043 (6) | −0.05737 (18) | 0.17733 (10) | 0.0210 (6) | |
H2 | 0.3436 | −0.0566 | 0.1402 | 0.025* | |
C3 | 0.5701 (6) | 0.01357 (17) | 0.20052 (10) | 0.0178 (6) | |
C4 | 0.6457 (6) | 0.01003 (16) | 0.25750 (10) | 0.0176 (6) | |
C5 | 0.8024 (6) | 0.07868 (18) | 0.28696 (11) | 0.0210 (6) | |
H5 | 0.8680 | 0.1303 | 0.2687 | 0.025* | |
C6 | 0.8613 (6) | 0.07213 (18) | 0.34118 (10) | 0.0220 (6) | |
H6 | 0.9655 | 0.1189 | 0.3605 | 0.026* | |
C7 | 0.7663 (7) | −0.00432 (18) | 0.36790 (11) | 0.0218 (6) | |
C8 | 0.6151 (6) | −0.07217 (18) | 0.34132 (10) | 0.0214 (6) | |
H8 | 0.5531 | −0.1233 | 0.3604 | 0.026* | |
C9 | 0.5501 (6) | −0.06654 (16) | 0.28533 (10) | 0.0179 (6) | |
C10 | 0.6205 (7) | 0.16293 (18) | 0.09495 (11) | 0.0219 (6) | |
H10 | 0.7507 | 0.2064 | 0.1136 | 0.026* | |
C11 | 0.5085 (7) | 0.17884 (18) | 0.03962 (11) | 0.0216 (6) | |
C12 | 0.3483 (7) | 0.11448 (18) | 0.00825 (11) | 0.0231 (6) | |
H12 | 0.3087 | 0.0586 | 0.0232 | 0.028* | |
C13 | 0.2471 (7) | 0.13101 (18) | −0.04411 (11) | 0.0237 (6) | |
H13 | 0.1409 | 0.0871 | −0.0656 | 0.028* | |
C14 | 0.3041 (7) | 0.21294 (19) | −0.06453 (11) | 0.0256 (7) | |
C15 | 0.4572 (7) | 0.27824 (19) | −0.03525 (11) | 0.0269 (7) | |
H15 | 0.4911 | 0.3342 | −0.0504 | 0.032* | |
C16 | 0.5614 (7) | 0.26028 (18) | 0.01715 (11) | 0.0232 (6) | |
H16 | 0.6708 | 0.3044 | 0.0380 | 0.028* | |
O1W | 0.0566 (5) | 0.23633 (12) | 0.20098 (8) | 0.0287 (5) | |
H1W | 0.262 (3) | 0.2503 (17) | 0.2111 (12) | 0.043* | |
H2W | −0.086 (5) | 0.2775 (13) | 0.2069 (12) | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0381 (4) | 0.0386 (5) | 0.0191 (4) | −0.0007 (3) | −0.0065 (3) | −0.0001 (3) |
F1 | 0.0475 (10) | 0.0422 (11) | 0.0205 (9) | 0.0086 (8) | −0.0082 (8) | 0.0037 (8) |
N1 | 0.0218 (12) | 0.0225 (13) | 0.0200 (13) | 0.0000 (10) | −0.0006 (9) | −0.0006 (10) |
N2 | 0.0269 (12) | 0.0218 (13) | 0.0177 (12) | −0.0046 (10) | −0.0046 (9) | 0.0001 (10) |
N3 | 0.0219 (12) | 0.0265 (14) | 0.0153 (12) | 0.0018 (10) | −0.0022 (9) | 0.0005 (10) |
C1 | 0.0185 (14) | 0.0204 (16) | 0.0286 (17) | 0.0005 (11) | −0.0024 (12) | −0.0026 (13) |
C2 | 0.0204 (14) | 0.0270 (16) | 0.0156 (14) | 0.0007 (12) | −0.0052 (11) | −0.0005 (12) |
C3 | 0.0150 (13) | 0.0189 (15) | 0.0195 (14) | 0.0014 (11) | −0.0008 (10) | −0.0011 (12) |
C4 | 0.0151 (13) | 0.0168 (14) | 0.0209 (14) | 0.0033 (11) | −0.0002 (10) | −0.0018 (12) |
C5 | 0.0204 (14) | 0.0189 (15) | 0.0237 (15) | 0.0012 (11) | 0.0001 (11) | −0.0018 (12) |
C6 | 0.0242 (15) | 0.0210 (16) | 0.0208 (15) | −0.0003 (12) | −0.0035 (11) | −0.0059 (12) |
C7 | 0.0204 (14) | 0.0276 (17) | 0.0175 (14) | 0.0030 (12) | −0.0016 (11) | −0.0034 (12) |
C8 | 0.0198 (14) | 0.0223 (16) | 0.0220 (15) | 0.0050 (12) | −0.0007 (11) | 0.0046 (12) |
C9 | 0.0154 (13) | 0.0149 (14) | 0.0233 (15) | 0.0003 (11) | −0.0026 (10) | −0.0030 (12) |
C10 | 0.0222 (15) | 0.0215 (16) | 0.0221 (16) | 0.0019 (12) | 0.0000 (11) | −0.0046 (13) |
C11 | 0.0185 (14) | 0.0253 (16) | 0.0209 (15) | 0.0030 (12) | 0.0004 (11) | 0.0010 (12) |
C12 | 0.0261 (15) | 0.0194 (15) | 0.0238 (16) | −0.0004 (12) | 0.0010 (12) | −0.0001 (12) |
C13 | 0.0240 (15) | 0.0241 (16) | 0.0229 (16) | 0.0009 (12) | −0.0018 (12) | −0.0045 (13) |
C14 | 0.0273 (15) | 0.0350 (18) | 0.0145 (14) | 0.0051 (13) | −0.0025 (11) | 0.0012 (13) |
C15 | 0.0265 (15) | 0.0256 (17) | 0.0287 (17) | 0.0025 (13) | −0.0004 (12) | 0.0043 (13) |
C16 | 0.0244 (15) | 0.0240 (16) | 0.0213 (15) | −0.0016 (12) | −0.0012 (11) | −0.0037 (13) |
O1W | 0.0255 (11) | 0.0227 (11) | 0.0377 (13) | −0.0003 (9) | −0.0020 (9) | −0.0045 (9) |
Cl1—C7 | 1.745 (3) | C6—H6 | 0.9500 |
F1—C14 | 1.367 (3) | C7—C8 | 1.362 (4) |
N1—C1 | 1.331 (3) | C8—C9 | 1.414 (3) |
N1—C9 | 1.377 (3) | C8—H8 | 0.9500 |
N2—C3 | 1.356 (3) | C10—C11 | 1.458 (4) |
N2—N3 | 1.378 (3) | C10—H10 | 0.9500 |
N2—H2N | 0.8800 | C11—C16 | 1.389 (4) |
N3—C10 | 1.284 (3) | C11—C12 | 1.398 (4) |
C1—C2 | 1.390 (4) | C12—C13 | 1.379 (4) |
C1—H1 | 0.9500 | C12—H12 | 0.9500 |
C2—C3 | 1.385 (4) | C13—C14 | 1.379 (4) |
C2—H2 | 0.9500 | C13—H13 | 0.9500 |
C3—C4 | 1.445 (3) | C14—C15 | 1.369 (4) |
C4—C5 | 1.415 (4) | C15—C16 | 1.387 (4) |
C4—C9 | 1.416 (4) | C15—H15 | 0.9500 |
C5—C6 | 1.369 (3) | C16—H16 | 0.9500 |
C5—H5 | 0.9500 | O1W—H1W | 0.841 (10) |
C6—C7 | 1.401 (4) | O1W—H2W | 0.845 (10) |
C1—N1—C9 | 116.2 (2) | C7—C8—H8 | 120.0 |
C3—N2—N3 | 118.9 (2) | C9—C8—H8 | 120.0 |
C3—N2—H2N | 120.5 | N1—C9—C8 | 117.2 (2) |
N3—N2—H2N | 120.5 | N1—C9—C4 | 123.6 (2) |
C10—N3—N2 | 116.3 (2) | C8—C9—C4 | 119.2 (2) |
N1—C1—C2 | 125.2 (3) | N3—C10—C11 | 121.6 (2) |
N1—C1—H1 | 117.4 | N3—C10—H10 | 119.2 |
C2—C1—H1 | 117.4 | C11—C10—H10 | 119.2 |
C3—C2—C1 | 119.8 (2) | C16—C11—C12 | 118.7 (2) |
C3—C2—H2 | 120.1 | C16—C11—C10 | 119.3 (2) |
C1—C2—H2 | 120.1 | C12—C11—C10 | 122.0 (3) |
N2—C3—C2 | 122.4 (2) | C13—C12—C11 | 120.8 (3) |
N2—C3—C4 | 119.8 (2) | C13—C12—H12 | 119.6 |
C2—C3—C4 | 117.7 (2) | C11—C12—H12 | 119.6 |
C5—C4—C9 | 118.5 (2) | C12—C13—C14 | 118.3 (3) |
C5—C4—C3 | 124.0 (2) | C12—C13—H13 | 120.9 |
C9—C4—C3 | 117.4 (2) | C14—C13—H13 | 120.9 |
C6—C5—C4 | 121.3 (3) | F1—C14—C15 | 118.8 (3) |
C6—C5—H5 | 119.3 | F1—C14—C13 | 118.3 (2) |
C4—C5—H5 | 119.3 | C15—C14—C13 | 123.0 (3) |
C5—C6—C7 | 119.2 (2) | C14—C15—C16 | 118.0 (3) |
C5—C6—H6 | 120.4 | C14—C15—H15 | 121.0 |
C7—C6—H6 | 120.4 | C16—C15—H15 | 121.0 |
C8—C7—C6 | 121.6 (2) | C15—C16—C11 | 121.2 (3) |
C8—C7—Cl1 | 119.6 (2) | C15—C16—H16 | 119.4 |
C6—C7—Cl1 | 118.8 (2) | C11—C16—H16 | 119.4 |
C7—C8—C9 | 120.0 (2) | H1W—O1W—H2W | 110.0 (16) |
C3—N2—N3—C10 | 176.0 (2) | C7—C8—C9—N1 | −179.5 (2) |
C9—N1—C1—C2 | 0.5 (4) | C7—C8—C9—C4 | 0.3 (4) |
N1—C1—C2—C3 | 1.3 (4) | C5—C4—C9—N1 | 179.6 (2) |
N3—N2—C3—C2 | 6.9 (4) | C3—C4—C9—N1 | 0.7 (4) |
N3—N2—C3—C4 | −172.4 (2) | C5—C4—C9—C8 | −0.2 (3) |
C1—C2—C3—N2 | 178.6 (2) | C3—C4—C9—C8 | −179.1 (2) |
C1—C2—C3—C4 | −2.0 (4) | N2—N3—C10—C11 | −178.2 (2) |
N2—C3—C4—C5 | 1.6 (4) | N3—C10—C11—C16 | 173.3 (2) |
C2—C3—C4—C5 | −177.7 (2) | N3—C10—C11—C12 | −6.6 (4) |
N2—C3—C4—C9 | −179.5 (2) | C16—C11—C12—C13 | 0.5 (4) |
C2—C3—C4—C9 | 1.1 (3) | C10—C11—C12—C13 | −179.5 (2) |
C9—C4—C5—C6 | −0.1 (4) | C11—C12—C13—C14 | −0.8 (4) |
C3—C4—C5—C6 | 178.7 (2) | C12—C13—C14—F1 | −179.2 (2) |
C4—C5—C6—C7 | 0.4 (4) | C12—C13—C14—C15 | 0.2 (4) |
C5—C6—C7—C8 | −0.3 (4) | F1—C14—C15—C16 | 180.0 (2) |
C5—C6—C7—Cl1 | 178.65 (19) | C13—C14—C15—C16 | 0.5 (4) |
C6—C7—C8—C9 | 0.0 (4) | C14—C15—C16—C11 | −0.8 (4) |
Cl1—C7—C8—C9 | −178.98 (18) | C12—C11—C16—C15 | 0.2 (4) |
C1—N1—C9—C8 | 178.3 (2) | C10—C11—C16—C15 | −179.7 (2) |
C1—N1—C9—C4 | −1.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···N1i | 0.84 (2) | 2.28 (2) | 2.999 (3) | 144 (2) |
O1w—H2w···N1ii | 0.85 (2) | 1.93 (2) | 2.761 (3) | 166 (3) |
N2—H2n···O1wiii | 0.88 | 2.01 | 2.865 (3) | 165 |
C5—H5···O1wiii | 0.95 | 2.45 | 3.379 (3) | 164 |
C10—H10···O1wiii | 0.95 | 2.50 | 3.302 (3) | 142 |
C1—H1···F1iv | 0.95 | 2.56 | 3.399 (3) | 147 |
C6—H6···F1v | 0.95 | 2.56 | 3.477 (3) | 161 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) x+1, y, z; (iv) −x, −y, −z; (v) x+1, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H11ClFN3·H2O |
Mr | 317.74 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 3.7795 (2), 15.4188 (11), 24.8576 (16) |
β (°) | 90.286 (4) |
V (Å3) | 1448.57 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.90 × 0.04 × 0.04 |
Data collection | |
Diffractometer | Enraf–Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.614, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19494, 3291, 2009 |
Rint | 0.098 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.131, 1.04 |
No. of reflections | 3291 |
No. of parameters | 205 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.37 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···N1i | 0.843 (16) | 2.28 (2) | 2.999 (3) | 144 (2) |
O1w—H2w···N1ii | 0.85 (2) | 1.93 (2) | 2.761 (3) | 166 (3) |
N2—H2n···O1wiii | 0.88 | 2.01 | 2.865 (3) | 165 |
C5—H5···O1wiii | 0.95 | 2.45 | 3.379 (3) | 164 |
C10—H10···O1wiii | 0.95 | 2.50 | 3.302 (3) | 142 |
C1—H1···F1iv | 0.95 | 2.56 | 3.399 (3) | 147 |
C6—H6···F1v | 0.95 | 2.56 | 3.477 (3) | 161 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) x+1, y, z; (iv) −x, −y, −z; (v) x+1, −y+1/2, z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).
References
Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–198. CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653. Web of Science CrossRef PubMed CAS Google Scholar
Elslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem. 12, 600–607. CrossRef CAS PubMed Web of Science Google Scholar
Ferreira, M. L. de, de Souza, M. V. N., Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3239–o3240. Web of Science CSD CrossRef IUCr Journals Google Scholar
Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Disc. 14, 259–272. CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140. Web of Science CSD CrossRef CAS Google Scholar
Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160–163. CrossRef CAS PubMed Web of Science Google Scholar
Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598. Web of Science CrossRef PubMed CAS Google Scholar
Nakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618–624. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Palmer, K. J., Holliday, S. M. & Brogden, R. N. (1993). Drugs, 45, 430–475. CrossRef CAS PubMed Web of Science Google Scholar
Pellerano, C., Savini, L. & Fiorini, I. (1976). Atti Accad. Fisiocritic Siena, 8, 43–57. CAS Google Scholar
Ridley, R. G. (2002). Nature (London), 415, 686–693. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Silva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem. 10, 21–39. Web of Science PubMed Google Scholar
Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860. PubMed CAS Web of Science Google Scholar
Souza, M. V. N. de (2005). Mini-Rev. Med. Chem. 5, 1009–1017. Google Scholar
Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3120–o3121. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587–591. CrossRef CAS PubMed Web of Science Google Scholar
Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, crystallized as a hydrate, (I), was prepared as part of continuing studies designed to develop antimalarial compounds based on the quinoline nucleus (Andrade et al., 2007; Cunico et al., 2006; da Silva et al., 2003; de Souza et al., 2005). The systematic examination of quinoline derivatives comes about owing to the fact that the majority of antimalarial agents, including chloroquine (Tanenbaum & Tuffanelli, 1980), mefloquine (Palmer et al., 1993), primaquine (Elslager et al., 1969) and amodiaquine (Ridley, 2002), have a quinoline ring substructure, the mainstay of malaria chemotherapy for much of the past 40 years (Font et al., 1997; Kaminsky & Meltzer, 1968; Musiol et al., 2006; Nakamura et al., 1999; Sloboda et al., 1991; Warshakoon et al., 2006). Allied with these investigations are structural studies aimed at elucidating systematic structural trends in these molecules (Kaiser et al. 2009; de Souza et al. 2009; de Ferreira et al. 2009).
The molecule in (I), Fig. 1, features an effectively planar quinoline residue (maximum deviations of 0.018 (2) Å for atom C4 and -0.025 (2) Å for atom C2) which forms a dihedral angle of 9.55 (10) ° with the C11–C16 benzene ring. Twists in the molecule are evident about the N2–C3 and C10–C11 bonds as seen in the values of the N3–N2–C3–C2 and N3–C10–C11—C12 torsion angles of 6.9 (4) and -6.6 (4) °, respectively. As observed in related systems, the amine-H is orientated over the quinoline residue (Kaiser et al. 2009; de Souza et al. 2009; de Ferreira et al., 2009). The conformation about the N3═C10 double bond is E. The molecule crystallizes as a hydrate and the latter species is pivotal in stabilizing the crystal structure. Thus, the water-H atoms form donor O–H···N hydrogen bonds to quinoline-N atoms derived from two molecules. At the same time, the water-O atom accepts a N–H···O hydrogen bond from the amine-N2 of another molecule. Thus, the water molecule provides links between three molecules, leading to the formation of a 2-D array, Fig. 2 and Table 1. The resultant layer in the ab plane is further stabilized by C–H···O interactions, Table 1, and weak π···π contacts [ring centroid(N1,C1—C4,C9)···ring centroid(C4–C9)i = 3.7070 (14) Å, dihedral angle = 1.45 (11) ° for i: -1 + x, y, z]. Layers stack along the c direction with the most significant contacts between layers being of the type C–H···F whereby the fluoride is bifurcated, Table 1 and Fig. 3.