organic compounds
Bis[2-(1,3-benzothiazol-2-ylsulfanyl)ethyl] ether
aKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China, bInstitute of Marine Material and Engineering, Shanghai Maritime University, Shanghai 200135, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: liuws@lzu.edu.cn
The complete molecule of title compound, C18H16N2OS4, is generated by crystallographic twofold symmetry, with the O atom lying on the rotation axis. The dihedral angle between the ring systems is 80.91 (2)°. In the crystal, adjacent molecules are connected through π–π stacking interactions [centroid–centroid distance = 3.882 (2) Å], forming a three-dimensional network.
Related literature
For coordination polymers in supramolecular chemistry and crystal engineering, see: Robinson & Zaworotko (1995); Yaghi & Li (1996); Fujita et al. (1995); Tong et al. (2000); Bu et al. (2003); Long et al. (2004); Massue et al. (2007); Zou et al. (2004).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
Supporting information
10.1107/S1600536809052301/ng2684sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809052301/ng2684Isup2.hkl
Bis(2-chloroethyl)ether (0.02 mol, 2.86 g) was added dropwise to a hot mixture solution (353 K) of 2-mercaptobenzothiazole (0.04 mol, 6.69 g), KOH (0.04 mol, 2.24 g) in ethanol (100 ml), and the mixture was further stirred at 353 K for 15 h. After cooling, the precipitate was filtered, washed with ethanol and water, and recrystallized from ethanol to obtain white powder. Yield: 56% (Bu et al., 2003; Massue et al., 2007; Long et al., 2004). 1H NMR (CDCl3, 400 MHz): 3.56 (t, 4H), 3.89 (t, 4H), 7.25 (m, 2H), 7.39 (m, 2H), 7.70 (d, 2H), 7.82 (t, 2H). MS (ESI) m/z(%): 405.0 (M+1).
The H atoms were placed at calculated positions in the riding model approximation (C—H 0.93 Å), with their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell
CrysAlis CCD (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C18H16N2OS4 | F(000) = 840 |
Mr = 404.57 | Dx = 1.457 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -C 2yc | Cell parameters from 1595 reflections |
a = 24.617 (3) Å | θ = 2.8–68.1° |
b = 4.7085 (3) Å | µ = 4.81 mm−1 |
c = 17.7866 (15) Å | T = 293 K |
β = 116.571 (13)° | Block, colourless |
V = 1843.9 (3) Å3 | 0.18 × 0.15 × 0.07 mm |
Z = 4 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 1682 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1353 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 16.0855 pixels mm-1 | θmax = 68.1°, θmin = 2.8° |
ω scans | h = −29→25 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005) | k = −5→3 |
Tmin = 0.765, Tmax = 1.000 | l = −21→19 |
2930 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0876P)2] where P = (Fo2 + 2Fc2)/3 |
1682 reflections | (Δ/σ)max = 0.001 |
114 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C18H16N2OS4 | V = 1843.9 (3) Å3 |
Mr = 404.57 | Z = 4 |
Monoclinic, C2/c | Cu Kα radiation |
a = 24.617 (3) Å | µ = 4.81 mm−1 |
b = 4.7085 (3) Å | T = 293 K |
c = 17.7866 (15) Å | 0.18 × 0.15 × 0.07 mm |
β = 116.571 (13)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 1682 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005) | 1353 reflections with I > 2σ(I) |
Tmin = 0.765, Tmax = 1.000 | Rint = 0.020 |
2930 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.27 e Å−3 |
1682 reflections | Δρmin = −0.25 e Å−3 |
114 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.17154 (13) | 0.1689 (5) | 1.11310 (16) | 0.0505 (6) | |
C2 | 0.18584 (15) | −0.0249 (6) | 1.17798 (17) | 0.0608 (7) | |
H2 | 0.2256 | −0.0860 | 1.2098 | 0.073* | |
C3 | 0.13924 (18) | −0.1235 (7) | 1.1936 (2) | 0.0701 (8) | |
H3 | 0.1474 | −0.2568 | 1.2359 | 0.084* | |
C4 | 0.08011 (16) | −0.0269 (8) | 1.1470 (2) | 0.0702 (8) | |
H4 | 0.0494 | −0.0954 | 1.1591 | 0.084* | |
C5 | 0.06625 (15) | 0.1676 (6) | 1.0837 (2) | 0.0614 (7) | |
H5 | 0.0266 | 0.2328 | 1.0534 | 0.074* | |
C6 | 0.11236 (12) | 0.2665 (6) | 1.06519 (15) | 0.0489 (6) | |
C7 | 0.15597 (12) | 0.4948 (6) | 0.99910 (14) | 0.0483 (6) | |
C8 | 0.09486 (13) | 0.8627 (6) | 0.86818 (16) | 0.0532 (6) | |
H8C | 0.0791 | 0.9199 | 0.9070 | 0.064* | |
H8B | 0.0995 | 1.0323 | 0.8406 | 0.064* | |
C9 | 0.05001 (13) | 0.6678 (5) | 0.80325 (17) | 0.0552 (6) | |
H9A | 0.0683 | 0.5769 | 0.7712 | 0.066* | |
H9B | 0.0370 | 0.5215 | 0.8300 | 0.066* | |
N1 | 0.10483 (10) | 0.4522 (5) | 1.00023 (13) | 0.0507 (5) | |
S1 | 0.21965 (3) | 0.32443 (16) | 1.07717 (4) | 0.0560 (2) | |
S2 | 0.16852 (3) | 0.69930 (17) | 0.92661 (4) | 0.0592 (3) | |
O1 | 0.0000 | 0.8363 (5) | 0.7500 | 0.0501 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0535 (14) | 0.0516 (13) | 0.0422 (12) | −0.0026 (11) | 0.0176 (11) | −0.0037 (10) |
C2 | 0.0671 (18) | 0.0625 (16) | 0.0465 (14) | 0.0052 (13) | 0.0197 (13) | 0.0058 (12) |
C3 | 0.094 (2) | 0.0659 (17) | 0.0546 (16) | −0.0017 (16) | 0.0364 (17) | 0.0077 (13) |
C4 | 0.081 (2) | 0.076 (2) | 0.0661 (18) | −0.0114 (16) | 0.0442 (17) | −0.0024 (15) |
C5 | 0.0579 (16) | 0.0686 (18) | 0.0606 (17) | −0.0045 (13) | 0.0290 (14) | −0.0061 (13) |
C6 | 0.0530 (15) | 0.0504 (13) | 0.0395 (12) | −0.0021 (11) | 0.0171 (11) | −0.0063 (10) |
C7 | 0.0454 (13) | 0.0524 (13) | 0.0387 (11) | −0.0023 (10) | 0.0112 (10) | −0.0007 (10) |
C8 | 0.0561 (15) | 0.0484 (13) | 0.0442 (13) | 0.0012 (11) | 0.0127 (11) | 0.0024 (10) |
C9 | 0.0528 (15) | 0.0482 (13) | 0.0482 (13) | 0.0051 (11) | 0.0078 (12) | −0.0003 (11) |
N1 | 0.0460 (11) | 0.0559 (12) | 0.0427 (10) | −0.0030 (9) | 0.0132 (9) | −0.0023 (9) |
S1 | 0.0438 (4) | 0.0679 (5) | 0.0484 (4) | 0.0033 (3) | 0.0136 (3) | 0.0090 (3) |
S2 | 0.0450 (4) | 0.0713 (5) | 0.0519 (4) | −0.0050 (3) | 0.0132 (3) | 0.0131 (3) |
O1 | 0.0485 (14) | 0.0462 (13) | 0.0436 (12) | 0.000 | 0.0099 (11) | 0.000 |
C1—C2 | 1.387 (4) | C7—N1 | 1.284 (4) |
C1—C6 | 1.396 (4) | C7—S2 | 1.744 (3) |
C1—S1 | 1.739 (3) | C7—S1 | 1.755 (3) |
C2—C3 | 1.376 (5) | C8—C9 | 1.501 (4) |
C2—H2 | 0.9300 | C8—S2 | 1.810 (3) |
C3—C4 | 1.390 (5) | C8—H8C | 0.9700 |
C3—H3 | 0.9300 | C8—H8B | 0.9700 |
C4—C5 | 1.372 (5) | C9—O1 | 1.414 (3) |
C4—H4 | 0.9300 | C9—H9A | 0.9700 |
C5—C6 | 1.395 (4) | C9—H9B | 0.9700 |
C5—H5 | 0.9300 | O1—C9i | 1.414 (3) |
C6—N1 | 1.394 (4) | ||
C2—C1—C6 | 122.1 (3) | N1—C7—S1 | 116.8 (2) |
C2—C1—S1 | 128.4 (2) | S2—C7—S1 | 116.50 (15) |
C6—C1—S1 | 109.5 (2) | C9—C8—S2 | 112.65 (19) |
C3—C2—C1 | 117.7 (3) | C9—C8—H8C | 109.1 |
C3—C2—H2 | 121.1 | S2—C8—H8C | 109.1 |
C1—C2—H2 | 121.1 | C9—C8—H8B | 109.1 |
C2—C3—C4 | 121.0 (3) | S2—C8—H8B | 109.1 |
C2—C3—H3 | 119.5 | H8C—C8—H8B | 107.8 |
C4—C3—H3 | 119.5 | O1—C9—C8 | 107.0 (2) |
C5—C4—C3 | 121.1 (3) | O1—C9—H9A | 110.3 |
C5—C4—H4 | 119.4 | C8—C9—H9A | 110.3 |
C3—C4—H4 | 119.4 | O1—C9—H9B | 110.3 |
C4—C5—C6 | 119.1 (3) | C8—C9—H9B | 110.3 |
C4—C5—H5 | 120.4 | H9A—C9—H9B | 108.6 |
C6—C5—H5 | 120.4 | C7—N1—C6 | 110.1 (2) |
N1—C6—C5 | 125.7 (2) | C1—S1—C7 | 88.23 (13) |
N1—C6—C1 | 115.3 (2) | C7—S2—C8 | 101.30 (13) |
C5—C6—C1 | 118.9 (3) | C9—O1—C9i | 111.7 (3) |
N1—C7—S2 | 126.7 (2) |
Symmetry code: (i) −x, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1ii | 0.93 | 2.71 | 3.358 (3) | 128 |
Symmetry code: (ii) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H16N2OS4 |
Mr | 404.57 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 24.617 (3), 4.7085 (3), 17.7866 (15) |
β (°) | 116.571 (13) |
V (Å3) | 1843.9 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 4.81 |
Crystal size (mm) | 0.18 × 0.15 × 0.07 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2005) |
Tmin, Tmax | 0.765, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2930, 1682, 1353 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.129, 1.05 |
No. of reflections | 1682 |
No. of parameters | 114 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.25 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
The authors acknowledge the NSFC (Grant Nos. 20771048,20931003), the Project of Shanghai Municipal Education Commission (2008080, 2008068, 09YZ245, 10YZ111, 10ZZ98), the `Chen Guang' project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (09 C G52), the Innovative Activities of University Students in Shanghai Maritime University Project (090503) and the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF09001) for financial support.
References
Bu, X. H., Xie, Y. B., Li, J. R. & Zhang, R. H. (2003). Inorg. Chem. 42, 7422–7430. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fujita, M., Kwon, Y. J., Sasaki, O., Yamaguchi, K. & Ogura, K. (1995). J. Am. Chem. Soc. 117, 7287–7288. CSD CrossRef CAS Web of Science Google Scholar
Long, D. Q., Li, D. J. & Liu, C. Y. (2004). Chin. J. Synth. Chem. 12, 586–588. CAS Google Scholar
Massue, J., Bellec, N., Guerro, M., Bergamini, J. F., Hapiot, P. & Lorcy, D. (2007). J. Org. Chem. 72, 4655–4662. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Robinson, F. & Zaworotko, M. J. (1995). J. Chem. Soc. Chem. Commun. 23, 2413–2414. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tong, M. L., Chen, X. M. & Ng, S. W. (2000). Inorg. Chem. Commun. 3, 436–441. Web of Science CSD CrossRef CAS Google Scholar
Yaghi, O. M. & Li, H. (1996). J. Am. Chem. Soc. 118, 295–296. CSD CrossRef CAS Web of Science Google Scholar
Zou, R. Q., Li, J. R., Xie, Y. B., Zhang, R. H. & Bu, X. H. (2004). Cryst. Growth Des. 4, 79–84. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ligands containing thioether and nitrogenous heterocyclic groups are well established sources for biologically active complexes. In addition, this kind of ligands may form one- or multi-dimensional supramolecular structures via the intermolecule interactions such as hydrogen-bond or π-π stacking, attracting intense attention in the field of supramolecular chemistry and crystal engineering (Robinson et al., 1995; Yaghi et al., 1996; Fujita et al., 1995; Tong et al., 2000).
Herein, we report the synthesis and structure of the title compound, namely bis[2-(benzothiazol-2-ylthio)ethyl]ether (Fig.1). As shown in Fig.2, a two-dimensional supramolecular network was formed by hydrogen bonds (Table 2) [Symmetry codes (i): x, -y + 1, z + 1/2] and S—S bonds of 3.575 (2) Å [Symmetry codes (ii): -x + 1/2, -y + 3/2, -z + 2], and there are also weak π-π stacking interactions between the phenyl rings and the thiazolyl rings of adjacent molecules with a centroid-centroid distances of 3.882 Å along b direction.