organic compounds
2-(Benzo[d]thiazol-2-ylsulfonyl)-1-(4-bromophenyl)ethanone
aChemistry Department, University of Isfahan, Isfahan, 81746-73441, Iran, bUniversity of Malaya, Department of Chemistry, 50603, Kuala Lumpur, Malaysia, and cDepartment of Chemistry, Science and Research Campus, Islamic Azad University, Poonak, Tehran, Iran
*Correspondence e-mail: loghmani_h@yahoo.com
In the title molecule, C15H10BrNO3S2, the dihedral angle between the benzothiazole ring system and the benzene ring is 67.57 (12)°. The is stabilized by weak intermolecular C—H⋯O interactions. In addition, there is an intermolecular Br⋯C [3.379 (3) Å] contact which is shorter than the sum of the van der Waals radii of these atoms.
Related literature
For bond-length data, see Allen et al. (1987). For the applications of related compounds in organic synthesis, see: Marco et al. (1995); Fuju et al. (1988); Ni et al. (2006); Grossert et al. (1984); Oishi et al. (1988); Antane et al. (2004). For the biological activity of related compounds see, Padmavathi et al. (2008). For related structures see: Loghmani-Khouzani et al. (2008, 2009a,b); Munoz et al. (2005); Suryakiran et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809053112/lh2971sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809053112/lh2971Isup2.hkl
Sodium carbonate (4.5 mmol) was added to a stirred solution of 2-mercaptobenzothiazol (3 mmol) in ethanol (15 mL) and water (15 mL) and stirred at room temperature for 30 min. 2-bromo-1- (4-bromophenyl)ethanone (3 mmol) was added to the reaction mixture and stirring was continued for 1 h. The reaction was monitored by TLC and after 60 min. showed the complete disappearance of starting materials. The reaction mixture was poured into 100 mL of 1 M HCl containing 50 g of crushed ice. The product was filtered under vacuum and the filtrate was washed with 10 mL ice-cold ethanol and 10 mL water. Recrystallization from petroleum ether and filtration gave 2-(Benzo[d]thiazol-2-ylthio)-1-(4-bromophenyl)ethanone. The product yield was 96%. For oxidation of the resulting Product, m-CPBA (3 mmol) was added to a solution of 2-(1,3-Benzothiazol-2- yl-thio)-1-(4-bromophenyl)ethanone (1 mmol) in CH2Cl2 (20 mL) under stirring at 273K. The mixture was stirred at room temperature for 1 h to complete the reaction. Saturated aqueous sodium sulfite solution (50 mL) was added and the mixture was stirred for a further 1 h at room temperature. The CH2Cl2 layer was washed with water (50 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. Flash β-ketosulfone was 80 %. White solid; m.p.: 196-198 °C; 1H-NMR (400 MHz; CDCl3): δ 8.16-7.47 (m, 8H), 5.67 (s, 2H). 13C-NMR (126 MHz; CDCl3): δ 188.1 (C=O), 154.1, 151.5, 134.8, 133.2, 129.7, 129.1, 126.2, 123.9, 123.1, 121.7, 121.2, 59.8. IR (KBr, cm-1 ): 3010, 2800, 1684 (C=O), 1570, 1401, 1328, 1150, 1122, 970, 803, 752. Anal. Calcd for C15H10BrNO3S2: C, 45.46; H, 2.54; N, 3.53. Found: C, 45.49; H, 2.50; N, 3.43.
on silica gel using AcOEt/petroleum ether (30:70) afforded 2-(1,3-Benzothiazol-2-ylsulfonyl)-1-(4-bromophenyl) ethanone. The product yield of the resultedAll of the hydrogen atoms were positioned geometrically [C—H = 0.93–0.97 Å] and refined using a riding model approximation with Uiso (H) = 1.2 Ueq (C).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C15H10BrNO3S2 | F(000) = 792 |
Mr = 396.27 | Dx = 1.776 Mg m−3 |
Monoclinic, P21/n | Melting point: 470 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6695 (10) Å | Cell parameters from 3475 reflections |
b = 24.489 (4) Å | θ = 2.5–30.3° |
c = 10.7042 (19) Å | µ = 3.07 mm−1 |
β = 94.178 (3)° | T = 296 K |
V = 1482.2 (5) Å3 | Plate, colourless |
Z = 4 | 0.42 × 0.30 × 0.05 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2564 independent reflections |
Radiation source: fine-focus sealed tube | 2140 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −6→6 |
Tmin = 0.363, Tmax = 0.864 | k = −29→23 |
6602 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3 |
2564 reflections | (Δ/σ)max = 0.001 |
199 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.84 e Å−3 |
C15H10BrNO3S2 | V = 1482.2 (5) Å3 |
Mr = 396.27 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.6695 (10) Å | µ = 3.07 mm−1 |
b = 24.489 (4) Å | T = 296 K |
c = 10.7042 (19) Å | 0.42 × 0.30 × 0.05 mm |
β = 94.178 (3)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2564 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2140 reflections with I > 2σ(I) |
Tmin = 0.363, Tmax = 0.864 | Rint = 0.038 |
6602 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.65 e Å−3 |
2564 reflections | Δρmin = −0.84 e Å−3 |
199 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.73768 (6) | 0.334681 (12) | 0.50902 (3) | 0.02981 (14) | |
C6 | 0.1307 (5) | 0.72648 (11) | 0.1923 (3) | 0.0176 (6) | |
C5 | 0.2796 (6) | 0.77145 (12) | 0.2066 (3) | 0.0254 (7) | |
H5A | 0.4151 | 0.7739 | 0.1630 | 0.031* | |
C4 | 0.2209 (6) | 0.81234 (12) | 0.2872 (3) | 0.0285 (8) | |
H4A | 0.3187 | 0.8427 | 0.2984 | 0.034* | |
C3 | 0.0172 (6) | 0.80883 (13) | 0.3521 (3) | 0.0278 (8) | |
H3A | −0.0167 | 0.8368 | 0.4069 | 0.033* | |
C2 | −0.1355 (6) | 0.76516 (12) | 0.3374 (3) | 0.0234 (7) | |
H2A | −0.2719 | 0.7633 | 0.3805 | 0.028* | |
C1 | −0.0776 (5) | 0.72389 (11) | 0.2555 (3) | 0.0180 (6) | |
C7 | 0.0046 (5) | 0.64645 (11) | 0.1287 (3) | 0.0152 (6) | |
C8 | 0.2422 (5) | 0.54542 (11) | 0.1342 (3) | 0.0161 (6) | |
H8A | 0.2775 | 0.5135 | 0.0852 | 0.019* | |
H8B | 0.3830 | 0.5680 | 0.1414 | 0.019* | |
C9 | 0.1874 (5) | 0.52687 (11) | 0.2645 (3) | 0.0187 (7) | |
C10 | 0.3307 (5) | 0.48088 (11) | 0.3204 (3) | 0.0165 (6) | |
C15 | 0.5345 (5) | 0.46196 (11) | 0.2724 (3) | 0.0194 (7) | |
H15A | 0.5888 | 0.4782 | 0.2013 | 0.023* | |
C14 | 0.6590 (5) | 0.41889 (11) | 0.3296 (3) | 0.0208 (7) | |
H14A | 0.7975 | 0.4063 | 0.2979 | 0.025* | |
C13 | 0.5753 (5) | 0.39509 (11) | 0.4333 (3) | 0.0202 (7) | |
C12 | 0.3738 (6) | 0.41345 (11) | 0.4839 (3) | 0.0225 (7) | |
H12A | 0.3209 | 0.3971 | 0.5551 | 0.027* | |
C11 | 0.2519 (6) | 0.45649 (12) | 0.4270 (3) | 0.0226 (7) | |
H11A | 0.1154 | 0.4694 | 0.4603 | 0.027* | |
N1 | 0.1732 (4) | 0.68070 (9) | 0.1198 (2) | 0.0176 (6) | |
O2 | 0.0855 (4) | 0.59122 (8) | −0.07094 (18) | 0.0240 (5) | |
O1 | −0.2124 (4) | 0.55675 (8) | 0.0658 (2) | 0.0225 (5) | |
O3 | 0.0318 (4) | 0.54839 (9) | 0.3174 (2) | 0.0296 (6) | |
S2 | 0.01146 (13) | 0.58258 (3) | 0.05223 (7) | 0.01619 (19) | |
S1 | −0.22406 (13) | 0.66352 (3) | 0.21941 (7) | 0.0196 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0356 (2) | 0.0266 (2) | 0.0268 (2) | 0.01244 (13) | −0.00100 (16) | 0.00696 (13) |
C6 | 0.0204 (16) | 0.0135 (14) | 0.0185 (15) | 0.0026 (12) | −0.0011 (13) | 0.0023 (11) |
C5 | 0.0218 (17) | 0.0234 (16) | 0.0309 (18) | −0.0031 (13) | 0.0000 (14) | 0.0022 (14) |
C4 | 0.034 (2) | 0.0193 (16) | 0.0311 (19) | −0.0034 (14) | −0.0076 (16) | −0.0036 (14) |
C3 | 0.035 (2) | 0.0209 (16) | 0.0269 (18) | 0.0068 (14) | −0.0024 (16) | −0.0078 (13) |
C2 | 0.0246 (17) | 0.0228 (16) | 0.0227 (17) | 0.0080 (13) | 0.0014 (14) | −0.0007 (12) |
C1 | 0.0195 (16) | 0.0144 (13) | 0.0199 (16) | 0.0022 (12) | −0.0008 (13) | 0.0027 (12) |
C7 | 0.0165 (15) | 0.0131 (14) | 0.0159 (16) | 0.0031 (11) | 0.0013 (13) | 0.0010 (11) |
C8 | 0.0169 (15) | 0.0120 (13) | 0.0196 (16) | 0.0020 (11) | 0.0029 (13) | 0.0013 (11) |
C9 | 0.0219 (16) | 0.0167 (14) | 0.0180 (16) | −0.0032 (13) | 0.0045 (14) | −0.0015 (12) |
C10 | 0.0199 (16) | 0.0140 (13) | 0.0161 (15) | −0.0011 (12) | 0.0052 (13) | −0.0004 (11) |
C15 | 0.0198 (16) | 0.0226 (15) | 0.0168 (16) | −0.0014 (12) | 0.0085 (13) | 0.0031 (12) |
C14 | 0.0176 (15) | 0.0248 (16) | 0.0210 (16) | 0.0048 (12) | 0.0078 (13) | −0.0007 (13) |
C13 | 0.0275 (17) | 0.0164 (14) | 0.0161 (16) | 0.0040 (13) | −0.0015 (14) | 0.0013 (12) |
C12 | 0.0281 (18) | 0.0223 (15) | 0.0181 (16) | 0.0040 (14) | 0.0100 (14) | 0.0070 (12) |
C11 | 0.0234 (17) | 0.0271 (16) | 0.0184 (16) | 0.0059 (13) | 0.0080 (14) | 0.0003 (13) |
N1 | 0.0183 (14) | 0.0164 (12) | 0.0184 (13) | 0.0011 (10) | 0.0044 (11) | 0.0023 (10) |
O2 | 0.0311 (12) | 0.0264 (11) | 0.0148 (11) | 0.0048 (9) | 0.0039 (10) | 0.0014 (8) |
O1 | 0.0169 (11) | 0.0198 (10) | 0.0310 (13) | −0.0034 (9) | 0.0028 (10) | −0.0038 (9) |
O3 | 0.0376 (14) | 0.0288 (12) | 0.0244 (12) | 0.0144 (10) | 0.0170 (11) | 0.0054 (10) |
S2 | 0.0176 (4) | 0.0148 (4) | 0.0163 (4) | 0.0011 (3) | 0.0025 (3) | −0.0004 (3) |
S1 | 0.0183 (4) | 0.0182 (4) | 0.0230 (4) | −0.0002 (3) | 0.0072 (3) | 0.0000 (3) |
Br1—C13 | 1.893 (3) | C8—S2 | 1.773 (3) |
C6—C5 | 1.389 (4) | C8—H8A | 0.9700 |
C6—N1 | 1.395 (4) | C8—H8B | 0.9700 |
C6—C1 | 1.404 (4) | C9—O3 | 1.204 (4) |
C5—C4 | 1.378 (5) | C9—C10 | 1.489 (4) |
C5—H5A | 0.9300 | C10—C15 | 1.378 (4) |
C4—C3 | 1.393 (5) | C10—C11 | 1.391 (4) |
C4—H4A | 0.9300 | C15—C14 | 1.386 (4) |
C3—C2 | 1.378 (4) | C15—H15A | 0.9300 |
C3—H3A | 0.9300 | C14—C13 | 1.369 (4) |
C2—C1 | 1.393 (4) | C14—H14A | 0.9300 |
C2—H2A | 0.9300 | C13—C12 | 1.375 (4) |
C1—S1 | 1.726 (3) | C12—C11 | 1.378 (4) |
C7—N1 | 1.281 (4) | C12—H12A | 0.9300 |
C7—S1 | 1.726 (3) | C11—H11A | 0.9300 |
C7—S2 | 1.767 (3) | O2—S2 | 1.428 (2) |
C8—C9 | 1.520 (4) | O1—S2 | 1.435 (2) |
C5—C6—N1 | 124.8 (3) | O3—C9—C8 | 120.5 (3) |
C5—C6—C1 | 120.5 (3) | C10—C9—C8 | 116.9 (3) |
N1—C6—C1 | 114.6 (2) | C15—C10—C11 | 119.3 (3) |
C4—C5—C6 | 118.2 (3) | C15—C10—C9 | 123.5 (3) |
C4—C5—H5A | 120.9 | C11—C10—C9 | 117.1 (3) |
C6—C5—H5A | 120.9 | C10—C15—C14 | 120.3 (3) |
C5—C4—C3 | 120.9 (3) | C10—C15—H15A | 119.8 |
C5—C4—H4A | 119.5 | C14—C15—H15A | 119.8 |
C3—C4—H4A | 119.5 | C13—C14—C15 | 119.1 (3) |
C2—C3—C4 | 121.8 (3) | C13—C14—H14A | 120.5 |
C2—C3—H3A | 119.1 | C15—C14—H14A | 120.5 |
C4—C3—H3A | 119.1 | C14—C13—C12 | 121.8 (3) |
C3—C2—C1 | 117.4 (3) | C14—C13—Br1 | 119.6 (2) |
C3—C2—H2A | 121.3 | C12—C13—Br1 | 118.6 (2) |
C1—C2—H2A | 121.3 | C13—C12—C11 | 118.7 (3) |
C2—C1—C6 | 121.0 (3) | C13—C12—H12A | 120.6 |
C2—C1—S1 | 129.1 (2) | C11—C12—H12A | 120.6 |
C6—C1—S1 | 109.8 (2) | C12—C11—C10 | 120.7 (3) |
N1—C7—S1 | 118.6 (2) | C12—C11—H11A | 119.7 |
N1—C7—S2 | 120.2 (2) | C10—C11—H11A | 119.7 |
S1—C7—S2 | 121.18 (17) | C7—N1—C6 | 109.0 (3) |
C9—C8—S2 | 114.5 (2) | O2—S2—O1 | 118.72 (13) |
C9—C8—H8A | 108.6 | O2—S2—C7 | 108.34 (13) |
S2—C8—H8A | 108.6 | O1—S2—C7 | 107.07 (13) |
C9—C8—H8B | 108.6 | O2—S2—C8 | 106.09 (13) |
S2—C8—H8B | 108.6 | O1—S2—C8 | 110.47 (13) |
H8A—C8—H8B | 107.6 | C7—S2—C8 | 105.39 (13) |
O3—C9—C10 | 122.6 (3) | C1—S1—C7 | 87.97 (14) |
N1—C6—C5—C4 | −176.3 (3) | C14—C13—C12—C11 | 1.0 (5) |
C1—C6—C5—C4 | 2.1 (4) | Br1—C13—C12—C11 | −178.3 (2) |
C6—C5—C4—C3 | −0.4 (4) | C13—C12—C11—C10 | 0.1 (5) |
C5—C4—C3—C2 | −1.0 (5) | C15—C10—C11—C12 | −0.7 (4) |
C4—C3—C2—C1 | 0.6 (4) | C9—C10—C11—C12 | 179.6 (3) |
C3—C2—C1—C6 | 1.1 (4) | S1—C7—N1—C6 | 1.1 (3) |
C3—C2—C1—S1 | 178.0 (2) | S2—C7—N1—C6 | −177.54 (19) |
C5—C6—C1—C2 | −2.5 (4) | C5—C6—N1—C7 | 178.7 (3) |
N1—C6—C1—C2 | 176.0 (3) | C1—C6—N1—C7 | 0.3 (3) |
C5—C6—C1—S1 | −180.0 (2) | N1—C7—S2—O2 | −43.5 (3) |
N1—C6—C1—S1 | −1.4 (3) | S1—C7—S2—O2 | 137.99 (16) |
S2—C8—C9—O3 | −19.1 (4) | N1—C7—S2—O1 | −172.6 (2) |
S2—C8—C9—C10 | 159.8 (2) | S1—C7—S2—O1 | 8.8 (2) |
O3—C9—C10—C15 | −168.3 (3) | N1—C7—S2—C8 | 69.7 (3) |
C8—C9—C10—C15 | 12.9 (4) | S1—C7—S2—C8 | −108.81 (18) |
O3—C9—C10—C11 | 11.5 (4) | C9—C8—S2—O2 | −174.09 (19) |
C8—C9—C10—C11 | −167.4 (3) | C9—C8—S2—O1 | −44.2 (2) |
C11—C10—C15—C14 | 0.3 (4) | C9—C8—S2—C7 | 71.1 (2) |
C9—C10—C15—C14 | 180.0 (3) | C2—C1—S1—C7 | −175.6 (3) |
C10—C15—C14—C13 | 0.7 (4) | C6—C1—S1—C7 | 1.6 (2) |
C15—C14—C13—C12 | −1.4 (5) | N1—C7—S1—C1 | −1.6 (2) |
C15—C14—C13—Br1 | 177.9 (2) | S2—C7—S1—C1 | 176.96 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O2i | 0.93 | 2.56 | 3.420 (4) | 154 |
C8—H8A···O1ii | 0.97 | 2.37 | 3.289 (3) | 158 |
C8—H8B···O1iii | 0.97 | 2.50 | 3.241 (4) | 133 |
C14—H14A···O2iv | 0.93 | 2.56 | 3.226 (4) | 128 |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x, −y+1, −z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C15H10BrNO3S2 |
Mr | 396.27 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 5.6695 (10), 24.489 (4), 10.7042 (19) |
β (°) | 94.178 (3) |
V (Å3) | 1482.2 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.07 |
Crystal size (mm) | 0.42 × 0.30 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.363, 0.864 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6602, 2564, 2140 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.089, 1.03 |
No. of reflections | 2564 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.84 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O2i | 0.93 | 2.56 | 3.420 (4) | 154.0 |
C8—H8A···O1ii | 0.97 | 2.37 | 3.289 (3) | 157.7 |
C8—H8B···O1iii | 0.97 | 2.50 | 3.241 (4) | 132.8 |
C14—H14A···O2iv | 0.93 | 2.56 | 3.226 (4) | 128.4 |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x, −y+1, −z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z. |
Footnotes
‡Additional corresponding author: zsrkk@yahoo.com Thomson Reuters Researcher ID: A-5471-2009
Acknowledgements
We thank the University of Isfahan and the University of Malaya for supporting this work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Antane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun. 34, 2443–2449. Web of Science CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495–500. Google Scholar
Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem. 62, 798–807. CrossRef CAS Web of Science Google Scholar
Loghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009a). Acta Cryst. E65, o2287. Web of Science CSD CrossRef IUCr Journals Google Scholar
Loghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009b). Acta Cryst. E65, o2441. Web of Science CSD CrossRef IUCr Journals Google Scholar
Loghmani-Khouzani, H., Poorheravi, M. R., Sadeghi, M. M., Caggiano, L. & Jackson, R. F. W. (2008). Tetrahedron, 64, 7419–7425. Web of Science CrossRef CAS Google Scholar
Marco, J. L., Fernandez, I., Khira, N., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem. 60, 6678–6679. CSD CrossRef CAS Web of Science Google Scholar
Munoz, L., Rosa, E., Pilar Bosch, M. & Guerrero, A. (2005). Tetrahedron Lett. 46, 311–313. Web of Science CrossRef Google Scholar
Ni, C., Li, Y. & Hu, J. (2006). J. Org. Chem. 71, 6829–6833. Web of Science CrossRef PubMed CAS Google Scholar
Oishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent 1988 JP63 243 067, 212359. Google Scholar
Padmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suryakiran, N., Prabhakar, P., Reddy, T. S., Mahesh, K. C., Rajesh, K. & Venkateswarlu, Y. (2007). Tetrahedron Lett. 48, 877–881. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The existence of so many valence states of sulfur has generated selective and novel ways to affect oxidation, dehydration, and carbon-carbon bond formation (Loghmani-Khouzani et al., 2008). Recent methods that allow introduction of a sulfur constituent β to a carbonyl group have shown particular promise (Loghmani-Khouzani et al., 2009a,b; Suryakiran et al., 2007; Munoz et al., 2005). 2-(1,3-Benzothiazol-2-yl-sulfonyl)-1-(4-bromophenyl)ethanone as a new compound with sulfur atom β to the carbonyl group is of great importance in organic synthesis. β-Keto-sulfones are a very important group of intermediates as they are precursors for Michael and Knoevenagel reactions (Marco et al., 1995) and are used in the preparation of acetylenes, allenes, chalcones, vinyl sulfones, polyfunctionalized 4H-pyrans and ketones (Fuju et al., 1988). In addition, β-keto-sulfones can be converted into optically active β-hydroxy-sulfones, halomethyl sulfones and dihalomethyl sulfones (Ni et al., 2006). Halomethyl sulfones and dihalomethyl sulfones are very good α-carbanion stabilizing substituents and precursors for the preparation of alkenes, aziridines, epoxides, and β-hydroxy-sulfones (Grossert et al., 1984). Haloalkyl sulfones are useful in preventing aquatic organisms from attaching to fishing nets and ship hulls (Oishi et al., 1988). They also possess other biological properties such as herbicidal, bactericidal antifungal, algaecidal and insecticidal (Antane et al., 2004). Recently sulfone-linked heterocycles were prepared and have been showed antimicrobial activity (Padmavathi et al., 2008). We report here the crystal structure of the title compound as a precursor for synthesis of gem-difluoromethylene-containing heterocycle.
In the molecule of the title compound, (Fig. 1), a new thio-benzothiazole derivative, the bond lengths (Allen et al., 1987) and angles are within the normal values and are comparable to the related structures (Loghmani-Khouzani et al., 2008a,b). The dihedral angle between the benzothiazole ring system and the benzene ring is 67.57 (12)°. An interesting feature of the crystal structure is the short intermolecular Br···Civ [3.379 (3) Å; (iv) -x, -y, 2 - z] contact which is shorter than the sum of the van der Waals radii of these atoms. The crystal structure is stabilized by weak intermolecular C—H···O interactions (Table 1, Fig. 2).