organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Benzo[d]thia­zol-2-ylsulfon­yl)-1-(4-bromo­phen­yl)ethanone

aChemistry Department, University of Isfahan, Isfahan, 81746-73441, Iran, bUniversity of Malaya, Department of Chemistry, 50603, Kuala Lumpur, Malaysia, and cDepartment of Chemistry, Science and Research Campus, Islamic Azad University, Poonak, Tehran, Iran
*Correspondence e-mail: loghmani_h@yahoo.com

(Received 9 December 2009; accepted 10 December 2009; online 19 December 2009)

In the title mol­ecule, C15H10BrNO3S2, the dihedral angle between the benzothia­zole ring system and the benzene ring is 67.57 (12)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O inter­actions. In addition, there is an inter­molecular Br⋯C [3.379 (3) Å] contact which is shorter than the sum of the van der Waals radii of these atoms.

Related literature

For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the applications of related compounds in organic synthesis, see: Marco et al. (1995[Marco, J. L., Fernandez, I., Khira, N., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem. 60, 6678-6679.]); Fuju et al. (1988[Fuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495-500.]); Ni et al. (2006[Ni, C., Li, Y. & Hu, J. (2006). J. Org. Chem. 71, 6829-6833.]); Grossert et al. (1984[Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798-807.]); Oishi et al. (1988)[Oishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent 1988 JP63 243 067, 212359.]; Antane et al. (2004[Antane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun. 34, 2443-2449.]). For the biological activity of related compounds see, Padmavathi et al. (2008[Padmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917-924.]). For related structures see: Loghmani-Khouzani et al. (2008[Loghmani-Khouzani, H., Poorheravi, M. R., Sadeghi, M. M., Caggiano, L. & Jackson, R. F. W. (2008). Tetrahedron, 64, 7419-7425.], 2009a[Loghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009a). Acta Cryst. E65, o2287.],b[Loghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009b). Acta Cryst. E65, o2441.]); Munoz et al. (2005[Munoz, L., Rosa, E., Pilar Bosch, M. & Guerrero, A. (2005). Tetrahedron Lett. 46, 311-313.]); Suryakiran et al. (2007[Suryakiran, N., Prabhakar, P., Reddy, T. S., Mahesh, K. C., Rajesh, K. & Venkateswarlu, Y. (2007). Tetrahedron Lett. 48, 877-881.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrNO3S2

  • Mr = 396.27

  • Monoclinic, P 21 /n

  • a = 5.6695 (10) Å

  • b = 24.489 (4) Å

  • c = 10.7042 (19) Å

  • β = 94.178 (3)°

  • V = 1482.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.07 mm−1

  • T = 296 K

  • 0.42 × 0.30 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.363, Tmax = 0.864

  • 6602 measured reflections

  • 2564 independent reflections

  • 2140 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 1.03

  • 2564 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2i 0.93 2.56 3.420 (4) 154
C8—H8A⋯O1ii 0.97 2.37 3.289 (3) 158
C8—H8B⋯O1iii 0.97 2.50 3.241 (4) 133
C14—H14A⋯O2iv 0.93 2.56 3.226 (4) 128
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The existence of so many valence states of sulfur has generated selective and novel ways to affect oxidation, dehydration, and carbon-carbon bond formation (Loghmani-Khouzani et al., 2008). Recent methods that allow introduction of a sulfur constituent β to a carbonyl group have shown particular promise (Loghmani-Khouzani et al., 2009a,b; Suryakiran et al., 2007; Munoz et al., 2005). 2-(1,3-Benzothiazol-2-yl-sulfonyl)-1-(4-bromophenyl)ethanone as a new compound with sulfur atom β to the carbonyl group is of great importance in organic synthesis. β-Keto-sulfones are a very important group of intermediates as they are precursors for Michael and Knoevenagel reactions (Marco et al., 1995) and are used in the preparation of acetylenes, allenes, chalcones, vinyl sulfones, polyfunctionalized 4H-pyrans and ketones (Fuju et al., 1988). In addition, β-keto-sulfones can be converted into optically active β-hydroxy-sulfones, halomethyl sulfones and dihalomethyl sulfones (Ni et al., 2006). Halomethyl sulfones and dihalomethyl sulfones are very good α-carbanion stabilizing substituents and precursors for the preparation of alkenes, aziridines, epoxides, and β-hydroxy-sulfones (Grossert et al., 1984). Haloalkyl sulfones are useful in preventing aquatic organisms from attaching to fishing nets and ship hulls (Oishi et al., 1988). They also possess other biological properties such as herbicidal, bactericidal antifungal, algaecidal and insecticidal (Antane et al., 2004). Recently sulfone-linked heterocycles were prepared and have been showed antimicrobial activity (Padmavathi et al., 2008). We report here the crystal structure of the title compound as a precursor for synthesis of gem-difluoromethylene-containing heterocycle.

In the molecule of the title compound, (Fig. 1), a new thio-benzothiazole derivative, the bond lengths (Allen et al., 1987) and angles are within the normal values and are comparable to the related structures (Loghmani-Khouzani et al., 2008a,b). The dihedral angle between the benzothiazole ring system and the benzene ring is 67.57 (12)°. An interesting feature of the crystal structure is the short intermolecular Br···Civ [3.379 (3) Å; (iv) -x, -y, 2 - z] contact which is shorter than the sum of the van der Waals radii of these atoms. The crystal structure is stabilized by weak intermolecular C—H···O interactions (Table 1, Fig. 2).

Related literature top

For bond-length data, see Allen et al. (1987). For the applications of related compounds in organic synthesis, see: Marco et al. (1995); Fuju et al. (1988); Ni et al. (2006); Grossert et al. (1984); Oishi et al. (1988); Antane et al. (2004). For the biological activity of related compounds see, Padmavathi et al. (2008). For related structures see: Loghmani-Khouzani et al. (2008, 2009a,b); Munoz et al. (2005); Suryakiran et al. (2007).

Experimental top

Sodium carbonate (4.5 mmol) was added to a stirred solution of 2-mercaptobenzothiazol (3 mmol) in ethanol (15 mL) and water (15 mL) and stirred at room temperature for 30 min. 2-bromo-1- (4-bromophenyl)ethanone (3 mmol) was added to the reaction mixture and stirring was continued for 1 h. The reaction was monitored by TLC and after 60 min. showed the complete disappearance of starting materials. The reaction mixture was poured into 100 mL of 1 M HCl containing 50 g of crushed ice. The product was filtered under vacuum and the filtrate was washed with 10 mL ice-cold ethanol and 10 mL water. Recrystallization from petroleum ether and filtration gave 2-(Benzo[d]thiazol-2-ylthio)-1-(4-bromophenyl)ethanone. The product yield was 96%. For oxidation of the resulting Product, m-CPBA (3 mmol) was added to a solution of 2-(1,3-Benzothiazol-2- yl-thio)-1-(4-bromophenyl)ethanone (1 mmol) in CH2Cl2 (20 mL) under stirring at 273K. The mixture was stirred at room temperature for 1 h to complete the reaction. Saturated aqueous sodium sulfite solution (50 mL) was added and the mixture was stirred for a further 1 h at room temperature. The CH2Cl2 layer was washed with water (50 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. Flash chromatography on silica gel using AcOEt/petroleum ether (30:70) afforded 2-(1,3-Benzothiazol-2-ylsulfonyl)-1-(4-bromophenyl) ethanone. The product yield of the resulted β-ketosulfone was 80 %. White solid; m.p.: 196-198 °C; 1H-NMR (400 MHz; CDCl3): δ 8.16-7.47 (m, 8H), 5.67 (s, 2H). 13C-NMR (126 MHz; CDCl3): δ 188.1 (C=O), 154.1, 151.5, 134.8, 133.2, 129.7, 129.1, 126.2, 123.9, 123.1, 121.7, 121.2, 59.8. IR (KBr, cm-1 ): 3010, 2800, 1684 (C=O), 1570, 1401, 1328, 1150, 1122, 970, 803, 752. Anal. Calcd for C15H10BrNO3S2: C, 45.46; H, 2.54; N, 3.53. Found: C, 45.49; H, 2.50; N, 3.43.

Refinement top

All of the hydrogen atoms were positioned geometrically [C—H = 0.93–0.97 Å] and refined using a riding model approximation with Uiso (H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed approximately along the a-axis, showing molecules connected via weak intermolecular C—H···O interactions. Intermolecular interactions are drawn as dashed lines.
2-(Benzo[d]thiazol-2-ylsulfonyl)-1-(4-bromophenyl)ethanone top
Crystal data top
C15H10BrNO3S2F(000) = 792
Mr = 396.27Dx = 1.776 Mg m3
Monoclinic, P21/nMelting point: 470 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.6695 (10) ÅCell parameters from 3475 reflections
b = 24.489 (4) Åθ = 2.5–30.3°
c = 10.7042 (19) ŵ = 3.07 mm1
β = 94.178 (3)°T = 296 K
V = 1482.2 (5) Å3Plate, colourless
Z = 40.42 × 0.30 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2564 independent reflections
Radiation source: fine-focus sealed tube2140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.363, Tmax = 0.864k = 2923
6602 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0547P)2]
where P = (Fo2 + 2Fc2)/3
2564 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
C15H10BrNO3S2V = 1482.2 (5) Å3
Mr = 396.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.6695 (10) ŵ = 3.07 mm1
b = 24.489 (4) ÅT = 296 K
c = 10.7042 (19) Å0.42 × 0.30 × 0.05 mm
β = 94.178 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2564 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2140 reflections with I > 2σ(I)
Tmin = 0.363, Tmax = 0.864Rint = 0.038
6602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.03Δρmax = 0.65 e Å3
2564 reflectionsΔρmin = 0.84 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.73768 (6)0.334681 (12)0.50902 (3)0.02981 (14)
C60.1307 (5)0.72648 (11)0.1923 (3)0.0176 (6)
C50.2796 (6)0.77145 (12)0.2066 (3)0.0254 (7)
H5A0.41510.77390.16300.031*
C40.2209 (6)0.81234 (12)0.2872 (3)0.0285 (8)
H4A0.31870.84270.29840.034*
C30.0172 (6)0.80883 (13)0.3521 (3)0.0278 (8)
H3A0.01670.83680.40690.033*
C20.1355 (6)0.76516 (12)0.3374 (3)0.0234 (7)
H2A0.27190.76330.38050.028*
C10.0776 (5)0.72389 (11)0.2555 (3)0.0180 (6)
C70.0046 (5)0.64645 (11)0.1287 (3)0.0152 (6)
C80.2422 (5)0.54542 (11)0.1342 (3)0.0161 (6)
H8A0.27750.51350.08520.019*
H8B0.38300.56800.14140.019*
C90.1874 (5)0.52687 (11)0.2645 (3)0.0187 (7)
C100.3307 (5)0.48088 (11)0.3204 (3)0.0165 (6)
C150.5345 (5)0.46196 (11)0.2724 (3)0.0194 (7)
H15A0.58880.47820.20130.023*
C140.6590 (5)0.41889 (11)0.3296 (3)0.0208 (7)
H14A0.79750.40630.29790.025*
C130.5753 (5)0.39509 (11)0.4333 (3)0.0202 (7)
C120.3738 (6)0.41345 (11)0.4839 (3)0.0225 (7)
H12A0.32090.39710.55510.027*
C110.2519 (6)0.45649 (12)0.4270 (3)0.0226 (7)
H11A0.11540.46940.46030.027*
N10.1732 (4)0.68070 (9)0.1198 (2)0.0176 (6)
O20.0855 (4)0.59122 (8)0.07094 (18)0.0240 (5)
O10.2124 (4)0.55675 (8)0.0658 (2)0.0225 (5)
O30.0318 (4)0.54839 (9)0.3174 (2)0.0296 (6)
S20.01146 (13)0.58258 (3)0.05223 (7)0.01619 (19)
S10.22406 (13)0.66352 (3)0.21941 (7)0.0196 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0356 (2)0.0266 (2)0.0268 (2)0.01244 (13)0.00100 (16)0.00696 (13)
C60.0204 (16)0.0135 (14)0.0185 (15)0.0026 (12)0.0011 (13)0.0023 (11)
C50.0218 (17)0.0234 (16)0.0309 (18)0.0031 (13)0.0000 (14)0.0022 (14)
C40.034 (2)0.0193 (16)0.0311 (19)0.0034 (14)0.0076 (16)0.0036 (14)
C30.035 (2)0.0209 (16)0.0269 (18)0.0068 (14)0.0024 (16)0.0078 (13)
C20.0246 (17)0.0228 (16)0.0227 (17)0.0080 (13)0.0014 (14)0.0007 (12)
C10.0195 (16)0.0144 (13)0.0199 (16)0.0022 (12)0.0008 (13)0.0027 (12)
C70.0165 (15)0.0131 (14)0.0159 (16)0.0031 (11)0.0013 (13)0.0010 (11)
C80.0169 (15)0.0120 (13)0.0196 (16)0.0020 (11)0.0029 (13)0.0013 (11)
C90.0219 (16)0.0167 (14)0.0180 (16)0.0032 (13)0.0045 (14)0.0015 (12)
C100.0199 (16)0.0140 (13)0.0161 (15)0.0011 (12)0.0052 (13)0.0004 (11)
C150.0198 (16)0.0226 (15)0.0168 (16)0.0014 (12)0.0085 (13)0.0031 (12)
C140.0176 (15)0.0248 (16)0.0210 (16)0.0048 (12)0.0078 (13)0.0007 (13)
C130.0275 (17)0.0164 (14)0.0161 (16)0.0040 (13)0.0015 (14)0.0013 (12)
C120.0281 (18)0.0223 (15)0.0181 (16)0.0040 (14)0.0100 (14)0.0070 (12)
C110.0234 (17)0.0271 (16)0.0184 (16)0.0059 (13)0.0080 (14)0.0003 (13)
N10.0183 (14)0.0164 (12)0.0184 (13)0.0011 (10)0.0044 (11)0.0023 (10)
O20.0311 (12)0.0264 (11)0.0148 (11)0.0048 (9)0.0039 (10)0.0014 (8)
O10.0169 (11)0.0198 (10)0.0310 (13)0.0034 (9)0.0028 (10)0.0038 (9)
O30.0376 (14)0.0288 (12)0.0244 (12)0.0144 (10)0.0170 (11)0.0054 (10)
S20.0176 (4)0.0148 (4)0.0163 (4)0.0011 (3)0.0025 (3)0.0004 (3)
S10.0183 (4)0.0182 (4)0.0230 (4)0.0002 (3)0.0072 (3)0.0000 (3)
Geometric parameters (Å, º) top
Br1—C131.893 (3)C8—S21.773 (3)
C6—C51.389 (4)C8—H8A0.9700
C6—N11.395 (4)C8—H8B0.9700
C6—C11.404 (4)C9—O31.204 (4)
C5—C41.378 (5)C9—C101.489 (4)
C5—H5A0.9300C10—C151.378 (4)
C4—C31.393 (5)C10—C111.391 (4)
C4—H4A0.9300C15—C141.386 (4)
C3—C21.378 (4)C15—H15A0.9300
C3—H3A0.9300C14—C131.369 (4)
C2—C11.393 (4)C14—H14A0.9300
C2—H2A0.9300C13—C121.375 (4)
C1—S11.726 (3)C12—C111.378 (4)
C7—N11.281 (4)C12—H12A0.9300
C7—S11.726 (3)C11—H11A0.9300
C7—S21.767 (3)O2—S21.428 (2)
C8—C91.520 (4)O1—S21.435 (2)
C5—C6—N1124.8 (3)O3—C9—C8120.5 (3)
C5—C6—C1120.5 (3)C10—C9—C8116.9 (3)
N1—C6—C1114.6 (2)C15—C10—C11119.3 (3)
C4—C5—C6118.2 (3)C15—C10—C9123.5 (3)
C4—C5—H5A120.9C11—C10—C9117.1 (3)
C6—C5—H5A120.9C10—C15—C14120.3 (3)
C5—C4—C3120.9 (3)C10—C15—H15A119.8
C5—C4—H4A119.5C14—C15—H15A119.8
C3—C4—H4A119.5C13—C14—C15119.1 (3)
C2—C3—C4121.8 (3)C13—C14—H14A120.5
C2—C3—H3A119.1C15—C14—H14A120.5
C4—C3—H3A119.1C14—C13—C12121.8 (3)
C3—C2—C1117.4 (3)C14—C13—Br1119.6 (2)
C3—C2—H2A121.3C12—C13—Br1118.6 (2)
C1—C2—H2A121.3C13—C12—C11118.7 (3)
C2—C1—C6121.0 (3)C13—C12—H12A120.6
C2—C1—S1129.1 (2)C11—C12—H12A120.6
C6—C1—S1109.8 (2)C12—C11—C10120.7 (3)
N1—C7—S1118.6 (2)C12—C11—H11A119.7
N1—C7—S2120.2 (2)C10—C11—H11A119.7
S1—C7—S2121.18 (17)C7—N1—C6109.0 (3)
C9—C8—S2114.5 (2)O2—S2—O1118.72 (13)
C9—C8—H8A108.6O2—S2—C7108.34 (13)
S2—C8—H8A108.6O1—S2—C7107.07 (13)
C9—C8—H8B108.6O2—S2—C8106.09 (13)
S2—C8—H8B108.6O1—S2—C8110.47 (13)
H8A—C8—H8B107.6C7—S2—C8105.39 (13)
O3—C9—C10122.6 (3)C1—S1—C787.97 (14)
N1—C6—C5—C4176.3 (3)C14—C13—C12—C111.0 (5)
C1—C6—C5—C42.1 (4)Br1—C13—C12—C11178.3 (2)
C6—C5—C4—C30.4 (4)C13—C12—C11—C100.1 (5)
C5—C4—C3—C21.0 (5)C15—C10—C11—C120.7 (4)
C4—C3—C2—C10.6 (4)C9—C10—C11—C12179.6 (3)
C3—C2—C1—C61.1 (4)S1—C7—N1—C61.1 (3)
C3—C2—C1—S1178.0 (2)S2—C7—N1—C6177.54 (19)
C5—C6—C1—C22.5 (4)C5—C6—N1—C7178.7 (3)
N1—C6—C1—C2176.0 (3)C1—C6—N1—C70.3 (3)
C5—C6—C1—S1180.0 (2)N1—C7—S2—O243.5 (3)
N1—C6—C1—S11.4 (3)S1—C7—S2—O2137.99 (16)
S2—C8—C9—O319.1 (4)N1—C7—S2—O1172.6 (2)
S2—C8—C9—C10159.8 (2)S1—C7—S2—O18.8 (2)
O3—C9—C10—C15168.3 (3)N1—C7—S2—C869.7 (3)
C8—C9—C10—C1512.9 (4)S1—C7—S2—C8108.81 (18)
O3—C9—C10—C1111.5 (4)C9—C8—S2—O2174.09 (19)
C8—C9—C10—C11167.4 (3)C9—C8—S2—O144.2 (2)
C11—C10—C15—C140.3 (4)C9—C8—S2—C771.1 (2)
C9—C10—C15—C14180.0 (3)C2—C1—S1—C7175.6 (3)
C10—C15—C14—C130.7 (4)C6—C1—S1—C71.6 (2)
C15—C14—C13—C121.4 (5)N1—C7—S1—C11.6 (2)
C15—C14—C13—Br1177.9 (2)S2—C7—S1—C1176.96 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.932.563.420 (4)154
C8—H8A···O1ii0.972.373.289 (3)158
C8—H8B···O1iii0.972.503.241 (4)133
C14—H14A···O2iv0.932.563.226 (4)128
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H10BrNO3S2
Mr396.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.6695 (10), 24.489 (4), 10.7042 (19)
β (°) 94.178 (3)
V3)1482.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.07
Crystal size (mm)0.42 × 0.30 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.363, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
6602, 2564, 2140
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.03
No. of reflections2564
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.84

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.932.563.420 (4)154.0
C8—H8A···O1ii0.972.373.289 (3)157.7
C8—H8B···O1iii0.972.503.241 (4)132.8
C14—H14A···O2iv0.932.563.226 (4)128.4
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z.
 

Footnotes

Additional corresponding author: zsrkk@yahoo.com Thomson Reuters Researcher ID: A-5471-2009

Acknowledgements

We thank the University of Isfahan and the University of Malaya for supporting this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAntane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun. 34, 2443–2449.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495–500.  Google Scholar
First citationGrossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798–807.  CrossRef CAS Web of Science Google Scholar
First citationLoghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009a). Acta Cryst. E65, o2287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009b). Acta Cryst. E65, o2441.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoghmani-Khouzani, H., Poorheravi, M. R., Sadeghi, M. M., Caggiano, L. & Jackson, R. F. W. (2008). Tetrahedron, 64, 7419–7425.  Web of Science CrossRef CAS Google Scholar
First citationMarco, J. L., Fernandez, I., Khira, N., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem. 60, 6678–6679.  CSD CrossRef CAS Web of Science Google Scholar
First citationMunoz, L., Rosa, E., Pilar Bosch, M. & Guerrero, A. (2005). Tetrahedron Lett. 46, 311–313.  Web of Science CrossRef Google Scholar
First citationNi, C., Li, Y. & Hu, J. (2006). J. Org. Chem. 71, 6829–6833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent 1988 JP63 243 067, 212359.  Google Scholar
First citationPadmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuryakiran, N., Prabhakar, P., Reddy, T. S., Mahesh, K. C., Rajesh, K. & Venkateswarlu, Y. (2007). Tetrahedron Lett. 48, 877–881.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds