metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aquazinc(II)]-μ3-2,2′-dihydr­­oxy-1,1′-bi­naphthyl-3,3′-di­carboxyl­ato-κ3O:O′:O′′]

aDepartment of Technology, Guangdong Police Officers College, Guangzhou, Guangdong 510230, People's Republic of China
*Correspondence e-mail: zlygdppla@yahoo.com.cn

(Received 25 November 2009; accepted 2 December 2009; online 9 December 2009)

In the title coordination complex, [Zn(C22H12O6)(H2O)2]n or [Zn(H2nba)(H2O)2]n (H2nba is 2,2′-dihydr­oxy-1,1′-bi­naph­thyl-3,3′-dicarboxyl­ate), the ZnII atom is coordinated by three H2nba ligands and two water molecules, resulting in a distorted trigonal-bipyramidal geometry. In the crystal structure, adjacent ZnII atoms are linked by two H2nba ligands, forming one-dimensional ribbons along the c axis. These ribbons are further assembled into layers parallel to the bc plane via O—H⋯O hydrogen bonds.

Related literature

For d10 metal complexes with the H2nba ligand, see: Han et al. (2008[Han, Z.-X., Wang, J.-J., Hu, H.-M., Chen, X.-L., Wu, Q.-R. & Li, D.-S. (2008). J. Mol. Struct. 891, 364-369.]); Zheng et al. (2004[Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830-838.]). For the potential coordination modes of the H4nba ligand, see: Zhang et al. (2006[Zhang, L.-Y., Zhang, J.-P., Lin, Y.-Y. & Chen, X.-M. (2006). Cryst. Growth Des. 6, 1684-1689.]). For related structures, see: Zhang et al. (2003[Zhang, L.-Y., Liu, G.-F., Zheng, S.-L., Ye, B.-H., Zhang, X.-M. & Chen, X.-M. (2003). Eur. J. Inorg. Chem. 16, 2965-2971.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C22H12O6)(H2O)2]

  • Mr = 473.72

  • Monoclinic, P 21 /c

  • a = 15.4581 (19) Å

  • b = 9.5876 (10) Å

  • c = 13.4453 (14) Å

  • β = 90.047 (4)°

  • V = 1992.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.784, Tmax = 0.883

  • 10598 measured reflections

  • 4323 independent reflections

  • 3258 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 1.06

  • 4323 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WB⋯O2 0.85 2.04 2.770 (3) 144
O2W—H2WA⋯O5i 0.85 1.95 2.719 (3) 150
O5—H5A⋯O2 0.82 1.77 2.517 (3) 150
O1W—H1WB⋯O6ii 0.85 2.19 2.863 (3) 136
O6—H6A⋯O3 0.82 1.89 2.607 (3) 146
O1W—H1WA⋯O2Wiii 0.85 2.32 3.137 (3) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently much interest has been focused on the design and synthesis of coordination polymers with d10 metal ions and dicarboxylate not only for their interesting molecular topologies, but also for the fact that they may be designed with photoluminescence (Han et al. 2008; Zheng et al. 2004). The 2,2'-dihydroxy-[1,1']-binaphthalene-3,3'-dicarboxylic acid (H4nba) is a multifunctional ligand containing both carboxylic and hydroxy groups, which can potentially afford various coordination modes (Zhang et al., 2006). Meanwhile, it also possesses both rigidity and flexibility, since the naphthyl rings can be twisted at some degrees across the C–C single bond due to steric effect. As an extension of our previous investigations, H4nba was introduced into zinc dicarboxylate system and the title coordination complex was isolated. In the title complex, each ZnII atom is coordinated by five O atoms from three H2nba ligands and two aqua ligands in a distorted trigonal-bipyramidal geometry, with the two coordinated aqua ligands at the axial sites (Figure 1). Two ZnII atoms related by a twofold axis are brideged by a pair of the H2nba ligands µ-carboxylate ends into a dinuclear unit [Zn1···Zn1A = 3.4971 (5) Å] and the distance is nearer than that of the m-phthalalate ligands (Zhang et al., 2003). The H2nba ligands act in the mono bridging bidentate coordination mode to link the adjacent ZnII atoms to form one-dimensional ribbons running along the c axis (Figure 2). These ribbons are assembled into layers paralled to the bc plane by the O–H···O hydrogen bonds. The O1w···O6iv distance is 2.866 (3) Å and the O2w···O5v distance is 2.715 (4) Å [symmetry codes: (iv) x, -1/2 - y, 1/2 + z; (v) x, 1/2 - y, 1/2 + z] (Figure 3 and Table 1).

Related literature top

For d10 metal complexes with the H2nba ligand, see: Han et al. (2008); Zheng et al. (2004). For the potential coordination modes of the H4nba ligand, see: Zhang et al. (2006). For related structures, see Zhang et al. (2003).

Experimental top

A mixture of Zn(CH3COO)2 (0.184 g, 1 mmol), H4nba (0.094 g, 0.25 mmol) and NaOH (0.020 g, 0.50 mmol) in water (10 ml) was heated for 3 days at 130°C in a Parr Teflon-lined stainless steel vessel (23 ml), cooled to room temperature at a rate of 5 °C h-1. Pale-yellow crystals of the title complex were collected, washed with water and dried in air (yield 80%). IR data (KBr, cm-1): 3364m, 3057m, 1953w, 1832w, 1643 s, 1585m, 1505 s, 1457 s, 1397 s, 1340m, 1304m, 1239 s, 1152m, 1079w, 1007w, 939m, 866m, 807 s, 749 s, 624w, 598m, 440m. Anal. Calcd (%) for C22H16O8Zn: C, 55.78; H, 3.40. Found: C, 55.50; H, 3.72.

Refinement top

H atoms were positioned geometrically, with C—H = 0.95 (aromatic), 0.98(methyl), 0.99(methylene) and O—H = 0.82 Å, and refined as riding on their parent atoms with Uiso(H)= 1.5Ueq(C) for methyl H and 1.2Ueq(C, O) for all other H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and OLEX (Dolomanov et al., 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the polymer network of the title complex, showing 50% probability displacement ellipsoids [Symmetry codes: (A) 1 - x, -y, 2 - z; (B) x, y, 1 + z; (C) 1 - x, -y, 1 - z]. Unlabelled atoms are related to labelled atoms by the sysmmetry operations (1 - x, -y, 2 - z; x, y, 1 + z; 1 - x, -y, 1 - z) (atoms C1–C22/O1–O6), respectively.
[Figure 2] Fig. 2. Perspective view showing the ZnII atoms connected by H2nba ligands into ribbons along the c axis. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Packing diagram, viewed along the c axis. Dashed lines indicated hydrogen bonds. H atoms have been omitted for clarity.
catena-Poly[[diaquazinc(II)]-µ3-2,2'-dihydroxy-1,1'-binaphthyl-3,3'- dicarboxylato-κ3O:O':O''] top
Crystal data top
[Zn(C22H12O6)(H2O)2]F(000) = 968
Mr = 473.72Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3258 reflections
a = 15.4581 (19) Åθ = 2–27°
b = 9.5876 (10) ŵ = 1.28 mm1
c = 13.4453 (14) ÅT = 293 K
β = 90.047 (4)°Block, yellow
V = 1992.7 (4) Å30.20 × 0.18 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
4323 independent reflections
Radiation source: fine-focus sealed tube3258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 199
Tmin = 0.784, Tmax = 0.883k = 129
10598 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.1133P]
where P = (Fo2 + 2Fc2)/3
4323 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Zn(C22H12O6)(H2O)2]V = 1992.7 (4) Å3
Mr = 473.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.4581 (19) ŵ = 1.28 mm1
b = 9.5876 (10) ÅT = 293 K
c = 13.4453 (14) Å0.20 × 0.18 × 0.10 mm
β = 90.047 (4)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
4323 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3258 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.883Rint = 0.032
10598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
4323 reflectionsΔρmin = 0.35 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.57700 (2)0.01105 (3)0.90514 (2)0.03018 (13)
O10.64675 (16)0.0504 (2)0.79378 (15)0.0433 (6)
O20.59198 (15)0.1048 (2)0.68741 (14)0.0422 (6)
O30.54356 (14)0.0097 (2)0.14753 (16)0.0420 (6)
O40.63139 (15)0.0708 (2)0.02993 (14)0.0395 (5)
O50.64514 (15)0.1116 (2)0.51057 (14)0.0408 (6)
H5A0.61860.13400.56090.061*
O60.61219 (13)0.0839 (2)0.31663 (14)0.0339 (5)
H6A0.57520.08220.27290.051*
C10.6393 (2)0.0014 (3)0.7071 (2)0.0326 (7)
C20.69136 (19)0.0645 (3)0.62605 (19)0.0284 (6)
C30.73883 (19)0.1821 (3)0.6437 (2)0.0307 (6)
H3A0.73750.22210.70670.037*
C40.78967 (18)0.2444 (3)0.5691 (2)0.0296 (6)
C50.8370 (2)0.3682 (3)0.5858 (2)0.0374 (7)
H5B0.83640.40840.64870.045*
C60.8832 (2)0.4300 (3)0.5123 (3)0.0443 (8)
H6B0.91270.51270.52460.053*
C70.8861 (2)0.3681 (4)0.4173 (3)0.0488 (9)
H7A0.91770.41040.36680.059*
C80.8431 (2)0.2469 (3)0.3988 (2)0.0383 (7)
H8A0.84730.20610.33620.046*
C90.79223 (18)0.1818 (3)0.47289 (19)0.0285 (6)
C100.74391 (18)0.0585 (3)0.45474 (19)0.0257 (6)
C110.6935 (2)0.0044 (3)0.5296 (2)0.0280 (6)
C120.74652 (19)0.0145 (3)0.35614 (19)0.0253 (6)
C130.81783 (19)0.1036 (3)0.3325 (2)0.0294 (6)
C140.8882 (2)0.1224 (4)0.3978 (2)0.0453 (8)
H14A0.88910.07530.45830.054*
C150.9553 (2)0.2087 (4)0.3735 (3)0.0583 (10)
H15A1.00150.21910.41730.070*
C160.9551 (2)0.2816 (4)0.2834 (3)0.0589 (11)
H16A1.00050.34150.26820.071*
C170.8890 (2)0.2652 (4)0.2181 (2)0.0480 (9)
H17A0.89010.31290.15790.058*
C180.81814 (19)0.1762 (3)0.2405 (2)0.0312 (7)
C190.7502 (2)0.1528 (3)0.1732 (2)0.0304 (7)
H19A0.75160.19710.11170.036*
C200.68185 (18)0.0671 (3)0.19490 (18)0.0238 (6)
C210.6144 (2)0.0419 (3)0.1182 (2)0.0284 (6)
C220.67968 (18)0.0008 (3)0.28986 (19)0.0236 (6)
O1W0.56864 (16)0.2006 (2)0.95518 (16)0.0462 (6)
H1WA0.52800.22350.99440.069*
H1WB0.60590.25940.93500.069*
O2W0.56514 (17)0.2292 (2)0.87072 (16)0.0518 (7)
H2WA0.60610.26870.90230.078*
H2WB0.58090.22830.81020.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0311 (2)0.0431 (2)0.01629 (17)0.00210 (16)0.00209 (13)0.00114 (13)
O10.0522 (15)0.0580 (13)0.0198 (10)0.0129 (12)0.0082 (10)0.0063 (10)
O20.0533 (15)0.0479 (13)0.0254 (11)0.0149 (11)0.0027 (10)0.0015 (9)
O30.0338 (12)0.0618 (15)0.0303 (12)0.0129 (11)0.0120 (10)0.0151 (10)
O40.0500 (14)0.0508 (13)0.0177 (10)0.0138 (11)0.0080 (9)0.0024 (9)
O50.0615 (15)0.0406 (12)0.0202 (10)0.0186 (11)0.0043 (10)0.0032 (9)
O60.0325 (11)0.0461 (12)0.0232 (10)0.0123 (10)0.0070 (9)0.0098 (9)
C10.0366 (17)0.0391 (17)0.0221 (14)0.0005 (14)0.0012 (13)0.0020 (12)
C20.0308 (15)0.0349 (15)0.0196 (13)0.0001 (13)0.0016 (12)0.0017 (11)
C30.0348 (16)0.0376 (16)0.0198 (13)0.0018 (14)0.0028 (12)0.0074 (12)
C40.0263 (15)0.0331 (15)0.0293 (15)0.0024 (12)0.0048 (12)0.0026 (12)
C50.0334 (17)0.0378 (17)0.0411 (18)0.0003 (14)0.0046 (14)0.0100 (14)
C60.040 (2)0.0373 (18)0.055 (2)0.0081 (16)0.0019 (17)0.0038 (16)
C70.046 (2)0.053 (2)0.048 (2)0.0129 (17)0.0067 (17)0.0114 (16)
C80.0387 (18)0.0488 (19)0.0274 (16)0.0058 (15)0.0008 (14)0.0037 (13)
C90.0259 (15)0.0354 (16)0.0241 (14)0.0025 (12)0.0057 (12)0.0002 (12)
C100.0286 (15)0.0311 (14)0.0174 (13)0.0010 (12)0.0056 (11)0.0035 (11)
C110.0324 (15)0.0315 (15)0.0201 (13)0.0029 (13)0.0030 (12)0.0001 (11)
C120.0310 (15)0.0287 (14)0.0162 (12)0.0006 (12)0.0008 (11)0.0011 (11)
C130.0305 (15)0.0348 (16)0.0230 (14)0.0043 (13)0.0038 (12)0.0027 (12)
C140.041 (2)0.063 (2)0.0315 (17)0.0153 (17)0.0100 (15)0.0038 (15)
C150.043 (2)0.083 (3)0.048 (2)0.026 (2)0.0156 (18)0.002 (2)
C160.042 (2)0.077 (3)0.059 (2)0.032 (2)0.0020 (19)0.004 (2)
C170.050 (2)0.057 (2)0.0376 (18)0.0211 (18)0.0020 (16)0.0081 (15)
C180.0313 (16)0.0357 (16)0.0264 (14)0.0056 (13)0.0012 (12)0.0003 (12)
C190.0388 (17)0.0325 (15)0.0198 (13)0.0013 (13)0.0003 (12)0.0049 (11)
C200.0267 (14)0.0269 (13)0.0178 (12)0.0006 (12)0.0030 (11)0.0003 (11)
C210.0373 (17)0.0278 (14)0.0199 (13)0.0029 (13)0.0048 (12)0.0023 (11)
C220.0287 (14)0.0243 (13)0.0179 (12)0.0006 (12)0.0008 (11)0.0001 (10)
O1W0.0625 (16)0.0376 (12)0.0384 (13)0.0087 (11)0.0125 (11)0.0014 (10)
O2W0.0822 (19)0.0437 (13)0.0294 (12)0.0184 (13)0.0089 (12)0.0003 (10)
Geometric parameters (Å, º) top
Zn1—O11.937 (2)C7—H7A0.9300
Zn1—O4i1.9616 (19)C8—C91.415 (4)
Zn1—O3ii1.993 (2)C8—H8A0.9300
Zn1—O1W2.142 (2)C9—C101.419 (4)
Zn1—O2W2.150 (2)C10—C111.375 (4)
O1—C11.273 (3)C10—C121.500 (3)
O2—C11.259 (3)C12—C221.372 (4)
O3—C211.265 (4)C12—C131.431 (4)
O3—Zn1ii1.993 (2)C13—C141.410 (4)
O4—C211.247 (3)C13—C181.420 (4)
O4—Zn1iii1.9616 (19)C14—C151.367 (5)
O5—C111.364 (3)C14—H14A0.9300
O5—H5A0.8200C15—C161.399 (5)
O6—C221.361 (3)C15—H15A0.9300
O6—H6A0.8200C16—C171.355 (5)
C1—C21.495 (4)C16—H16A0.9300
C2—C31.366 (4)C17—C181.421 (4)
C2—C111.419 (4)C17—H17A0.9300
C3—C41.407 (4)C18—C191.403 (4)
C3—H3A0.9300C19—C201.371 (4)
C4—C51.412 (4)C19—H19A0.9300
C4—C91.427 (4)C20—C221.433 (3)
C5—C61.355 (4)C20—C211.486 (4)
C5—H5B0.9300O1W—H1WA0.8502
C6—C71.409 (5)O1W—H1WB0.8499
C6—H6B0.9300O2W—H2WA0.8500
C7—C81.362 (5)O2W—H2WB0.8500
O1—Zn1—O4i120.75 (10)C9—C10—C12121.7 (2)
O1—Zn1—O3ii104.14 (10)O5—C11—C10118.8 (2)
O4i—Zn1—O3ii134.89 (10)O5—C11—C2119.3 (2)
O1—Zn1—O1W89.35 (9)C10—C11—C2122.0 (3)
O4i—Zn1—O1W91.94 (9)C22—C12—C13120.0 (2)
O3ii—Zn1—O1W92.80 (9)C22—C12—C10120.2 (2)
O1—Zn1—O2W100.18 (9)C13—C12—C10119.8 (2)
O4i—Zn1—O2W86.36 (9)C14—C13—C18118.5 (3)
O3ii—Zn1—O2W81.39 (9)C14—C13—C12122.2 (3)
O1W—Zn1—O2W169.80 (9)C18—C13—C12119.3 (3)
C1—O1—Zn1122.6 (2)C15—C14—C13120.9 (3)
C21—O3—Zn1ii134.52 (19)C15—C14—H14A119.5
C21—O4—Zn1iii131.2 (2)C13—C14—H14A119.5
C11—O5—H5A109.5C14—C15—C16120.5 (3)
C22—O6—H6A109.5C14—C15—H15A119.7
O2—C1—O1123.5 (3)C16—C15—H15A119.7
O2—C1—C2119.5 (3)C17—C16—C15120.3 (3)
O1—C1—C2117.0 (3)C17—C16—H16A119.9
C3—C2—C11118.7 (3)C15—C16—H16A119.9
C3—C2—C1120.8 (2)C16—C17—C18120.9 (3)
C11—C2—C1120.5 (3)C16—C17—H17A119.6
C2—C3—C4121.8 (3)C18—C17—H17A119.6
C2—C3—H3A119.1C19—C18—C13118.7 (3)
C4—C3—H3A119.1C19—C18—C17122.5 (3)
C3—C4—C5122.2 (3)C13—C18—C17118.8 (3)
C3—C4—C9118.9 (3)C20—C19—C18122.4 (2)
C5—C4—C9118.9 (3)C20—C19—H19A118.8
C6—C5—C4121.7 (3)C18—C19—H19A118.8
C6—C5—H5B119.2C19—C20—C22118.7 (2)
C4—C5—H5B119.2C19—C20—C21119.4 (2)
C5—C6—C7119.6 (3)C22—C20—C21121.9 (2)
C5—C6—H6B120.2O4—C21—O3124.5 (3)
C7—C6—H6B120.2O4—C21—C20118.4 (3)
C8—C7—C6120.6 (3)O3—C21—C20117.0 (2)
C8—C7—H7A119.7O6—C22—C12117.9 (2)
C6—C7—H7A119.7O6—C22—C20121.3 (2)
C7—C8—C9121.2 (3)C12—C22—C20120.8 (2)
C7—C8—H8A119.4Zn1—O1W—H1WA119.0
C9—C8—H8A119.4Zn1—O1W—H1WB119.1
C8—C9—C10122.6 (3)H1WA—O1W—H1WB121.9
C8—C9—C4117.9 (3)Zn1—O2W—H2WA105.2
C10—C9—C4119.4 (2)Zn1—O2W—H2WB99.9
C11—C10—C9119.1 (2)H2WA—O2W—H2WB105.6
C11—C10—C12119.1 (2)
O4i—Zn1—O1—C1126.7 (2)C9—C10—C12—C22102.1 (3)
O3ii—Zn1—O1—C148.7 (3)C11—C10—C12—C13100.1 (3)
O1W—Zn1—O1—C1141.4 (3)C9—C10—C12—C1379.7 (3)
O2W—Zn1—O1—C134.9 (3)C22—C12—C13—C14179.7 (3)
Zn1—O1—C1—O26.6 (5)C10—C12—C13—C142.1 (4)
Zn1—O1—C1—C2174.6 (2)C22—C12—C13—C180.4 (4)
O2—C1—C2—C3175.7 (3)C10—C12—C13—C18177.7 (3)
O1—C1—C2—C35.3 (4)C18—C13—C14—C150.2 (5)
O2—C1—C2—C115.4 (4)C12—C13—C14—C15179.7 (3)
O1—C1—C2—C11173.6 (3)C13—C14—C15—C160.6 (6)
C11—C2—C3—C40.2 (4)C14—C15—C16—C171.3 (6)
C1—C2—C3—C4178.7 (3)C15—C16—C17—C181.2 (6)
C2—C3—C4—C5178.1 (3)C14—C13—C18—C19177.0 (3)
C2—C3—C4—C90.7 (4)C12—C13—C18—C193.1 (4)
C3—C4—C5—C6177.6 (3)C14—C13—C18—C170.3 (4)
C9—C4—C5—C61.3 (5)C12—C13—C18—C17179.6 (3)
C4—C5—C6—C71.5 (5)C16—C17—C18—C19177.6 (3)
C5—C6—C7—C80.1 (5)C16—C17—C18—C130.4 (5)
C6—C7—C8—C92.0 (5)C13—C18—C19—C202.8 (4)
C7—C8—C9—C10177.4 (3)C17—C18—C19—C20180.0 (3)
C7—C8—C9—C42.2 (5)C18—C19—C20—C220.2 (4)
C3—C4—C9—C8179.4 (3)C18—C19—C20—C21177.1 (3)
C5—C4—C9—C80.6 (4)Zn1iii—O4—C21—O317.4 (5)
C3—C4—C9—C100.2 (4)Zn1iii—O4—C21—C20161.5 (2)
C5—C4—C9—C10179.0 (3)Zn1ii—O3—C21—O424.1 (5)
C8—C9—C10—C11177.6 (3)Zn1ii—O3—C21—C20157.0 (2)
C4—C9—C10—C111.9 (4)C19—C20—C21—O417.1 (4)
C8—C9—C10—C122.5 (4)C22—C20—C21—O4160.1 (3)
C4—C9—C10—C12177.9 (3)C19—C20—C21—O3163.9 (3)
C9—C10—C11—O5178.0 (3)C22—C20—C21—O318.9 (4)
C12—C10—C11—O52.2 (4)C13—C12—C22—O6178.4 (2)
C9—C10—C11—C22.9 (4)C10—C12—C22—O60.2 (4)
C12—C10—C11—C2176.9 (3)C13—C12—C22—C202.6 (4)
C3—C2—C11—O5178.8 (3)C10—C12—C22—C20179.2 (2)
C1—C2—C11—O52.3 (4)C19—C20—C22—O6178.1 (2)
C3—C2—C11—C102.0 (4)C21—C20—C22—O64.7 (4)
C1—C2—C11—C10176.9 (3)C19—C20—C22—C123.0 (4)
C11—C10—C12—C2278.1 (3)C21—C20—C22—C12174.2 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O20.852.042.770 (3)144
O2W—H2WA···O5iv0.851.952.719 (3)150
O5—H5A···O20.821.772.517 (3)150
O1W—H1WB···O6v0.852.192.863 (3)136
O6—H6A···O30.821.892.607 (3)146
O1W—H1WA···O2Wvi0.852.323.137 (3)162
Symmetry codes: (iv) x, y+1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C22H12O6)(H2O)2]
Mr473.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.4581 (19), 9.5876 (10), 13.4453 (14)
β (°) 90.047 (4)
V3)1992.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.784, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
10598, 4323, 3258
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 1.06
No. of reflections4323
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006) and OLEX (Dolomanov et al., 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O20.852.042.770 (3)143.7
O2W—H2WA···O5i0.851.952.719 (3)149.8
O5—H5A···O20.821.772.517 (3)150.1
O1W—H1WB···O6ii0.852.192.863 (3)135.8
O6—H6A···O30.821.892.607 (3)145.8
O1W—H1WA···O2Wiii0.852.323.137 (3)162.3
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z+2.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHan, Z.-X., Wang, J.-J., Hu, H.-M., Chen, X.-L., Wu, Q.-R. & Li, D.-S. (2008). J. Mol. Struct. 891, 364–369.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-Y., Liu, G.-F., Zheng, S.-L., Ye, B.-H., Zhang, X.-M. & Chen, X.-M. (2003). Eur. J. Inorg. Chem. 16, 2965–2971.  Web of Science CSD CrossRef Google Scholar
First citationZhang, L.-Y., Zhang, J.-P., Lin, Y.-Y. & Chen, X.-M. (2006). Cryst. Growth Des. 6, 1684–1689.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds