organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(7-Di­methylamino-1-hy­droxy-3-naphthyl)(morpholino)methanone

aBiomaterial Research Center, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea, bCenter for Chemical Analysis, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea, and cDepartment of Chemistry, Kongju National University, Kongju 314-701, Republic of Korea
*Correspondence e-mail: chkim@krict.re.kr

(Received 16 November 2009; accepted 2 December 2009; online 9 December 2009)

In the title compound, C17H20N2O3, the morpholine ring is in a slightly distorted chair form. The crystal structure is stabilized by an inter­molecular O—H⋯O hydrogen bond between the H atom of the hydroxyl group and the O atom of a neighbouring carbonyl group. A weak inter­molecular C—H⋯π inter­action is also present.

Related literature

For the synthesis and applications of organic photochromic dyes, see: Gabbutt et al. (2003[Gabbutt, C. D., Heron, B. M., Instone, A. C., Thomas, D. A., Partington, S. M., Hursthouse, M. B. & Gelbrich, T. (2003). Eur. J. Org. Chem. pp. 1220-1230.], 2004[Gabbutt, C. D., Hepworth, J. D., Heron, B. M., Thomas, D. A., Kilner, C. & Partington, S. M. (2004). Heterocycles, 63, 567-582.]); Kumar et al. (1995[Kumar, A., Gemert, B. V. & Knowles, D. B. (1995). US Patent 5458814.]); Gemert & Selvig (2000[Gemert, B. V. & Selvig, C. D. (2000). US Patent 6106744.]); Nelson et al. (2002[Nelson, C. M., Chopra, A., Knowles, D. B., Gemert, B. V. & Kumar, A. (2002). US Patent 6348604 B1.]). For their potential use as variable optical transmission materials and in optical storage, see; Crano & Guglielmetti (1999[Crano, J. C. & Guglielmetti, R. J. (1999). Editors. Organic Photochromic and Thermochromic Compounds, Vol 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O3

  • Mr = 300.35

  • Orthorhombic, P c a 21

  • a = 12.6250 (5) Å

  • b = 13.9634 (6) Å

  • c = 8.8369 (3) Å

  • V = 1557.84 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.41 × 0.18 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 8069 measured reflections

  • 2044 independent reflections

  • 1475 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.04

  • 2044 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.631 (3) 172
C17—H17CCgii 0.96 2.80 3.533 (2) 134
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}]. Cg is the centroid of the C5–C10 benzene ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of organic photochromic dyes and their application has become of great interest recently (Gabbutt et al., 2003, 2004; Kumar et al., 1995; Gemert & Selvig, 2000; Nelson et al., 2002. Because they may be useful such as variable optical transmission materials (ophthalmic glasses and lenses) or in potential use such as optical storage (optical disks or memories) (Crano & Guglielmetti, 1999). Here we report the crystal structure of the title compound (Fig. 1). In the title compound, the conformation of the morpholine ring is in a slightly distorted chair form. The crystal packing (Fig. 2) is stabilized by an intermolecular O—H···O hydrogen bond between the H atom of the hydroxyl group and the O atom of a neighbouring CO unit, with a O1—H1···O2i (Table 1). The molecular packing (Fig. 2) is further stabilized by a intermolecular C—H···π interaction between a methyl H atom of the dimethylamino group and the N-bonded benzene ring, with a C17—H17C···Cgii (Table 1; Cg is the centroid of the C5–C10 benzene ring).

Related literature top

For the synthesis and applications of organic photochromic dyes, see: Gabbutt et al. (2003, 2004); Kumar et al. (1995); Gemert & Selvig (2000); Nelson et al. (2002). For their potential use as variable optical transmission

materials and in optical storage, see; Crano & Guglielmetti (1999). Cg is the centroid of the C5–C10 benzene ring.

Experimental top

The title compound was synthesized from the reaction of 1-hydroxy-7-dimethylamino-3-naphthonic acid (116 g, 0.5 mol) and morpholine (48 g, 1.2 mol) in anhydrous CH2Cl2 for 24 h at room temperature. The reaction was quenched by the addition of water and the organic layer separated, dried over anhydrous MgSO4, filtered and concentrated to give the title compound (120 g, yield 81%). Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All the Friedel pairs were merged. All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2–1.5 Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. O—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) - x + 3/2, y, z -1/2; (ii) - x + 1, - y + 1, z - 1/2; (iii) - x + 3/2, y, z + 1/2; (iv) - x + 1, - y + 1, z + 1/2.]
(7-Dimethylamino-1-hydroxy-3-naphthyl)(morpholino)methanone top
Crystal data top
C17H20N2O3F(000) = 640
Mr = 300.35Dx = 1.281 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2694 reflections
a = 12.6250 (5) Åθ = 2.9–22.0°
b = 13.9634 (6) ŵ = 0.09 mm1
c = 8.8369 (3) ÅT = 296 K
V = 1557.84 (11) Å3Block, silver
Z = 40.41 × 0.18 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1475 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.3°, θmin = 1.5°
Detector resolution: 10 pixels mm-1h = 1611
ϕ and ω scansk = 918
8069 measured reflectionsl = 911
2044 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.0129P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2044 reflectionsΔρmax = 0.19 e Å3
200 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
C17H20N2O3V = 1557.84 (11) Å3
Mr = 300.35Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 12.6250 (5) ŵ = 0.09 mm1
b = 13.9634 (6) ÅT = 296 K
c = 8.8369 (3) Å0.41 × 0.18 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1475 reflections with I > 2σ(I)
8069 measured reflectionsRint = 0.025
2044 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
2044 reflectionsΔρmin = 0.15 e Å3
200 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67137 (15)0.76538 (16)0.3748 (2)0.0597 (6)
H10.72570.79210.40330.090*
O20.64658 (15)0.84718 (18)0.9402 (3)0.0682 (6)
O30.31381 (16)0.94813 (16)1.1678 (2)0.0583 (6)
N10.38830 (19)0.55244 (19)0.1665 (3)0.0600 (8)
N20.47850 (17)0.89337 (17)0.9690 (3)0.0475 (6)
C10.4410 (2)0.76093 (18)0.7082 (3)0.0432 (6)
H1A0.38860.75950.78210.052*
C20.53284 (19)0.81050 (16)0.7348 (3)0.0387 (6)
C30.6131 (2)0.81177 (19)0.6231 (3)0.0397 (6)
H3A0.67620.84390.64220.048*
C40.59920 (19)0.76642 (18)0.4873 (3)0.0389 (6)
C50.50466 (19)0.71367 (16)0.4583 (3)0.0362 (5)
C60.4919 (2)0.66117 (17)0.3236 (3)0.0412 (6)
H6A0.54460.66340.25010.049*
C70.4022 (2)0.60611 (19)0.2982 (3)0.0465 (7)
C80.3216 (2)0.6086 (2)0.4082 (4)0.0514 (8)
H8A0.25930.57460.39110.062*
C90.3321 (2)0.65914 (19)0.5389 (4)0.0483 (7)
H9A0.27720.65890.60900.058*
C100.4249 (2)0.71200 (17)0.5702 (3)0.0383 (6)
C110.5567 (2)0.8524 (2)0.8856 (3)0.0448 (6)
C120.38259 (19)0.94019 (19)0.9127 (3)0.0429 (6)
H12A0.36630.91650.81210.051*
H12B0.39441.00870.90580.051*
C130.2917 (2)0.9210 (2)1.0154 (4)0.0552 (8)
H13A0.23030.95610.97990.066*
H13B0.27480.85331.01240.066*
C140.4045 (2)0.8996 (2)1.2216 (4)0.0616 (8)
H14A0.39100.83121.22150.074*
H14B0.41840.91901.32510.074*
C150.5006 (2)0.9204 (2)1.1257 (3)0.0595 (9)
H15A0.51770.98801.13100.071*
H15B0.56080.88441.16310.071*
C160.3346 (3)0.4603 (2)0.1784 (5)0.0888 (13)
H16A0.28100.46390.25520.133*
H16B0.38500.41160.20470.133*
H16C0.30240.44480.08310.133*
C170.4705 (3)0.5571 (3)0.0525 (5)0.0855 (13)
H17A0.50210.61960.05330.128*
H17B0.44020.54490.04530.128*
H17C0.52360.50980.07380.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0421 (11)0.0899 (15)0.0471 (12)0.0209 (10)0.0090 (10)0.0154 (11)
O20.0366 (11)0.1086 (17)0.0593 (13)0.0192 (11)0.0110 (11)0.0273 (12)
O30.0509 (12)0.0789 (14)0.0452 (11)0.0120 (11)0.0080 (9)0.0015 (10)
N10.0498 (16)0.0608 (15)0.0693 (18)0.0048 (12)0.0095 (14)0.0306 (13)
N20.0353 (12)0.0696 (15)0.0375 (12)0.0122 (11)0.0063 (11)0.0107 (11)
C10.0382 (15)0.0469 (14)0.0443 (16)0.0039 (12)0.0031 (13)0.0048 (12)
C20.0342 (14)0.0419 (13)0.0400 (14)0.0046 (11)0.0011 (12)0.0038 (11)
C30.0314 (15)0.0431 (14)0.0446 (15)0.0028 (11)0.0034 (12)0.0046 (11)
C40.0312 (14)0.0436 (13)0.0419 (14)0.0025 (11)0.0033 (12)0.0003 (12)
C50.0332 (13)0.0360 (12)0.0394 (14)0.0048 (10)0.0043 (11)0.0004 (11)
C60.0359 (15)0.0431 (13)0.0446 (14)0.0041 (12)0.0002 (12)0.0042 (11)
C70.0443 (17)0.0410 (14)0.0542 (17)0.0081 (12)0.0123 (14)0.0087 (12)
C80.0376 (16)0.0493 (15)0.067 (2)0.0063 (12)0.0098 (15)0.0082 (14)
C90.0379 (16)0.0511 (15)0.0557 (17)0.0018 (13)0.0043 (13)0.0048 (14)
C100.0350 (14)0.0370 (12)0.0428 (14)0.0022 (11)0.0006 (12)0.0015 (10)
C110.0350 (16)0.0535 (15)0.0460 (15)0.0050 (12)0.0005 (13)0.0093 (13)
C120.0377 (15)0.0492 (14)0.0417 (14)0.0086 (12)0.0018 (12)0.0014 (12)
C130.0396 (17)0.071 (2)0.0551 (19)0.0011 (14)0.0013 (14)0.0017 (15)
C140.064 (2)0.077 (2)0.0447 (16)0.0134 (17)0.0017 (16)0.0045 (16)
C150.0465 (18)0.086 (2)0.0455 (17)0.0145 (17)0.0083 (14)0.0217 (17)
C160.099 (3)0.0587 (18)0.109 (3)0.0026 (19)0.028 (3)0.032 (2)
C170.077 (2)0.106 (3)0.073 (2)0.011 (2)0.002 (2)0.053 (2)
Geometric parameters (Å, º) top
O1—C41.349 (3)C6—H6A0.9300
O1—H10.8200C7—C81.409 (4)
O2—C111.235 (3)C8—C91.360 (4)
O3—C141.413 (4)C8—H8A0.9300
O3—C131.426 (4)C9—C101.411 (4)
N1—C71.395 (4)C9—H9A0.9300
N1—C171.448 (4)C12—C131.487 (4)
N1—C161.458 (4)C12—H12A0.9700
N2—C111.359 (3)C12—H12B0.9700
N2—C151.461 (4)C13—H13A0.9700
N2—C121.463 (3)C13—H13B0.9700
C1—C21.370 (3)C14—C151.508 (4)
C1—C101.413 (4)C14—H14A0.9700
C1—H1A0.9300C14—H14B0.9700
C2—C31.414 (4)C15—H15A0.9700
C2—C111.487 (4)C15—H15B0.9700
C3—C41.368 (4)C16—H16A0.9600
C3—H3A0.9300C16—H16B0.9600
C4—C51.426 (3)C16—H16C0.9600
C5—C61.407 (4)C17—H17A0.9600
C5—C101.412 (4)C17—H17B0.9600
C6—C71.387 (4)C17—H17C0.9600
C4—O1—H1109.5O2—C11—C2120.9 (2)
C14—O3—C13110.4 (2)N2—C11—C2120.3 (2)
C7—N1—C17117.8 (2)N2—C12—C13110.5 (2)
C7—N1—C16118.2 (3)N2—C12—H12A109.5
C17—N1—C16115.0 (3)C13—C12—H12A109.5
C11—N2—C15118.9 (2)N2—C12—H12B109.5
C11—N2—C12127.2 (2)C13—C12—H12B109.5
C15—N2—C12111.4 (2)H12A—C12—H12B108.1
C2—C1—C10120.9 (3)O3—C13—C12112.2 (2)
C2—C1—H1A119.5O3—C13—H13A109.2
C10—C1—H1A119.5C12—C13—H13A109.2
C1—C2—C3119.5 (2)O3—C13—H13B109.2
C1—C2—C11121.6 (2)C12—C13—H13B109.2
C3—C2—C11118.4 (2)H13A—C13—H13B107.9
C4—C3—C2121.0 (2)O3—C14—C15111.7 (3)
C4—C3—H3A119.5O3—C14—H14A109.3
C2—C3—H3A119.5C15—C14—H14A109.3
O1—C4—C3124.4 (2)O3—C14—H14B109.3
O1—C4—C5115.3 (2)C15—C14—H14B109.3
C3—C4—C5120.3 (2)H14A—C14—H14B107.9
C6—C5—C10120.2 (2)N2—C15—C14109.2 (2)
C6—C5—C4121.1 (2)N2—C15—H15A109.8
C10—C5—C4118.7 (2)C14—C15—H15A109.8
C7—C6—C5121.3 (2)N2—C15—H15B109.8
C7—C6—H6A119.4C14—C15—H15B109.8
C5—C6—H6A119.4H15A—C15—H15B108.3
C6—C7—N1122.4 (3)N1—C16—H16A109.5
C6—C7—C8117.7 (2)N1—C16—H16B109.5
N1—C7—C8119.9 (2)H16A—C16—H16B109.5
C9—C8—C7121.9 (3)N1—C16—H16C109.5
C9—C8—H8A119.1H16A—C16—H16C109.5
C7—C8—H8A119.1H16B—C16—H16C109.5
C8—C9—C10121.3 (3)N1—C17—H17A109.5
C8—C9—H9A119.4N1—C17—H17B109.5
C10—C9—H9A119.4H17A—C17—H17B109.5
C9—C10—C5117.6 (2)N1—C17—H17C109.5
C9—C10—C1122.8 (3)H17A—C17—H17C109.5
C5—C10—C1119.6 (2)H17B—C17—H17C109.5
O2—C11—N2118.7 (3)
C10—C1—C2—C30.7 (4)C6—C5—C10—C92.2 (3)
C10—C1—C2—C11172.5 (2)C4—C5—C10—C9179.9 (2)
C1—C2—C3—C41.8 (4)C6—C5—C10—C1176.7 (2)
C11—C2—C3—C4173.8 (2)C4—C5—C10—C11.0 (3)
C2—C3—C4—O1179.2 (2)C2—C1—C10—C9179.2 (2)
C2—C3—C4—C52.4 (4)C2—C1—C10—C50.4 (4)
O1—C4—C5—C62.9 (4)C15—N2—C11—O26.4 (4)
C3—C4—C5—C6175.7 (2)C12—N2—C11—O2154.2 (3)
O1—C4—C5—C10179.5 (2)C15—N2—C11—C2170.5 (3)
C3—C4—C5—C102.0 (4)C12—N2—C11—C228.8 (4)
C10—C5—C6—C70.8 (3)C1—C2—C11—O2138.2 (3)
C4—C5—C6—C7176.9 (2)C3—C2—C11—O233.7 (4)
C5—C6—C7—N1179.1 (2)C1—C2—C11—N238.7 (4)
C5—C6—C7—C83.4 (4)C3—C2—C11—N2149.4 (3)
C17—N1—C7—C61.3 (4)C11—N2—C12—C13144.1 (3)
C16—N1—C7—C6144.3 (3)C15—N2—C12—C1354.0 (3)
C17—N1—C7—C8176.1 (3)C14—O3—C13—C1257.6 (3)
C16—N1—C7—C838.3 (4)N2—C12—C13—O355.1 (3)
C6—C7—C8—C93.1 (4)C13—O3—C14—C1558.8 (3)
N1—C7—C8—C9179.3 (3)C11—N2—C15—C14141.8 (3)
C7—C8—C9—C100.2 (4)C12—N2—C15—C1454.6 (3)
C8—C9—C10—C52.5 (4)O3—C14—C15—N257.5 (3)
C8—C9—C10—C1176.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.631 (3)172
C17—H17C···Cgii0.962.803.533 (2)134
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC17H20N2O3
Mr300.35
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)12.6250 (5), 13.9634 (6), 8.8369 (3)
V3)1557.84 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.41 × 0.18 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8069, 2044, 1475
Rint0.025
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.04
No. of reflections2044
No. of parameters200
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.631 (3)171.9
C17—H17C···Cgii0.962.803.533 (2)134.2
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1, y+1, z1/2.
 

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrano, J. C. & Guglielmetti, R. J. (1999). Editors. Organic Photochromic and Thermochromic Compounds, Vol 1. New York: Plenum Press.  Google Scholar
First citationGabbutt, C. D., Hepworth, J. D., Heron, B. M., Thomas, D. A., Kilner, C. & Partington, S. M. (2004). Heterocycles, 63, 567–582.  CAS Google Scholar
First citationGabbutt, C. D., Heron, B. M., Instone, A. C., Thomas, D. A., Partington, S. M., Hursthouse, M. B. & Gelbrich, T. (2003). Eur. J. Org. Chem. pp. 1220–1230.  Web of Science CSD CrossRef Google Scholar
First citationGemert, B. V. & Selvig, C. D. (2000). US Patent 6106744.  Google Scholar
First citationKumar, A., Gemert, B. V. & Knowles, D. B. (1995). US Patent 5458814.  Google Scholar
First citationNelson, C. M., Chopra, A., Knowles, D. B., Gemert, B. V. & Kumar, A. (2002). US Patent 6348604 B1.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds