metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Ferrocenylphen­yl)-3-methyl­imidazolium iodide monohydrate

aDepartment of Chemistry, Nelson Mandela Metropolitan University, 6031 Port Elizabeth, South Africa, and bDepartment of Chemistry, Ludwig-Maximilians University, D-81377 München, Germany
*Correspondence e-mail: douglasokerio.onyancha@nmmu.ac.za

(Received 23 November 2009; accepted 27 November 2009; online 12 December 2009)

In the title compound, [Fe(C5H5)(C15H14N2)]I·H2O, the benzene and imidazolium rings are twisted by 17.26 (17) and 32.53 (19)°, respectively, with respect to the η5-C5H4 plane of the ferrocenyl unit. The imidazolium ring is rotated by 48.81 (17)° with respect to the benzene ring. The packing is dominated by layers established by O—H⋯I, C—H⋯I and C—H⋯O contacts and propagating along the bc plane.

Related literature

For imidazolium salts see: Nolan et al. (2007[ Nolan, K., Dallas, A., Kuhtz, H., Farrell, A. & Quilty, B. (2007). Tetrahedron Lett. 48, 1017-1021.]); Cheng et al. (2008[ Cheng, J.-P., Niu, H.-T., Yin, Z., Su, D., Niu, D., Ao, Y. & He, J. (2008). Tetrahedron, 64, 6300-6306.]); Yang et al. (2009[ Yang, X.-D., Zeng, X.-H., Zhang, Y.-L., Qing, C., Song, W.-J., Li, L. & Zhang, H.-B. (2009). Bioorg. Med. Chem. Lett. 19, 1892-1895.]); Bildstein et al. (1999[ Bildstein, B., Maluan, M., Kopacka, H., Wurst, K., Mitterbock, M., Ongania, K.-H., Opromolla, G. & Zanello, P. (1999). Organometallics, 18, 4325-4336.]). For the synthesis, see: Zhao et al. (2001[ Zhao, K.-Q., Hu, P. & Xu, H. (2001). Molecules, 6, 246-247.]); Koten et al. (2007[ Koten, G., Sperotto, E., Vries, J. & Klink, G. (2007). Tetrahedron Lett. 48, 7366-7370.]). For graph-set analysis, see: Bernstein et al. (1995[ Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[ Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H14N2)]I·H2O

  • Mr = 488.14

  • Monoclinic, P 21 /c

  • a = 17.3871 (7) Å

  • b = 7.3397 (2) Å

  • c = 16.9445 (6) Å

  • β = 117.299 (5)°

  • V = 1921.56 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.40 mm−1

  • T = 200 K

  • 0.50 × 0.39 × 0.04 mm

Data collection
  • Oxford Xcalibur diffractometer

  • Absorption correction: numerical [X-SHAPE (Stoe & Cie, 1996[ Stoe & Cie (1996). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]) and X-RED (Stoe & Cie, 1997[ Stoe & Cie (1997). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.])] Tmin = 0.399, Tmax = 0.901

  • 12113 measured reflections

  • 3885 independent reflections

  • 3098 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 0.97

  • 3885 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯I1 0.84 2.74 3.575 (3) 176
O1—H1B⋯I1i 0.84 2.78 3.616 (3) 176
C12—H12A⋯O1 0.95 2.39 3.277 (4) 156
C13—H13⋯I1ii 0.95 3.01 3.931 (3) 163
Symmetry codes: (i) -x, -y+2, -z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[ Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[ Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[ Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2009[ Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The structure consists of a ferrocenyl group attached to a phenyl-imidazolium moiety in para-position, an iodide anion and a water molecule (Fig. 1). The phenyl ring A is twisted by 17.26 (17)° away from the least-square plane B of the cyclopentadienyl ring, and by 48.81 (17)° from the imidazole ring C. The plane of the imidazole unit C is rotated by 32.53 (19)° with respect to the η5-C5H4 plane A (for plane definition, see Table 2).

The packing of the title compound is dominated by two-dimensional layers parallel to the bc plane formed by O–H···I, C–H···I and C–H···O contacts (Fig. 2). Eight-membered rings consisting of two water molecules and two iodide anions are formed by four O–H···I contacts. According to graph-set theory (Bernstein et al. 1995; Etter et al. 1990), the descriptor R42(8) can be assigned on the binary level for these rings. Additionally each of the two oxygen and the two iodide atoms of the rings acts as an acceptor in C–H···O/I contacts to four different imidazole moieties.

The packing of the title compound viewed along [010] is shown in Figure 3.

Related literature top

For imidazoluim salts see: Nolan et al. (2007); Cheng et al. (2008); Yang et al. (2009); Bildstein et al. (1999). For the sysnthesis, see: Zhao et al. (2001); Koten et al. (2007). For graph-set analysis, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

All chemicals used (reagent grade) were commercially available. 4-Bromophenylferrocene (Zhao et al. 2001) and 4-ferrocenylphenyl-1H-imidazole (Koten et al. 2007) were prepared according to literature methods. In a round- bottomed flask, iodomethane (5 ml) was added to 4-ferrocenylphenyl-1H-imidzole and allowed to reflux gently under a nitrogen atmosphere for 3 h. The reaction was monitored visually, and the yellow colour of the solution gradually turned colourless, signaling the completion of the reaction. After cooling, the yellow precipitate was filtered off under vacuum and washed with ether (yield, 99%). Recrystallization was from a dichloromethane/toluene mixture. M.p. 130–132°C, IR (KBr cm-1): 3463, 3403, 3080, 1616, 1554, 1455, 1262, 1222, 1003, 887, 823, 751; 1H NMR (300 MHz, CDCl3); 10.64 (1H, s, ImH), 7.65–7.69 (6H, m, 4×ArH, 2×ImH), 4.69 (2H, t, J 1.9, C5H4), 4.42 (2H. t, J 1.9, C5H4), 4.28 (3H, s, CH3), 4.07 (5H, s, C5H5); 13C NMR 134.02, 135.70, 131.60, 127.64, 124.19, 122.07, 120.48, 82.39, 69.94, 69.88, 66.81, 37.66.

Refinement top

The C-bound H atoms are riding on their parent atoms (C—H = 0.98 Å for CH3, 0.95 Å for CH) with Uiso(H) = 1.2Ueq(C) for CH, Uiso(H) = 1.5Ueq(C) for CH3]. The O-bound H are riding on their parent atom (O—H = 0.84 Å) with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (anisotropic displacement ellipsoids drawn at the 50% probability level).
[Figure 2] Fig. 2. two-dimensional layer propagating along the bc plane. Red dotted lines indicate O–H···I contacts, blue dotted lines indicate C–H···O and C–H···I contacts. Ferrocenyl-C5H4 moieties have been omitted for clarity.
[Figure 3] Fig. 3. The packing of the title compound viewed along [010].
1-(4-Ferrocenylphenyl)-3-methylimidazolium iodide monohydrate top
Crystal data top
[Fe(C5H5)(C15H14N2)]I·H2OF(000) = 968
Mr = 488.14Dx = 1.687 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6938 reflections
a = 17.3871 (7) Åθ = 4.4–26.3°
b = 7.3397 (2) ŵ = 2.40 mm1
c = 16.9445 (6) ÅT = 200 K
β = 117.299 (5)°Platelet, orange
V = 1921.56 (14) Å30.50 × 0.39 × 0.04 mm
Z = 4
Data collection top
Oxford Xcalibur
diffractometer
3885 independent reflections
Radiation source: fine-focus sealed tube3098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 15.9809 pixels mm-1θmax = 26.4°, θmin = 4.5°
ω scansh = 2119
Absorption correction: numerical
[X-SHAPE (Stoe & Cie, 1996) and X-RED (Stoe & Cie, 1997)]
k = 99
Tmin = 0.399, Tmax = 0.901l = 1621
12113 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.049P)2]
where P = (Fo2 + 2Fc2)/3
3885 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Fe(C5H5)(C15H14N2)]I·H2OV = 1921.56 (14) Å3
Mr = 488.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.3871 (7) ŵ = 2.40 mm1
b = 7.3397 (2) ÅT = 200 K
c = 16.9445 (6) Å0.50 × 0.39 × 0.04 mm
β = 117.299 (5)°
Data collection top
Oxford Xcalibur
diffractometer
3885 independent reflections
Absorption correction: numerical
[X-SHAPE (Stoe & Cie, 1996) and X-RED (Stoe & Cie, 1997)]
3098 reflections with I > 2σ(I)
Tmin = 0.399, Tmax = 0.901Rint = 0.042
12113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.97Δρmax = 1.28 e Å3
3885 reflectionsΔρmin = 0.50 e Å3
227 parameters
Special details top

Experimental. Crystal faces optimized with XShape, Version 1.02 (Stoe, 1996) Absorption correction with XRed, Version 1.09 (Stoe, 1997)

Refinement. The C-bound H atoms are riding on their parent atoms (C—H = 0.98 Å for CH3, 0.95 Å for CH) with Uiso(H) = 1.2Ueq(C) for CH, Uiso(H) = 1.5Ueq(C) for CH3]. The O-bound H are riding on their parent atom (O—H = 0.84 Å) with Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.63876 (3)0.84486 (5)0.20164 (3)0.02466 (12)
N10.18768 (18)0.6660 (3)0.07900 (16)0.0282 (6)
N20.04809 (19)0.6670 (3)0.13933 (19)0.0364 (7)
C10.5395 (2)0.6743 (4)0.18554 (19)0.0235 (6)
C20.5720 (2)0.7706 (4)0.26899 (19)0.0263 (6)
H20.53950.84880.28700.032*
C30.6614 (2)0.7277 (4)0.3194 (2)0.0320 (7)
H30.69890.77260.37700.038*
C40.6848 (2)0.6060 (4)0.2687 (2)0.0330 (7)
H40.74060.55550.28640.040*
C50.6103 (2)0.5735 (4)0.1875 (2)0.0287 (7)
H50.60780.49640.14140.034*
C60.4495 (2)0.6764 (4)0.11489 (19)0.0226 (6)
C70.3910 (2)0.8094 (4)0.1133 (2)0.0265 (7)
H70.41070.90280.15690.032*
C80.3054 (2)0.8078 (4)0.0495 (2)0.0279 (7)
H80.26680.90000.04880.034*
C90.2766 (2)0.6703 (4)0.01333 (19)0.0253 (6)
C100.3324 (2)0.5365 (4)0.01372 (19)0.0295 (7)
H100.31210.44250.05710.035*
C110.4182 (2)0.5411 (4)0.04971 (19)0.0288 (7)
H11A0.45670.45020.04900.035*
C120.1202 (2)0.6788 (4)0.0630 (2)0.0295 (7)
H12A0.12280.69400.00610.035*
C130.0705 (3)0.6437 (5)0.2066 (2)0.0423 (9)
H130.03150.63020.26790.051*
C140.1569 (2)0.6435 (5)0.1704 (2)0.0359 (8)
H140.19080.63050.20090.043*
C150.0396 (3)0.6651 (6)0.1483 (3)0.0570 (11)
H15A0.06730.54830.17350.085*
H15B0.07330.76440.18770.085*
H15C0.03710.68140.08980.085*
C160.6389 (3)1.1210 (5)0.2001 (3)0.0510 (11)
H160.61801.19740.23120.061*
C170.7237 (3)1.0564 (5)0.2324 (3)0.0541 (11)
H170.77061.08140.28910.065*
C180.7271 (3)0.9470 (5)0.1652 (3)0.0483 (9)
H180.77660.88440.16930.058*
C190.6455 (2)0.9471 (4)0.0923 (2)0.0375 (8)
H190.63000.88620.03770.045*
C200.5897 (3)1.0525 (4)0.1130 (2)0.0427 (9)
H200.53001.07390.07550.051*
O10.11333 (17)0.8580 (4)0.11076 (16)0.0511 (7)
H1A0.06110.84250.09800.077*
H1B0.11590.93490.07530.077*
I10.112089 (15)0.80931 (3)0.047195 (15)0.04024 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0253 (2)0.0217 (2)0.0259 (2)0.00069 (16)0.01074 (19)0.00191 (17)
N10.0316 (15)0.0281 (14)0.0238 (13)0.0031 (11)0.0117 (12)0.0003 (10)
N20.0327 (16)0.0341 (15)0.0361 (15)0.0009 (12)0.0104 (13)0.0007 (12)
C10.0322 (18)0.0182 (14)0.0226 (14)0.0026 (11)0.0146 (13)0.0007 (11)
C20.0317 (18)0.0247 (15)0.0251 (15)0.0015 (12)0.0153 (14)0.0009 (12)
C30.0318 (19)0.0350 (17)0.0236 (15)0.0044 (14)0.0079 (14)0.0038 (13)
C40.0300 (18)0.0261 (16)0.0416 (18)0.0066 (13)0.0154 (16)0.0080 (14)
C50.0363 (18)0.0218 (15)0.0309 (16)0.0003 (13)0.0179 (15)0.0031 (13)
C60.0289 (17)0.0201 (14)0.0226 (14)0.0032 (11)0.0150 (13)0.0006 (11)
C70.0297 (17)0.0236 (15)0.0266 (15)0.0003 (12)0.0132 (14)0.0040 (12)
C80.0321 (18)0.0239 (15)0.0299 (16)0.0011 (12)0.0160 (14)0.0029 (12)
C90.0285 (17)0.0260 (15)0.0211 (14)0.0048 (12)0.0111 (13)0.0007 (11)
C100.0374 (19)0.0261 (16)0.0259 (15)0.0031 (13)0.0153 (14)0.0081 (12)
C110.0350 (18)0.0241 (15)0.0317 (16)0.0008 (13)0.0190 (15)0.0036 (12)
C120.0296 (18)0.0301 (18)0.0273 (16)0.0016 (12)0.0118 (14)0.0020 (12)
C130.046 (2)0.045 (2)0.0262 (17)0.0032 (16)0.0088 (17)0.0016 (15)
C140.040 (2)0.0430 (19)0.0221 (15)0.0068 (15)0.0123 (15)0.0038 (14)
C150.029 (2)0.069 (3)0.063 (3)0.0035 (18)0.013 (2)0.008 (2)
C160.089 (4)0.0171 (16)0.062 (3)0.0045 (18)0.048 (3)0.0013 (16)
C170.058 (3)0.049 (2)0.045 (2)0.028 (2)0.015 (2)0.0007 (18)
C180.041 (2)0.051 (2)0.057 (2)0.0043 (17)0.025 (2)0.0150 (19)
C190.051 (2)0.0315 (18)0.0346 (18)0.0023 (15)0.0230 (17)0.0072 (14)
C200.044 (2)0.0325 (18)0.046 (2)0.0065 (15)0.0164 (18)0.0181 (15)
O10.0404 (16)0.0708 (17)0.0442 (14)0.0056 (13)0.0213 (13)0.0096 (13)
I10.03337 (15)0.03911 (15)0.03887 (15)0.00048 (9)0.00850 (11)0.00466 (9)
Geometric parameters (Å, º) top
Fe1—C162.027 (3)C7—C81.381 (4)
Fe1—C202.032 (3)C7—H70.9500
Fe1—C172.039 (4)C8—C91.383 (4)
Fe1—C32.039 (3)C8—H80.9500
Fe1—C52.040 (3)C9—C101.384 (4)
Fe1—C22.040 (3)C10—C111.382 (4)
Fe1—C182.042 (4)C10—H100.9500
Fe1—C42.042 (3)C11—H11A0.9500
Fe1—C12.046 (3)C12—H12A0.9500
Fe1—C192.052 (3)C13—C141.337 (5)
N1—C121.323 (4)C13—H130.9500
N1—C141.397 (4)C14—H140.9500
N1—C91.432 (4)C15—H15A0.9800
N2—C121.328 (4)C15—H15B0.9800
N2—C131.374 (5)C15—H15C0.9800
N2—C151.461 (5)C16—C171.399 (6)
C1—C51.424 (4)C16—C201.416 (5)
C1—C21.444 (4)C16—H160.9486
C1—C61.472 (4)C17—C181.416 (5)
C2—C31.423 (4)C17—H170.9503
C2—H20.9490C18—C191.390 (5)
C3—C41.423 (5)C18—H180.9496
C3—H30.9500C19—C201.407 (5)
C4—C51.411 (4)C19—H190.9485
C4—H40.9496C20—H200.9492
C5—H50.9493O1—H1A0.8400
C6—C111.397 (4)O1—H1B0.8400
C6—C71.400 (4)
C16—Fe1—C2040.82 (15)C3—C4—H4126.0
C16—Fe1—C1740.26 (17)Fe1—C4—H4126.4
C20—Fe1—C1768.09 (16)C4—C5—C1109.4 (3)
C16—Fe1—C3115.66 (14)C4—C5—Fe169.87 (17)
C20—Fe1—C3150.05 (15)C1—C5—Fe169.85 (16)
C17—Fe1—C3106.21 (14)C4—C5—H5125.3
C16—Fe1—C5167.57 (17)C1—C5—H5125.3
C20—Fe1—C5130.44 (14)Fe1—C5—H5126.6
C17—Fe1—C5151.86 (16)C11—C6—C7117.7 (3)
C3—Fe1—C568.33 (13)C11—C6—C1121.3 (3)
C16—Fe1—C2106.16 (14)C7—C6—C1121.0 (2)
C20—Fe1—C2117.37 (14)C8—C7—C6121.4 (3)
C17—Fe1—C2126.28 (15)C8—C7—H7119.3
C3—Fe1—C240.85 (13)C6—C7—H7119.3
C5—Fe1—C268.62 (12)C7—C8—C9119.3 (3)
C16—Fe1—C1867.90 (17)C7—C8—H8120.4
C20—Fe1—C1867.70 (15)C9—C8—H8120.4
C17—Fe1—C1840.60 (16)C8—C9—C10120.9 (3)
C3—Fe1—C18128.05 (15)C8—C9—N1119.7 (3)
C5—Fe1—C18119.89 (15)C10—C9—N1119.4 (3)
C2—Fe1—C18165.18 (14)C11—C10—C9119.2 (3)
C16—Fe1—C4149.65 (16)C11—C10—H10120.4
C20—Fe1—C4168.37 (14)C9—C10—H10120.4
C17—Fe1—C4117.31 (15)C10—C11—C6121.5 (3)
C3—Fe1—C440.79 (13)C10—C11—H11A119.3
C5—Fe1—C440.45 (12)C6—C11—H11A119.3
C2—Fe1—C468.75 (13)N1—C12—N2109.0 (3)
C18—Fe1—C4109.05 (15)N1—C12—H12A125.5
C16—Fe1—C1127.99 (16)N2—C12—H12A125.5
C20—Fe1—C1108.52 (13)C14—C13—N2107.8 (3)
C17—Fe1—C1165.36 (16)C14—C13—H13126.1
C3—Fe1—C169.20 (12)N2—C13—H13126.1
C5—Fe1—C140.79 (12)C13—C14—N1106.7 (3)
C2—Fe1—C141.39 (11)C13—C14—H14126.7
C18—Fe1—C1152.79 (14)N1—C14—H14126.7
C4—Fe1—C168.92 (12)N2—C15—H15A109.5
C16—Fe1—C1967.81 (14)N2—C15—H15B109.5
C20—Fe1—C1940.28 (14)H15A—C15—H15B109.5
C17—Fe1—C1967.52 (15)N2—C15—H15C109.5
C3—Fe1—C19166.65 (14)H15A—C15—H15C109.5
C5—Fe1—C19111.23 (13)H15B—C15—H15C109.5
C2—Fe1—C19152.35 (14)C17—C16—C20108.1 (3)
C18—Fe1—C1939.69 (14)C17—C16—Fe170.3 (2)
C4—Fe1—C19130.26 (13)C20—C16—Fe169.78 (19)
C1—Fe1—C19119.82 (13)C17—C16—H16125.9
C12—N1—C14108.1 (3)C20—C16—H16125.9
C12—N1—C9125.6 (3)Fe1—C16—H16125.5
C14—N1—C9126.3 (3)C16—C17—C18107.7 (4)
C12—N2—C13108.4 (3)C16—C17—Fe169.4 (2)
C12—N2—C15125.2 (3)C18—C17—Fe169.8 (2)
C13—N2—C15126.3 (3)C16—C17—H17126.2
C5—C1—C2106.6 (3)C18—C17—H17126.1
C5—C1—C6127.6 (3)Fe1—C17—H17126.2
C2—C1—C6125.7 (3)C19—C18—C17108.2 (4)
C5—C1—Fe169.36 (17)C19—C18—Fe170.5 (2)
C2—C1—Fe169.07 (17)C17—C18—Fe169.6 (2)
C6—C1—Fe1128.30 (19)C19—C18—H18125.9
C3—C2—C1108.0 (3)C17—C18—H18125.9
C3—C2—Fe169.55 (18)Fe1—C18—H18125.6
C1—C2—Fe169.54 (17)C18—C19—C20108.5 (3)
C3—C2—H2126.0C18—C19—Fe169.76 (19)
C1—C2—H2126.0C20—C19—Fe169.10 (18)
Fe1—C2—H2126.5C18—C19—H19125.8
C4—C3—C2108.2 (3)C20—C19—H19125.7
C4—C3—Fe169.73 (17)Fe1—C19—H19126.9
C2—C3—Fe169.60 (17)C19—C20—C16107.5 (3)
C4—C3—H3126.0C19—C20—Fe170.61 (19)
C2—C3—H3125.9C16—C20—Fe169.39 (19)
Fe1—C3—H3126.4C19—C20—H20126.3
C5—C4—C3107.9 (3)C16—C20—H20126.3
C5—C4—Fe169.68 (17)Fe1—C20—H20125.3
C3—C4—Fe169.48 (17)H1A—O1—H1B108.3
C5—C4—H4126.1
C16—Fe1—C1—C5172.5 (2)C6—C7—C8—C90.9 (5)
C20—Fe1—C1—C5131.22 (19)C7—C8—C9—C100.8 (4)
C17—Fe1—C1—C5154.7 (5)C7—C8—C9—N1179.2 (3)
C3—Fe1—C1—C580.54 (19)C12—N1—C9—C849.9 (4)
C2—Fe1—C1—C5118.1 (2)C14—N1—C9—C8131.7 (3)
C18—Fe1—C1—C554.2 (4)C12—N1—C9—C10130.1 (3)
C4—Fe1—C1—C536.71 (18)C14—N1—C9—C1048.3 (4)
C19—Fe1—C1—C588.6 (2)C8—C9—C10—C110.0 (4)
C16—Fe1—C1—C269.4 (2)N1—C9—C10—C11180.0 (3)
C20—Fe1—C1—C2110.69 (19)C9—C10—C11—C60.8 (4)
C17—Fe1—C1—C236.6 (6)C7—C6—C11—C100.8 (4)
C3—Fe1—C1—C237.55 (18)C1—C6—C11—C10176.2 (3)
C5—Fe1—C1—C2118.1 (2)C14—N1—C12—N20.4 (3)
C18—Fe1—C1—C2172.2 (3)C9—N1—C12—N2179.1 (2)
C4—Fe1—C1—C281.37 (19)C13—N2—C12—N10.7 (4)
C19—Fe1—C1—C2153.36 (18)C15—N2—C12—N1176.4 (3)
C16—Fe1—C1—C650.3 (3)C12—N2—C13—C140.6 (4)
C20—Fe1—C1—C69.0 (3)C15—N2—C13—C14176.3 (3)
C17—Fe1—C1—C683.0 (6)N2—C13—C14—N10.3 (4)
C3—Fe1—C1—C6157.2 (3)C12—N1—C14—C130.1 (4)
C5—Fe1—C1—C6122.3 (3)C9—N1—C14—C13178.7 (3)
C2—Fe1—C1—C6119.7 (3)C20—Fe1—C16—C17118.9 (3)
C18—Fe1—C1—C668.1 (4)C3—Fe1—C16—C1784.9 (3)
C4—Fe1—C1—C6159.0 (3)C5—Fe1—C16—C17169.0 (6)
C19—Fe1—C1—C633.7 (3)C2—Fe1—C16—C17127.7 (2)
C5—C1—C2—C30.4 (3)C18—Fe1—C16—C1737.9 (2)
C6—C1—C2—C3178.1 (3)C4—Fe1—C16—C1752.3 (4)
Fe1—C1—C2—C359.1 (2)C1—Fe1—C16—C17167.8 (2)
C5—C1—C2—Fe159.49 (19)C19—Fe1—C16—C1780.9 (3)
C6—C1—C2—Fe1122.8 (3)C17—Fe1—C16—C20118.9 (3)
C16—Fe1—C2—C3110.7 (2)C3—Fe1—C16—C20156.1 (2)
C20—Fe1—C2—C3153.3 (2)C5—Fe1—C16—C2050.1 (8)
C17—Fe1—C2—C371.4 (2)C2—Fe1—C16—C20113.4 (2)
C5—Fe1—C2—C381.2 (2)C18—Fe1—C16—C2081.0 (2)
C18—Fe1—C2—C346.6 (6)C4—Fe1—C16—C20171.2 (3)
C4—Fe1—C2—C337.61 (19)C1—Fe1—C16—C2073.3 (3)
C1—Fe1—C2—C3119.4 (3)C19—Fe1—C16—C2038.0 (2)
C19—Fe1—C2—C3176.4 (3)C20—C16—C17—C180.2 (4)
C16—Fe1—C2—C1129.8 (2)Fe1—C16—C17—C1859.6 (2)
C20—Fe1—C2—C187.3 (2)C20—C16—C17—Fe159.8 (2)
C17—Fe1—C2—C1169.2 (2)C20—Fe1—C17—C1638.1 (2)
C3—Fe1—C2—C1119.4 (3)C3—Fe1—C17—C16110.8 (2)
C5—Fe1—C2—C138.24 (17)C5—Fe1—C17—C16175.0 (3)
C18—Fe1—C2—C1166.0 (5)C2—Fe1—C17—C1670.6 (3)
C4—Fe1—C2—C181.81 (18)C18—Fe1—C17—C16118.9 (3)
C19—Fe1—C2—C157.0 (3)C4—Fe1—C17—C16153.3 (2)
C1—C2—C3—C40.2 (3)C1—Fe1—C17—C1641.3 (7)
Fe1—C2—C3—C459.3 (2)C19—Fe1—C17—C1681.7 (2)
C1—C2—C3—Fe159.1 (2)C16—Fe1—C17—C18118.9 (3)
C16—Fe1—C3—C4155.3 (2)C20—Fe1—C17—C1880.8 (2)
C20—Fe1—C3—C4172.7 (3)C3—Fe1—C17—C18130.3 (2)
C17—Fe1—C3—C4113.2 (2)C5—Fe1—C17—C1856.1 (4)
C5—Fe1—C3—C437.54 (19)C2—Fe1—C17—C18170.5 (2)
C2—Fe1—C3—C4119.5 (3)C4—Fe1—C17—C1887.8 (2)
C18—Fe1—C3—C474.2 (3)C1—Fe1—C17—C18160.2 (5)
C1—Fe1—C3—C481.4 (2)C19—Fe1—C17—C1837.2 (2)
C19—Fe1—C3—C453.2 (6)C16—C17—C18—C190.9 (4)
C16—Fe1—C3—C285.2 (2)Fe1—C17—C18—C1960.2 (2)
C20—Fe1—C3—C253.2 (4)C16—C17—C18—Fe159.3 (3)
C17—Fe1—C3—C2127.3 (2)C16—Fe1—C18—C1981.4 (2)
C5—Fe1—C3—C281.93 (19)C20—Fe1—C18—C1937.2 (2)
C18—Fe1—C3—C2166.3 (2)C17—Fe1—C18—C19119.1 (3)
C4—Fe1—C3—C2119.5 (3)C3—Fe1—C18—C19172.6 (2)
C1—Fe1—C3—C238.03 (17)C5—Fe1—C18—C1987.8 (2)
C19—Fe1—C3—C2172.7 (5)C2—Fe1—C18—C19150.3 (5)
C2—C3—C4—C50.1 (3)C4—Fe1—C18—C19130.9 (2)
Fe1—C3—C4—C559.3 (2)C1—Fe1—C18—C1950.1 (4)
C2—C3—C4—Fe159.2 (2)C16—Fe1—C18—C1737.6 (2)
C16—Fe1—C4—C5167.4 (3)C20—Fe1—C18—C1781.9 (2)
C20—Fe1—C4—C542.3 (8)C3—Fe1—C18—C1768.4 (3)
C17—Fe1—C4—C5157.5 (2)C5—Fe1—C18—C17153.2 (2)
C3—Fe1—C4—C5119.2 (3)C2—Fe1—C18—C1731.2 (7)
C2—Fe1—C4—C581.6 (2)C4—Fe1—C18—C17110.1 (2)
C18—Fe1—C4—C5114.1 (2)C1—Fe1—C18—C17169.2 (3)
C1—Fe1—C4—C537.02 (18)C19—Fe1—C18—C17119.1 (3)
C19—Fe1—C4—C574.8 (2)C17—C18—C19—C201.2 (4)
C16—Fe1—C4—C348.1 (4)Fe1—C18—C19—C2058.4 (2)
C20—Fe1—C4—C3161.6 (7)C17—C18—C19—Fe159.6 (2)
C17—Fe1—C4—C383.3 (2)C16—Fe1—C19—C1881.7 (3)
C5—Fe1—C4—C3119.2 (3)C20—Fe1—C19—C18120.2 (3)
C2—Fe1—C4—C337.66 (18)C17—Fe1—C19—C1838.0 (2)
C18—Fe1—C4—C3126.7 (2)C3—Fe1—C19—C1826.2 (7)
C1—Fe1—C4—C382.2 (2)C5—Fe1—C19—C18111.7 (2)
C19—Fe1—C4—C3166.0 (2)C2—Fe1—C19—C18164.2 (3)
C3—C4—C5—C10.4 (3)C4—Fe1—C19—C1869.5 (3)
Fe1—C4—C5—C158.8 (2)C1—Fe1—C19—C18156.1 (2)
C3—C4—C5—Fe159.2 (2)C16—Fe1—C19—C2038.5 (2)
C2—C1—C5—C40.5 (3)C17—Fe1—C19—C2082.2 (2)
C6—C1—C5—C4178.1 (3)C3—Fe1—C19—C20146.3 (5)
Fe1—C1—C5—C458.8 (2)C5—Fe1—C19—C20128.2 (2)
C2—C1—C5—Fe159.30 (19)C2—Fe1—C19—C2044.0 (4)
C6—C1—C5—Fe1123.1 (3)C18—Fe1—C19—C20120.2 (3)
C16—Fe1—C5—C4149.1 (6)C4—Fe1—C19—C20170.4 (2)
C20—Fe1—C5—C4169.7 (2)C1—Fe1—C19—C2083.7 (2)
C17—Fe1—C5—C446.1 (4)C18—C19—C20—C161.1 (4)
C3—Fe1—C5—C437.85 (19)Fe1—C19—C20—C1659.9 (2)
C2—Fe1—C5—C481.9 (2)C18—C19—C20—Fe158.8 (2)
C18—Fe1—C5—C484.6 (2)C17—C16—C20—C190.5 (4)
C1—Fe1—C5—C4120.7 (3)Fe1—C16—C20—C1960.7 (2)
C19—Fe1—C5—C4127.8 (2)C17—C16—C20—Fe160.1 (2)
C16—Fe1—C5—C128.4 (7)C16—Fe1—C20—C19118.2 (3)
C20—Fe1—C5—C169.6 (2)C17—Fe1—C20—C1980.6 (2)
C17—Fe1—C5—C1166.8 (3)C3—Fe1—C20—C19165.1 (3)
C3—Fe1—C5—C182.85 (19)C5—Fe1—C20—C1974.4 (3)
C2—Fe1—C5—C138.79 (17)C2—Fe1—C20—C19158.7 (2)
C18—Fe1—C5—C1154.69 (19)C18—Fe1—C20—C1936.6 (2)
C4—Fe1—C5—C1120.7 (3)C4—Fe1—C20—C1939.3 (8)
C19—Fe1—C5—C1111.49 (19)C1—Fe1—C20—C19114.6 (2)
C5—C1—C6—C1116.5 (4)C17—Fe1—C20—C1637.6 (2)
C2—C1—C6—C11160.7 (3)C3—Fe1—C20—C1647.0 (4)
Fe1—C1—C6—C11108.9 (3)C5—Fe1—C20—C16167.5 (2)
C5—C1—C6—C7166.6 (3)C2—Fe1—C20—C1683.1 (3)
C2—C1—C6—C716.2 (4)C18—Fe1—C20—C1681.5 (3)
Fe1—C1—C6—C774.2 (4)C4—Fe1—C20—C16157.5 (7)
C11—C6—C7—C80.1 (4)C1—Fe1—C20—C16127.3 (2)
C1—C6—C7—C8177.1 (3)C19—Fe1—C20—C16118.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···I10.842.743.575 (3)176
O1—H1B···I1i0.842.783.616 (3)176
C12—H12A···O10.952.393.277 (4)156
C13—H13···I1ii0.953.013.931 (3)163
Symmetry codes: (i) x, y+2, z; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H14N2)]I·H2O
Mr488.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)17.3871 (7), 7.3397 (2), 16.9445 (6)
β (°) 117.299 (5)
V3)1921.56 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.40
Crystal size (mm)0.50 × 0.39 × 0.04
Data collection
DiffractometerOxford Xcalibur
diffractometer
Absorption correctionNumerical
[X-SHAPE (Stoe & Cie, 1996) and X-RED (Stoe & Cie, 1997)]
Tmin, Tmax0.399, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
12113, 3885, 3098
Rint0.042
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 0.97
No. of reflections3885
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 0.50

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···I10.842.743.575 (3)176.0
O1—H1B···I1i0.842.783.616 (3)176.0
C12—H12A···O10.952.393.277 (4)155.7
C13—H13···I1ii0.953.013.931 (3)163.2
Symmetry codes: (i) x, y+2, z; (ii) x, y+3/2, z1/2.
Dihedral angles (°) between the planes. top
Note: planes A consists of atoms C1–C5, plane B of atoms C6–C11 and plane C of atoms N1/C12/N2/C13/C14.
PlaneAngle
A and B17.27 (17)
B and C48.81 (17)
A and C32.53 (19)
 

Acknowledgements

Financial support by Nelson Mandela Metropolitan University is gratefully acknowledged, as is Professor P. Klüfers for generous allocation of diffractometer time.

References

First citation Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citation Bildstein, B., Maluan, M., Kopacka, H., Wurst, K., Mitterbock, M., Ongania, K.-H., Opromolla, G. & Zanello, P. (1999). Organometallics, 18, 4325–4336.  Web of Science CSD CrossRef CAS Google Scholar
First citation Cheng, J.-P., Niu, H.-T., Yin, Z., Su, D., Niu, D., Ao, Y. & He, J. (2008). Tetrahedron, 64, 6300–6306.  Google Scholar
First citation Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citation Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Koten, G., Sperotto, E., Vries, J. & Klink, G. (2007). Tetrahedron Lett. 48, 7366–7370.  Google Scholar
First citation Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citation Nolan, K., Dallas, A., Kuhtz, H., Farrell, A. & Quilty, B. (2007). Tetrahedron Lett. 48, 1017–1021.  Google Scholar
First citation Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Stoe & Cie (1996). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citation Stoe & Cie (1997). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citation Westrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citation Yang, X.-D., Zeng, X.-H., Zhang, Y.-L., Qing, C., Song, W.-J., Li, L. & Zhang, H.-B. (2009). Bioorg. Med. Chem. Lett. 19, 1892–1895.  Web of Science CrossRef PubMed CAS Google Scholar
First citation Zhao, K.-Q., Hu, P. & Xu, H. (2001). Molecules, 6, 246–247.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds