organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(1,3-benzo­thia­zol-2-ylsulfan­yl)eth­yl] ether

aKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China, bInstitute of Marine Material and Engineering, Shanghai Maritime University, Shanghai 200135, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: liuws@lzu.edu.cn

(Received 10 November 2009; accepted 5 December 2009; online 12 December 2009)

The complete molecule of title compound, C18H16N2OS4, is generated by crystallographic twofold symmetry, with the O atom lying on the rotation axis. The dihedral angle between the ring systems is 80.91 (2)°. In the crystal, adjacent mol­ecules are connected through ππ stacking inter­actions [centroid–centroid distance = 3.882 (2) Å], forming a three-dimensional network.

Related literature

For coordination polymers in supra­molecular chemistry and crystal engineering, see: Robinson & Zaworotko (1995[Robinson, F. & Zaworotko, M. J. (1995). J. Chem. Soc. Chem. Commun. 23, 2413-2414.]); Yaghi & Li (1996[Yaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc. 118, 295-296.]); Fujita et al. (1995[Fujita, M., Kwon, Y. J., Sasaki, O., Yamaguchi, K. & Ogura, K. (1995). J. Am. Chem. Soc. 117, 7287-7288.]); Tong et al. (2000[Tong, M. L., Chen, X. M. & Ng, S. W. (2000). Inorg. Chem. Commun. 3, 436-441.]); Bu et al. (2003[Bu, X. H., Xie, Y. B., Li, J. R. & Zhang, R. H. (2003). Inorg. Chem. 42, 7422-7430.]); Long et al. (2004[Long, D. Q., Li, D. J. & Liu, C. Y. (2004). Chin. J. Synth. Chem. 12, 586-588.]); Massue et al. (2007[Massue, J., Bellec, N., Guerro, M., Bergamini, J. F., Hapiot, P. & Lorcy, D. (2007). J. Org. Chem. 72, 4655-4662.]); Zou et al. (2004[Zou, R. Q., Li, J. R., Xie, Y. B., Zhang, R. H. & Bu, X. H. (2004). Cryst. Growth Des. 4, 79-84.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2OS4

  • Mr = 404.57

  • Monoclinic, C 2/c

  • a = 24.617 (3) Å

  • b = 4.7085 (3) Å

  • c = 17.7866 (15) Å

  • β = 116.571 (13)°

  • V = 1843.9 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.81 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.765, Tmax = 1.000

  • 2930 measured reflections

  • 1682 independent reflections

  • 1353 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.129

  • S = 1.05

  • 1682 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

Ligands containing thioether and nitrogenous heterocyclic groups are well established sources for biologically active complexes. In addition, this kind of ligands may form one- or multi-dimensional supramolecular structures via the intermolecule interactions such as hydrogen-bond or π-π stacking, attracting intense attention in the field of supramolecular chemistry and crystal engineering (Robinson et al., 1995; Yaghi et al., 1996; Fujita et al., 1995; Tong et al., 2000).

Herein, we report the synthesis and structure of the title compound, namely bis[2-(benzothiazol-2-ylthio)ethyl]ether (Fig.1). As shown in Fig.2, a two-dimensional supramolecular network was formed by hydrogen bonds (Table 2) [Symmetry codes (i): x, -y + 1, z + 1/2] and S—S bonds of 3.575 (2) Å [Symmetry codes (ii): -x + 1/2, -y + 3/2, -z + 2], and there are also weak π-π stacking interactions between the phenyl rings and the thiazolyl rings of adjacent molecules with a centroid-centroid distances of 3.882 Å along b direction.

Related literature top

For coordination polymers in supramolecular chemistry and crystal engineering, see: Robinson & Zaworotko (1995); Yaghi & Li (1996); Fujita et al. (1995); Tong et al. (2000); Bu et al. (2003); Long et al. (2004); Massue et al. (2007); Zou et al. (2004).

Experimental top

Bis(2-chloroethyl)ether (0.02 mol, 2.86 g) was added dropwise to a hot mixture solution (353 K) of 2-mercaptobenzothiazole (0.04 mol, 6.69 g), KOH (0.04 mol, 2.24 g) in ethanol (100 ml), and the mixture was further stirred at 353 K for 15 h. After cooling, the precipitate was filtered, washed with ethanol and water, and recrystallized from ethanol to obtain white powder. Yield: 56% (Bu et al., 2003; Massue et al., 2007; Long et al., 2004). 1H NMR (CDCl3, 400 MHz): 3.56 (t, 4H), 3.89 (t, 4H), 7.25 (m, 2H), 7.39 (m, 2H), 7.70 (d, 2H), 7.82 (t, 2H). MS (ESI) m/z(%): 405.0 (M+1).

Refinement top

The H atoms were placed at calculated positions in the riding model approximation (C—H 0.93 Å), with their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis CCD (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The three-dimensional structure by molecular packing, showing the hydrogen bonds as blue dashed lines [Symmetry codes: (i) x, -y + 1, z + 1/2], S—S bonds as green dashed lines and π-π stacking interactions as red dashed lines.
Bis[2-(1,3-benzothiazol-2-ylsulfanyl)ethyl] ether top
Crystal data top
C18H16N2OS4F(000) = 840
Mr = 404.57Dx = 1.457 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 1595 reflections
a = 24.617 (3) Åθ = 2.8–68.1°
b = 4.7085 (3) ŵ = 4.81 mm1
c = 17.7866 (15) ÅT = 293 K
β = 116.571 (13)°Block, colourless
V = 1843.9 (3) Å30.18 × 0.15 × 0.07 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1682 independent reflections
Radiation source: Enhance (Cu) X-ray Source1353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.0855 pixels mm-1θmax = 68.1°, θmin = 2.8°
ω scansh = 2925
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
k = 53
Tmin = 0.765, Tmax = 1.000l = 2119
2930 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0876P)2]
where P = (Fo2 + 2Fc2)/3
1682 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H16N2OS4V = 1843.9 (3) Å3
Mr = 404.57Z = 4
Monoclinic, C2/cCu Kα radiation
a = 24.617 (3) ŵ = 4.81 mm1
b = 4.7085 (3) ÅT = 293 K
c = 17.7866 (15) Å0.18 × 0.15 × 0.07 mm
β = 116.571 (13)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1682 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
1353 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 1.000Rint = 0.020
2930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
1682 reflectionsΔρmin = 0.25 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17154 (13)0.1689 (5)1.11310 (16)0.0505 (6)
C20.18584 (15)0.0249 (6)1.17798 (17)0.0608 (7)
H20.22560.08601.20980.073*
C30.13924 (18)0.1235 (7)1.1936 (2)0.0701 (8)
H30.14740.25681.23590.084*
C40.08011 (16)0.0269 (8)1.1470 (2)0.0702 (8)
H40.04940.09541.15910.084*
C50.06625 (15)0.1676 (6)1.0837 (2)0.0614 (7)
H50.02660.23281.05340.074*
C60.11236 (12)0.2665 (6)1.06519 (15)0.0489 (6)
C70.15597 (12)0.4948 (6)0.99910 (14)0.0483 (6)
C80.09486 (13)0.8627 (6)0.86818 (16)0.0532 (6)
H8C0.07910.91990.90700.064*
H8B0.09951.03230.84060.064*
C90.05001 (13)0.6678 (5)0.80325 (17)0.0552 (6)
H9A0.06830.57690.77120.066*
H9B0.03700.52150.83000.066*
N10.10483 (10)0.4522 (5)1.00023 (13)0.0507 (5)
S10.21965 (3)0.32443 (16)1.07717 (4)0.0560 (2)
S20.16852 (3)0.69930 (17)0.92661 (4)0.0592 (3)
O10.00000.8363 (5)0.75000.0501 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0535 (14)0.0516 (13)0.0422 (12)0.0026 (11)0.0176 (11)0.0037 (10)
C20.0671 (18)0.0625 (16)0.0465 (14)0.0052 (13)0.0197 (13)0.0058 (12)
C30.094 (2)0.0659 (17)0.0546 (16)0.0017 (16)0.0364 (17)0.0077 (13)
C40.081 (2)0.076 (2)0.0661 (18)0.0114 (16)0.0442 (17)0.0024 (15)
C50.0579 (16)0.0686 (18)0.0606 (17)0.0045 (13)0.0290 (14)0.0061 (13)
C60.0530 (15)0.0504 (13)0.0395 (12)0.0021 (11)0.0171 (11)0.0063 (10)
C70.0454 (13)0.0524 (13)0.0387 (11)0.0023 (10)0.0112 (10)0.0007 (10)
C80.0561 (15)0.0484 (13)0.0442 (13)0.0012 (11)0.0127 (11)0.0024 (10)
C90.0528 (15)0.0482 (13)0.0482 (13)0.0051 (11)0.0078 (12)0.0003 (11)
N10.0460 (11)0.0559 (12)0.0427 (10)0.0030 (9)0.0132 (9)0.0023 (9)
S10.0438 (4)0.0679 (5)0.0484 (4)0.0033 (3)0.0136 (3)0.0090 (3)
S20.0450 (4)0.0713 (5)0.0519 (4)0.0050 (3)0.0132 (3)0.0131 (3)
O10.0485 (14)0.0462 (13)0.0436 (12)0.0000.0099 (11)0.000
Geometric parameters (Å, º) top
C1—C21.387 (4)C7—N11.284 (4)
C1—C61.396 (4)C7—S21.744 (3)
C1—S11.739 (3)C7—S11.755 (3)
C2—C31.376 (5)C8—C91.501 (4)
C2—H20.9300C8—S21.810 (3)
C3—C41.390 (5)C8—H8C0.9700
C3—H30.9300C8—H8B0.9700
C4—C51.372 (5)C9—O11.414 (3)
C4—H40.9300C9—H9A0.9700
C5—C61.395 (4)C9—H9B0.9700
C5—H50.9300O1—C9i1.414 (3)
C6—N11.394 (4)
C2—C1—C6122.1 (3)N1—C7—S1116.8 (2)
C2—C1—S1128.4 (2)S2—C7—S1116.50 (15)
C6—C1—S1109.5 (2)C9—C8—S2112.65 (19)
C3—C2—C1117.7 (3)C9—C8—H8C109.1
C3—C2—H2121.1S2—C8—H8C109.1
C1—C2—H2121.1C9—C8—H8B109.1
C2—C3—C4121.0 (3)S2—C8—H8B109.1
C2—C3—H3119.5H8C—C8—H8B107.8
C4—C3—H3119.5O1—C9—C8107.0 (2)
C5—C4—C3121.1 (3)O1—C9—H9A110.3
C5—C4—H4119.4C8—C9—H9A110.3
C3—C4—H4119.4O1—C9—H9B110.3
C4—C5—C6119.1 (3)C8—C9—H9B110.3
C4—C5—H5120.4H9A—C9—H9B108.6
C6—C5—H5120.4C7—N1—C6110.1 (2)
N1—C6—C5125.7 (2)C1—S1—C788.23 (13)
N1—C6—C1115.3 (2)C7—S2—C8101.30 (13)
C5—C6—C1118.9 (3)C9—O1—C9i111.7 (3)
N1—C7—S2126.7 (2)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1ii0.932.713.358 (3)128
Symmetry code: (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16N2OS4
Mr404.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.617 (3), 4.7085 (3), 17.7866 (15)
β (°) 116.571 (13)
V3)1843.9 (3)
Z4
Radiation typeCu Kα
µ (mm1)4.81
Crystal size (mm)0.18 × 0.15 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2005)
Tmin, Tmax0.765, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2930, 1682, 1353
Rint0.020
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.129, 1.05
No. of reflections1682
No. of parameters114
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors acknowledge the NSFC (Grant Nos. 20771048,20931003), the Project of Shanghai Municipal Education Commission (2008080, 2008068, 09YZ245, 10YZ111, 10ZZ98), the `Chen Guang' project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (09 C G52), the Innovative Activities of University Students in Shanghai Maritime University Project (090503) and the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF09001) for financial support.

References

First citationBu, X. H., Xie, Y. B., Li, J. R. & Zhang, R. H. (2003). Inorg. Chem. 42, 7422–7430.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujita, M., Kwon, Y. J., Sasaki, O., Yamaguchi, K. & Ogura, K. (1995). J. Am. Chem. Soc. 117, 7287–7288.  CSD CrossRef CAS Web of Science Google Scholar
First citationLong, D. Q., Li, D. J. & Liu, C. Y. (2004). Chin. J. Synth. Chem. 12, 586–588.  CAS Google Scholar
First citationMassue, J., Bellec, N., Guerro, M., Bergamini, J. F., Hapiot, P. & Lorcy, D. (2007). J. Org. Chem. 72, 4655–4662.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRobinson, F. & Zaworotko, M. J. (1995). J. Chem. Soc. Chem. Commun. 23, 2413–2414.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M. L., Chen, X. M. & Ng, S. W. (2000). Inorg. Chem. Commun. 3, 436–441.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc. 118, 295–296.  CSD CrossRef CAS Web of Science Google Scholar
First citationZou, R. Q., Li, J. R., Xie, Y. B., Zhang, R. H. & Bu, X. H. (2004). Cryst. Growth Des. 4, 79–84.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds