organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2-oxo-3-(2-oxo-2,3-di­hydro-1H-indol-3-yl­­idene)butane­dioate

aTamilnadu Science and Technology Centre, Chennai 600 025, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and cOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 7 November 2009; accepted 28 November 2009; online 4 December 2009)

The title compound, C16H15NO6, crystallizes with two symmetry–independent mol­ecules in the asymmetric unit. The crystal structure is stabilized by inter­molecular C—H⋯O and N—H⋯O hydrogen bonds, and intra­molecular C—H⋯O hydrogen bonds. In addition, the crystal structure exhibits two inter­molecular C—H⋯π inter­actions.

Related literature

For the use of indole derivatives as bioactive drugs, see: Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]). They exhibit anti-allergic, central nervous system depressant and muscle-relaxant properties, see: Harris & Uhle (1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]). Indoles also exhibit high aldose reductase inhibitory activity, see: Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15NO6

  • Mr = 317.29

  • Triclinic, [P \overline 1]

  • a = 8.8277 (2) Å

  • b = 13.5365 (4) Å

  • c = 13.6300 (3) Å

  • α = 96.516 (3)°

  • β = 102.218 (2)°

  • γ = 100.668 (1)°

  • V = 1544.44 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.983

  • 37712 measured reflections

  • 8406 independent reflections

  • 5743 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.190

  • S = 1.02

  • 8406 reflections

  • 420 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O5 0.93 2.28 2.984 (3) 133
C20—H20⋯O12 0.93 2.24 2.944 (3) 132
N1—H1⋯O8i 0.86 2.38 3.126 (2) 146
N2—H2⋯O2ii 0.86 2.25 3.088 (2) 163
C21—H21⋯O9iii 0.93 2.60 3.431 (3) 149
C23—H23⋯O1ii 0.93 2.34 3.254 (3) 166
C29—H29ACg1i 0.96 2.75 3.530 (3) 139
C31—H31BCg2iv 0.97 2.69 3.597 (2) 156
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) x, y, z-1. Cg1 and Cg2 are the centroids of the C3–C8 benzene ring and the N1/C1–C3/C8 pyrrole ring, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Indole derivatives are used as bioactive drugs (Stevenson et al., 2000) and they exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle 1960; Ho et al., 1986). Indoles have been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). Against this background, we report the crystal structure of the title compound, which has two unique molecules in the asymmetric unit (further marked as A & B) (Fig. 1).

In the crystal structure, the bond lengths and angles are found to have normal values (Allen et al., 1987). The indole unit is essentially planar, with a mean deviation of -0.022 (2) Å for A, 0.018 (2) Å for B, respectively, from the least-squares plane defined by the nine constituent atoms. Intramolecular C4—H4···O5 and C20—H20···O12 hydrogen bonds generate S(7) ring motifs (Bernstein et al., 1995). The crystal packing is stabilized by intermolecular C—H···O and N—H···O hydrogen bonds. Atom N1 in the molecule at (x, y, z) donate one proton to atom O8 in the molecule at (-x, -y, 1 - z) forming a C(7) chain along c axis. Also, atoms N2 and C23 in the molecule at (x, y, z) donate one proton each to atom O2 and O1 in the molecule at (-x, 1 - y, 1 - z) generating R22(11) ring motif. The molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) are linked by C21—H21···O9 hydrogen bonds into cyclic centrosymmetric R22(18) dimers (Table 1). The molecular packing (Fig. 2) is further stabilized by intermolecular C—H···π interactions; the first between the methyl H atom and the benzene ring of an adjacent molecule, with a C29–H29A···Cg1i, the second between the methyl H atom and the pyrrole ring of a neighbouring molecule, with a C31–H31B···Cg2ii (Table 1; Cg1 and Cg2 are the centroids of the C3–C8 benzene ring and the N1/C1/C2/C3/C8 pyrrole ring, respectively).

Related literature top

For the use of indole derivatives as bioactive drugs, see: Stevenson et al. (2000). They exhibit anti-allergic, central nervous system depressant and muscle-relaxant properties, see: Harris & Uhle (1960); Ho et al. (1986). Indoles also exhibit high aldose reductase inhibitory activity, see: Rajeswaran et al. (1999). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 and Cg2 are the centroids of the C3–C8 benzene ring and the N1/C1–C3/C8 pyrrole ring, respectively.

Experimental top

To a magnetically stirred solution of isatin (2 mmol) and aniline (2 mmol) in ethanol (3 ml) was added drop wise, dimethyl acetylenedicarboxylate (2 mmol, 0.284 g) at room temperature over 10 min. After complete the reaction as indicated by TLC water was added. The reaction mixture was extracted with ethyl acetate (2x30 ml) and the organic layer was separated carefully from the aqueous layer. The combined organic layers were dried over anhydrous Na2SO4 by which the water present after the extraction can be removed and further, the organic layer is concentrated in vacuum. The crude was purified by column chromatography on silica gel (Merck, 100–200 mesh, ethyl acetate-petroleum ether (15:85). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethanol:petroleum ether (3:1)at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···π interactions (dotted lines) in the structure of the title compound. Cg denotes the ring centroids. [Symmetry code: (i) - x, - y, 1 - z; (ii) x, y, - 1 + z.]
Diethyl 2-oxo-3-(2-oxo-2,3-dihydro-1H-indol-3-ylidene)butanedioate top
Crystal data top
C16H15NO6Z = 4
Mr = 317.29F(000) = 664
Triclinic, P1Dx = 1.365 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8277 (2) ÅCell parameters from 8406 reflections
b = 13.5365 (4) Åθ = 1.5–29.6°
c = 13.6300 (3) ŵ = 0.11 mm1
α = 96.516 (3)°T = 293 K
β = 102.218 (2)°Block, colourless
γ = 100.668 (1)°0.24 × 0.22 × 0.16 mm
V = 1544.44 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8406 independent reflections
Radiation source: fine-focus sealed tube5743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 29.6°, θmin = 1.6°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
k = 1818
Tmin = 0.975, Tmax = 0.983l = 1818
37712 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.1072P)2 + 0.3361P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8406 reflectionsΔρmax = 0.60 e Å3
420 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C16H15NO6γ = 100.668 (1)°
Mr = 317.29V = 1544.44 (7) Å3
Triclinic, P1Z = 4
a = 8.8277 (2) ÅMo Kα radiation
b = 13.5365 (4) ŵ = 0.11 mm1
c = 13.6300 (3) ÅT = 293 K
α = 96.516 (3)°0.24 × 0.22 × 0.16 mm
β = 102.218 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
8406 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5743 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.028
37712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.02Δρmax = 0.60 e Å3
8406 reflectionsΔρmin = 0.35 e Å3
420 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0557 (2)0.14385 (14)0.77827 (13)0.0384 (4)
C20.01462 (19)0.15226 (13)0.68732 (12)0.0340 (4)
C30.0893 (2)0.06556 (13)0.67808 (12)0.0354 (4)
C40.1693 (2)0.02801 (16)0.61002 (15)0.0459 (4)
H40.18420.06070.55530.055*
C50.2264 (3)0.05904 (17)0.62498 (18)0.0553 (5)
H50.28000.08510.57970.066*
C60.2050 (3)0.10727 (17)0.7058 (2)0.0584 (6)
H60.24640.16490.71490.070*
C70.1242 (3)0.07275 (16)0.77380 (18)0.0521 (5)
H70.10830.10660.82770.063*
C80.0676 (2)0.01387 (14)0.75889 (14)0.0393 (4)
C90.0045 (2)0.23086 (14)0.63759 (12)0.0358 (4)
C100.0871 (2)0.31007 (14)0.67537 (13)0.0375 (4)
C110.2680 (2)0.28477 (15)0.64117 (15)0.0449 (4)
C120.4998 (3)0.3423 (2)0.6565 (3)0.0824 (9)
H12A0.54220.31430.58510.099*
H12B0.54560.29530.69650.099*
C130.5392 (4)0.4401 (3)0.6780 (4)0.1182 (14)
H13A0.49240.46880.74800.177*
H13B0.65240.43170.66510.177*
H13C0.49890.48480.63520.177*
C140.0563 (2)0.25214 (15)0.54688 (13)0.0406 (4)
C150.0267 (3)0.3480 (2)0.41055 (17)0.0647 (6)
H15A0.03260.28910.36510.078*
H15B0.12870.39550.42800.078*
C160.1013 (5)0.3972 (3)0.3625 (3)0.1078 (12)
H16A0.20080.34870.34450.162*
H16B0.07790.42080.30240.162*
H16C0.10770.45390.40950.162*
C170.1535 (2)0.36702 (14)0.12817 (13)0.0400 (4)
C180.2254 (2)0.34775 (13)0.03846 (12)0.0347 (4)
C190.2462 (2)0.44351 (13)0.00188 (12)0.0367 (4)
C200.3048 (3)0.47612 (15)0.08198 (15)0.0464 (4)
H200.33850.43140.12540.056*
C210.3125 (3)0.57598 (16)0.09617 (16)0.0538 (5)
H210.35280.59890.14920.065*
C220.2612 (3)0.64208 (15)0.03279 (17)0.0551 (5)
H220.26640.70890.04450.066*
C230.2026 (3)0.61209 (15)0.04728 (16)0.0518 (5)
H230.16820.65720.09000.062*
C240.1967 (2)0.51261 (14)0.06180 (13)0.0397 (4)
C250.2607 (2)0.25640 (13)0.01784 (12)0.0340 (4)
C260.2336 (2)0.17683 (13)0.08415 (12)0.0354 (4)
C270.3438 (2)0.19955 (14)0.19117 (13)0.0389 (4)
C280.3865 (3)0.15228 (16)0.35426 (13)0.0483 (5)
H28A0.35490.20500.39470.058*
H28B0.49880.17360.35740.058*
C290.3561 (3)0.05597 (18)0.39389 (15)0.0580 (6)
H29A0.24440.03430.38850.087*
H29B0.41230.06560.46390.087*
H29C0.39190.00500.35520.087*
C300.3304 (2)0.22821 (13)0.06912 (12)0.0350 (4)
C310.4944 (2)0.12998 (16)0.12933 (15)0.0455 (4)
H31A0.56320.18940.14200.055*
H31B0.41540.10030.19180.055*
C320.5884 (3)0.0553 (2)0.0959 (2)0.0707 (7)
H32A0.65970.08300.03100.106*
H32B0.64830.04020.14470.106*
H32C0.51850.00610.09020.106*
N10.01684 (19)0.06241 (12)0.81703 (12)0.0428 (4)
H10.04110.04290.87070.051*
N20.1433 (2)0.46565 (12)0.13772 (12)0.0455 (4)
H20.10830.49570.18460.055*
O10.13388 (18)0.20008 (11)0.80943 (11)0.0527 (4)
O20.01530 (17)0.39110 (10)0.72271 (11)0.0502 (3)
O30.34030 (19)0.21042 (13)0.58261 (14)0.0718 (5)
O40.32745 (17)0.35627 (12)0.68209 (12)0.0605 (4)
O50.15638 (19)0.21704 (14)0.51818 (12)0.0631 (4)
O60.0174 (2)0.31791 (12)0.50174 (11)0.0555 (4)
O70.1126 (2)0.30431 (12)0.18008 (11)0.0563 (4)
O80.14135 (17)0.09712 (10)0.05381 (10)0.0483 (3)
O90.4607 (2)0.26501 (14)0.21396 (12)0.0705 (5)
O100.29497 (15)0.13619 (10)0.24918 (9)0.0413 (3)
O110.41725 (16)0.15912 (10)0.04989 (9)0.0423 (3)
O120.30961 (18)0.26196 (11)0.14685 (9)0.0496 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (9)0.0390 (9)0.0369 (8)0.0105 (8)0.0155 (7)0.0065 (7)
C20.0335 (8)0.0380 (9)0.0318 (7)0.0074 (7)0.0114 (6)0.0038 (6)
C30.0346 (8)0.0354 (9)0.0361 (8)0.0080 (7)0.0094 (7)0.0032 (7)
C40.0456 (10)0.0513 (12)0.0450 (10)0.0155 (9)0.0174 (8)0.0034 (8)
C50.0517 (11)0.0540 (13)0.0649 (13)0.0211 (10)0.0220 (10)0.0025 (10)
C60.0535 (12)0.0420 (11)0.0850 (16)0.0197 (10)0.0209 (11)0.0082 (11)
C70.0523 (11)0.0416 (11)0.0698 (13)0.0154 (9)0.0202 (10)0.0193 (10)
C80.0357 (8)0.0377 (9)0.0454 (9)0.0073 (7)0.0118 (7)0.0068 (7)
C90.0366 (8)0.0397 (9)0.0324 (7)0.0086 (7)0.0113 (6)0.0048 (7)
C100.0432 (9)0.0374 (9)0.0350 (8)0.0104 (7)0.0133 (7)0.0085 (7)
C110.0441 (10)0.0450 (11)0.0460 (9)0.0147 (8)0.0095 (8)0.0029 (8)
C120.0502 (13)0.093 (2)0.106 (2)0.0313 (14)0.0160 (14)0.0034 (17)
C130.078 (2)0.118 (3)0.166 (4)0.054 (2)0.027 (2)0.001 (3)
C140.0425 (9)0.0434 (10)0.0378 (8)0.0080 (8)0.0138 (7)0.0091 (7)
C150.0844 (17)0.0679 (15)0.0454 (11)0.0082 (13)0.0214 (11)0.0256 (10)
C160.163 (4)0.086 (2)0.0790 (19)0.032 (2)0.020 (2)0.0371 (17)
C170.0483 (10)0.0405 (10)0.0373 (8)0.0134 (8)0.0189 (7)0.0083 (7)
C180.0416 (9)0.0328 (9)0.0319 (7)0.0073 (7)0.0133 (7)0.0070 (6)
C190.0415 (9)0.0319 (9)0.0357 (8)0.0057 (7)0.0082 (7)0.0063 (7)
C200.0582 (11)0.0401 (10)0.0445 (9)0.0077 (9)0.0197 (9)0.0125 (8)
C210.0637 (13)0.0439 (11)0.0523 (11)0.0011 (10)0.0137 (10)0.0193 (9)
C220.0655 (13)0.0311 (10)0.0617 (12)0.0019 (9)0.0044 (10)0.0128 (9)
C230.0633 (12)0.0327 (10)0.0551 (11)0.0096 (9)0.0089 (10)0.0010 (8)
C240.0445 (9)0.0349 (9)0.0372 (8)0.0072 (7)0.0068 (7)0.0029 (7)
C250.0392 (8)0.0329 (9)0.0316 (7)0.0062 (7)0.0130 (6)0.0066 (6)
C260.0422 (9)0.0335 (9)0.0344 (8)0.0084 (7)0.0168 (7)0.0070 (6)
C270.0434 (9)0.0396 (10)0.0368 (8)0.0089 (8)0.0138 (7)0.0112 (7)
C280.0538 (11)0.0560 (12)0.0330 (8)0.0094 (9)0.0070 (8)0.0093 (8)
C290.0618 (13)0.0688 (15)0.0410 (10)0.0053 (11)0.0067 (9)0.0233 (10)
C300.0429 (9)0.0309 (8)0.0323 (7)0.0051 (7)0.0137 (7)0.0050 (6)
C310.0510 (10)0.0444 (11)0.0460 (10)0.0102 (9)0.0249 (8)0.0022 (8)
C320.0883 (18)0.0684 (16)0.0830 (17)0.0424 (14)0.0524 (15)0.0236 (13)
N10.0522 (9)0.0441 (9)0.0410 (8)0.0150 (7)0.0219 (7)0.0155 (7)
N20.0618 (10)0.0400 (9)0.0407 (8)0.0167 (8)0.0223 (7)0.0029 (6)
O10.0691 (9)0.0518 (9)0.0550 (8)0.0278 (7)0.0369 (7)0.0154 (7)
O20.0514 (8)0.0391 (8)0.0563 (8)0.0049 (6)0.0133 (6)0.0015 (6)
O30.0503 (8)0.0646 (11)0.0850 (12)0.0119 (8)0.0004 (8)0.0223 (9)
O40.0476 (8)0.0597 (10)0.0724 (10)0.0225 (7)0.0114 (7)0.0093 (8)
O50.0635 (9)0.0827 (12)0.0651 (9)0.0311 (9)0.0400 (8)0.0308 (9)
O60.0756 (10)0.0593 (9)0.0458 (7)0.0270 (8)0.0261 (7)0.0246 (7)
O70.0802 (10)0.0532 (9)0.0542 (8)0.0248 (8)0.0408 (8)0.0211 (7)
O80.0620 (8)0.0392 (7)0.0399 (6)0.0014 (6)0.0129 (6)0.0089 (5)
O90.0624 (9)0.0742 (11)0.0580 (9)0.0204 (8)0.0011 (7)0.0279 (8)
O100.0473 (7)0.0430 (7)0.0335 (6)0.0044 (6)0.0100 (5)0.0130 (5)
O110.0536 (8)0.0422 (7)0.0402 (6)0.0180 (6)0.0231 (6)0.0094 (5)
O120.0725 (9)0.0501 (8)0.0347 (6)0.0214 (7)0.0210 (6)0.0120 (6)
Geometric parameters (Å, º) top
C1—O11.217 (2)C17—N21.348 (2)
C1—N11.344 (2)C17—C181.511 (2)
C1—C21.505 (2)C18—C251.344 (2)
C2—C91.342 (2)C18—C191.460 (2)
C2—C31.455 (2)C19—C201.385 (3)
C3—C41.386 (3)C19—C241.396 (3)
C3—C81.398 (3)C20—C211.379 (3)
C4—C51.384 (3)C20—H200.9300
C4—H40.9300C21—C221.375 (3)
C5—C61.372 (3)C21—H210.9300
C5—H50.9300C22—C231.373 (3)
C6—C71.376 (3)C22—H220.9300
C6—H60.9300C23—C241.376 (3)
C7—C81.376 (3)C23—H230.9300
C7—H70.9300C24—N21.394 (2)
C8—N11.389 (2)C25—C301.490 (2)
C9—C141.485 (2)C25—C261.500 (2)
C9—C101.506 (3)C26—O81.196 (2)
C10—O21.196 (2)C26—C271.535 (2)
C10—C111.526 (3)C27—O91.187 (2)
C11—O31.192 (2)C27—O101.307 (2)
C11—O41.309 (2)C28—O101.458 (2)
C12—C131.443 (4)C28—C291.468 (3)
C12—O41.458 (3)C28—H28A0.9700
C12—H12A0.9700C28—H28B0.9700
C12—H12B0.9700C29—H29A0.9600
C13—H13A0.9600C29—H29B0.9600
C13—H13B0.9600C29—H29C0.9600
C13—H13C0.9600C30—O121.193 (2)
C14—O51.191 (2)C30—O111.330 (2)
C14—O61.328 (2)C31—O111.452 (2)
C15—O61.457 (2)C31—C321.475 (3)
C15—C161.487 (4)C31—H31A0.9700
C15—H15A0.9700C31—H31B0.9700
C15—H15B0.9700C32—H32A0.9600
C16—H16A0.9600C32—H32B0.9600
C16—H16B0.9600C32—H32C0.9600
C16—H16C0.9600N1—H10.8600
C17—O71.217 (2)N2—H20.8600
O1—C1—N1127.09 (17)C19—C18—C17105.58 (15)
O1—C1—C2125.97 (17)C20—C19—C24119.05 (17)
N1—C1—C2106.93 (15)C20—C19—C18134.57 (17)
C9—C2—C3136.93 (16)C24—C19—C18106.35 (15)
C9—C2—C1117.74 (16)C21—C20—C19118.9 (2)
C3—C2—C1105.33 (14)C21—C20—H20120.6
C4—C3—C8119.03 (17)C19—C20—H20120.6
C4—C3—C2134.46 (17)C22—C21—C20120.8 (2)
C8—C3—C2106.51 (15)C22—C21—H21119.6
C5—C4—C3118.80 (19)C20—C21—H21119.6
C5—C4—H4120.6C23—C22—C21121.74 (19)
C3—C4—H4120.6C23—C22—H22119.1
C6—C5—C4120.8 (2)C21—C22—H22119.1
C6—C5—H5119.6C22—C23—C24117.3 (2)
C4—C5—H5119.6C22—C23—H23121.4
C5—C6—C7121.8 (2)C24—C23—H23121.4
C5—C6—H6119.1C23—C24—N2127.40 (18)
C7—C6—H6119.1C23—C24—C19122.28 (18)
C6—C7—C8117.3 (2)N2—C24—C19110.32 (16)
C6—C7—H7121.3C18—C25—C30123.16 (15)
C8—C7—H7121.3C18—C25—C26120.70 (15)
C7—C8—N1127.58 (18)C30—C25—C26116.13 (15)
C7—C8—C3122.25 (18)O8—C26—C25122.65 (15)
N1—C8—C3110.17 (15)O8—C26—C27121.44 (15)
C2—C9—C14125.62 (17)C25—C26—C27115.65 (14)
C2—C9—C10120.51 (15)O9—C27—O10126.28 (17)
C14—C9—C10113.80 (15)O9—C27—C26122.21 (16)
O2—C10—C9122.08 (16)O10—C27—C26111.46 (15)
O2—C10—C11121.74 (17)O10—C28—C29108.15 (16)
C9—C10—C11115.94 (15)O10—C28—H28A110.1
O3—C11—O4126.54 (19)C29—C28—H28A110.1
O3—C11—C10122.63 (18)O10—C28—H28B110.1
O4—C11—C10110.80 (16)C29—C28—H28B110.1
C13—C12—O4108.4 (3)H28A—C28—H28B108.4
C13—C12—H12A110.0C28—C29—H29A109.5
O4—C12—H12A110.0C28—C29—H29B109.5
C13—C12—H12B110.0H29A—C29—H29B109.5
O4—C12—H12B110.0C28—C29—H29C109.5
H12A—C12—H12B108.4H29A—C29—H29C109.5
C12—C13—H13A109.5H29B—C29—H29C109.5
C12—C13—H13B109.5O12—C30—O11123.95 (16)
H13A—C13—H13B109.5O12—C30—C25124.67 (17)
C12—C13—H13C109.5O11—C30—C25111.38 (14)
H13A—C13—H13C109.5O11—C31—C32108.50 (17)
H13B—C13—H13C109.5O11—C31—H31A110.0
O5—C14—O6124.35 (18)C32—C31—H31A110.0
O5—C14—C9126.15 (18)O11—C31—H31B110.0
O6—C14—C9109.50 (16)C32—C31—H31B110.0
O6—C15—C16105.1 (2)H31A—C31—H31B108.4
O6—C15—H15A110.7C31—C32—H32A109.5
C16—C15—H15A110.7C31—C32—H32B109.5
O6—C15—H15B110.7H32A—C32—H32B109.5
C16—C15—H15B110.7C31—C32—H32C109.5
H15A—C15—H15B108.8H32A—C32—H32C109.5
C15—C16—H16A109.5H32B—C32—H32C109.5
C15—C16—H16B109.5C1—N1—C8111.02 (15)
H16A—C16—H16B109.5C1—N1—H1124.5
C15—C16—H16C109.5C8—N1—H1124.5
H16A—C16—H16C109.5C17—N2—C24111.23 (15)
H16B—C16—H16C109.5C17—N2—H2124.4
O7—C17—N2127.76 (17)C24—N2—H2124.4
O7—C17—C18125.78 (17)C11—O4—C12117.01 (18)
N2—C17—C18106.46 (15)C14—O6—C15117.48 (17)
C25—C18—C19136.02 (16)C27—O10—C28116.77 (14)
C25—C18—C17118.30 (15)C30—O11—C31115.03 (14)
O1—C1—C2—C92.7 (3)C19—C20—C21—C220.7 (3)
N1—C1—C2—C9177.88 (15)C20—C21—C22—C230.8 (3)
O1—C1—C2—C3177.12 (18)C21—C22—C23—C240.1 (3)
N1—C1—C2—C32.26 (19)C22—C23—C24—N2179.56 (19)
C9—C2—C3—C42.0 (4)C22—C23—C24—C190.6 (3)
C1—C2—C3—C4177.81 (19)C20—C19—C24—C230.6 (3)
C9—C2—C3—C8178.5 (2)C18—C19—C24—C23178.86 (18)
C1—C2—C3—C81.66 (18)C20—C19—C24—N2179.51 (16)
C8—C3—C4—C50.6 (3)C18—C19—C24—N21.27 (19)
C2—C3—C4—C5179.95 (19)C19—C18—C25—C304.9 (3)
C3—C4—C5—C60.2 (3)C17—C18—C25—C30179.33 (15)
C4—C5—C6—C71.2 (3)C19—C18—C25—C26174.04 (18)
C5—C6—C7—C81.3 (3)C17—C18—C25—C261.7 (2)
C6—C7—C8—N1179.91 (19)C18—C25—C26—O8116.3 (2)
C6—C7—C8—C30.4 (3)C30—C25—C26—O864.7 (2)
C4—C3—C8—C70.6 (3)C18—C25—C26—C2769.4 (2)
C2—C3—C8—C7179.88 (17)C30—C25—C26—C27109.57 (17)
C4—C3—C8—N1179.04 (16)O8—C26—C27—O9160.7 (2)
C2—C3—C8—N10.53 (19)C25—C26—C27—O913.6 (3)
C3—C2—C9—C140.4 (3)O8—C26—C27—O1016.8 (2)
C1—C2—C9—C14179.78 (15)C25—C26—C27—O10168.85 (15)
C3—C2—C9—C10177.37 (18)C18—C25—C30—O1228.9 (3)
C1—C2—C9—C102.8 (2)C26—C25—C30—O12152.14 (18)
C2—C9—C10—O2100.8 (2)C18—C25—C30—O11152.05 (16)
C14—C9—C10—O276.5 (2)C26—C25—C30—O1126.9 (2)
C2—C9—C10—C1184.7 (2)O1—C1—N1—C8177.35 (19)
C14—C9—C10—C1197.97 (18)C2—C1—N1—C82.0 (2)
O2—C10—C11—O3169.5 (2)C7—C8—N1—C1178.57 (19)
C9—C10—C11—O35.0 (3)C3—C8—N1—C11.0 (2)
O2—C10—C11—O48.5 (3)O7—C17—N2—C24177.8 (2)
C9—C10—C11—O4177.00 (16)C18—C17—N2—C241.8 (2)
C2—C9—C14—O516.8 (3)C23—C24—N2—C17179.5 (2)
C10—C9—C14—O5160.4 (2)C19—C24—N2—C170.4 (2)
C2—C9—C14—O6163.70 (17)O3—C11—O4—C122.3 (4)
C10—C9—C14—O619.2 (2)C10—C11—O4—C12179.8 (2)
O7—C17—C18—C255.9 (3)C13—C12—O4—C11160.4 (3)
N2—C17—C18—C25174.52 (16)O5—C14—O6—C150.6 (3)
O7—C17—C18—C19177.09 (19)C9—C14—O6—C15179.88 (17)
N2—C17—C18—C192.45 (19)C16—C15—O6—C14165.1 (2)
C25—C18—C19—C203.9 (4)O9—C27—O10—C284.9 (3)
C17—C18—C19—C20179.9 (2)C26—C27—O10—C28177.72 (15)
C25—C18—C19—C24173.9 (2)C29—C28—O10—C27157.96 (18)
C17—C18—C19—C242.22 (18)O12—C30—O11—C313.1 (3)
C24—C19—C20—C210.1 (3)C25—C30—O11—C31177.85 (14)
C18—C19—C20—C21177.6 (2)C32—C31—O11—C30178.71 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O50.932.282.984 (3)133
C20—H20···O120.932.242.944 (3)132
N1—H1···O8i0.862.383.126 (2)146
N2—H2···O2ii0.862.253.088 (2)163
C21—H21···O9iii0.932.603.431 (3)149
C23—H23···O1ii0.932.343.254 (3)166
C29—H29A···Cg1i0.962.753.530 (3)139
C31—H31B···Cg2iv0.972.693.597 (2)156
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formulaC16H15NO6
Mr317.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8277 (2), 13.5365 (4), 13.6300 (3)
α, β, γ (°)96.516 (3), 102.218 (2), 100.668 (1)
V3)1544.44 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
37712, 8406, 5743
Rint0.028
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.190, 1.02
No. of reflections8406
No. of parameters420
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.35

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O50.932.282.984 (3)133
C20—H20···O120.932.242.944 (3)132
N1—H1···O8i0.862.383.126 (2)146
N2—H2···O2ii0.862.253.088 (2)163
C21—H21···O9iii0.932.603.431 (3)149
C23—H23···O1ii0.932.343.254 (3)166
C29—H29A···Cg1i0.962.753.530 (3)139
C31—H31B···Cg2iv0.972.693.597 (2)156
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y, z1.
 

Acknowledgements

The authors thank Babu Varghese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353–363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds