organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Meth­oxy­phen­yl)-tert-butane­sulfinamide

aDepartment of Chemistry, KAIST, Daejeon 305-701, Republic of Korea, and bChemistry Department, Loughborough University, Loughborough LE11 3TU, England
*Correspondence e-mail: ajbuglass@kaist.ac.kr

(Received 27 November 2009; accepted 7 December 2009; online 12 December 2009)

In the title compound, C11H17NO2S, the mol­ecules inter­act in a head-to-tail fashion through pairs of N—H⋯O hydrogen bonds, giving discrete centrosymmetric dimers. The N(H)S(O)tBu fragment is disordered over two sets of positions, with the major component comprising 90.0 (2)%.

Related literature

For N-aryl­alkanesulfinamides, see: Datta et al. (2008[Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393.], 2009[Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009). Acta Cryst. E65, o2823.]). For N-alkyl­alkanesulfinamides, see: Sato et al. (1975[Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385-1392.]); Ferreira et al. (2005[Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269-5278.]); Schuckmann et al. (1978[Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516-1520.]). For the synthesis, see: Stretter et al. (1969[Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357-3363.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17NO2S

  • Mr = 227.32

  • Monoclinic, P 21 /n

  • a = 12.4068 (13) Å

  • b = 7.3076 (8) Å

  • c = 12.9230 (13) Å

  • β = 93.2992 (15)°

  • V = 1169.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 K

  • 0.37 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.911, Tmax = 0.950

  • 10627 measured reflections

  • 2633 independent reflections

  • 2237 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.07

  • 2633 reflections

  • 166 parameters

  • 149 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.24 2.884 (2) 130
N1X—H1X⋯O1Xii 0.88 2.21 2.94 (2) 141
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The molecular structure of the title compound (I) exhibits disorder of the N(H)S(O)tBu fragment over two sets of positions. The major component comprises 90.0 (2)% (Fig. 1), in which the N—Caryl bond length is 1.418 (2) Å, similar to that [1.4225 (14) Å] in N-(4-methoxyphenyl)-tert-butanesulfinamide (Datta et al., 2009). The corresponding bond length [1.457 (16) Å] in the minor component is longer, though far less precisely determined. This perhaps suggests weaker delocalization of electrons over N and the aromatic ring, which would correlate with the greater non-coplanarity of the aromatic ring and sulfinyl moiety in this component. In either case, however, the N—Caryl bond is shorter than the N—Calkyl bonds [1.470–1.530 Å] observed in structures of N-alkylalkanesulfinamides (Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005). The crystal packing of (I) shows head-to-tail interaction through NH···OS hydrogen bonds, forming discrete centrosymmetric dimers, as illustrated for the major component in Fig. 2. The hydrogen bonding data for both components are listed in Table 1. There is no evidence of hydrogen bonding involving the methoxy group, nor of weak CH···.OS hydrogen bonding, as observed in the packing of N-phenyladamantane-1-sulfinamide (Datta et al., 2008).

Related literature top

For N-arylalkanesulfinamides, see: Datta et al. (2008, 2009). For N-alkylalkanesulfinamides, see: Sato et al. (1975); Ferreira et al. (2005); Schuckmann et al. (1978). For the synthesis, see: Stretter et al. (1969).

Experimental top

Compound (I) was prepared by the method of Stretter et al. (1969), using tert-butanesulfinyl chloride (281 mg, 2 mmol) and 3-methoxyaniline (492 mg, 4 mmol) in dry ether (20 ml). After 5 h (with TLC monitoring) the colourless solid amine salt was fitered off and the solvent was removed under reduced pressure. Column chromatography (silica gel, 1% methanol-dichloromethane) provided (I) as colourless crystals (430 mg, 95%), m.p. 367 K. Single crystals suitable for X-ray analysis were obtained by evaporation of a solution of (I) in dichloromethane:hexane (1:1) at room temperature. Spectroscopic analysis: FTIR (KBr) (cm-1) 3024, 1603, 1496, 1473, 1368, 1278, 1227, 1214, 1156, 1069, 953, 834. 1H NMR (400 MHz, CDCl3 p.p.m. with respect to TMS) δ 7.13 (dd, J = 8.0, 8.5 Hz, 1H), 6.58–6.53 (m, 3H), 5.41 (bs, 1H), 3.75 (d, J = 0.6 Hz, 3H), 1.30 (s, 9H). 13C (100 MHz, CDCl3 p.p.m. with respect to TMS) δ 160.6, 143.3, 130.2, 110.6, 108.4, 104.2, 56.4. 55.2. 22.4. EIMS m/z (%) 228 (MH+, 85), 227 (M+, 25), 213 (17), 171 (MH+ - tBu, 100), 123 (MH+ - tBuSO, 6), 108 (MH+ - tBuSONH, 12), 95 (53). To our knowledge, these are the first reported analytical data for (I).

Refinement top

H atoms were located in a difference Fourier map and refined geometrically using a riding model. Methyl groups were refined with rotational freedom. Lengths and displacement parameters were constrained as follows: C—H = 0.95–0.98 Å and Uiso(H) = 1.2 (1.5 for CH3) times Ueq(C, N). The minor disorder component was refined isotropically. The disorder was modelled with the aid of geometrical and displacement parameter restraints.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the major component of (I) with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Centrosymmetric dimer of (I) in the crystal packing of the major component, showing intermolecular hydrogen bonding. Symmetry code i = -x + 1, -y, -z + 1.
N-(3-Methoxyphenyl)-tert-butanesulfinamide top
Crystal data top
C11H17NO2SF(000) = 488
Mr = 227.32Dx = 1.291 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4390 reflections
a = 12.4068 (13) Åθ = 2.2–27.2°
b = 7.3076 (8) ŵ = 0.26 mm1
c = 12.9230 (13) ÅT = 150 K
β = 93.2992 (15)°Block, colourless
V = 1169.7 (2) Å30.37 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2633 independent reflections
Radiation source: fine-focus sealed tube2237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω rotation with narrow frames scansθmax = 27.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1516
Tmin = 0.911, Tmax = 0.950k = 99
10627 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.056P)2 + 0.7085P]
where P = (Fo2 + 2Fc2)/3
2633 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.62 e Å3
149 restraintsΔρmin = 0.40 e Å3
Crystal data top
C11H17NO2SV = 1169.7 (2) Å3
Mr = 227.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4068 (13) ŵ = 0.26 mm1
b = 7.3076 (8) ÅT = 150 K
c = 12.9230 (13) Å0.37 × 0.22 × 0.20 mm
β = 93.2992 (15)°
Data collection top
Bruker APEXII CCD
diffractometer
2633 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2237 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.950Rint = 0.032
10627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042149 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.07Δρmax = 0.62 e Å3
2633 reflectionsΔρmin = 0.40 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.54940 (10)0.05258 (18)0.36978 (10)0.0229 (3)0.900 (2)
S10.50816 (3)0.13248 (6)0.33748 (3)0.01938 (15)0.900 (2)
N10.42312 (12)0.2035 (3)0.42415 (12)0.0236 (4)0.900 (2)
H10.44820.22810.48770.028*0.900 (2)
C10.31128 (13)0.2253 (2)0.39789 (13)0.0253 (4)
C20.24035 (14)0.2103 (3)0.47687 (14)0.0277 (4)
H20.26690.18110.54530.033*
C30.13034 (14)0.2383 (3)0.45550 (14)0.0289 (4)
O20.06872 (11)0.2258 (3)0.54029 (11)0.0462 (4)
C110.04594 (16)0.2441 (4)0.52212 (19)0.0487 (6)
H11A0.06260.36430.49160.073*
H11B0.08080.23250.58790.073*
H11C0.07270.14800.47440.073*
C40.08935 (14)0.2716 (3)0.35566 (15)0.0300 (4)
H40.01400.28670.34070.036*
C50.16122 (16)0.2821 (3)0.27816 (15)0.0384 (5)
H50.13400.30400.20900.046*
C60.27117 (15)0.2620 (3)0.29758 (14)0.0328 (4)
H60.31880.27310.24290.039*
C70.62017 (14)0.2928 (3)0.36663 (14)0.0212 (4)0.900 (2)
C80.57870 (17)0.4793 (3)0.32914 (18)0.0314 (5)0.900 (2)
H8A0.52090.51980.37240.047*0.900 (2)
H8B0.55070.46980.25690.047*0.900 (2)
H8C0.63790.56820.33410.047*0.900 (2)
C90.65533 (15)0.2918 (3)0.48138 (15)0.0262 (4)0.900 (2)
H9A0.68100.16940.50150.039*0.900 (2)
H9B0.59390.32480.52200.039*0.900 (2)
H9C0.71370.38070.49450.039*0.900 (2)
C100.7108 (2)0.2247 (6)0.3005 (2)0.0282 (7)0.900 (2)
H10A0.73590.10480.32580.042*0.900 (2)
H10B0.77100.31180.30540.042*0.900 (2)
H10C0.68350.21410.22810.042*0.900 (2)
O1X0.5509 (11)0.5520 (16)0.3695 (10)0.032 (3)*0.100 (2)
S1X0.5084 (4)0.3681 (6)0.3374 (3)0.0303 (15)*0.100 (2)
N1X0.4214 (12)0.288 (2)0.4216 (13)0.026 (4)*0.100 (2)
H1X0.44500.28330.48710.032*0.100 (2)
C7X0.6173 (12)0.204 (2)0.3663 (12)0.029 (4)*0.100 (2)
C8X0.5762 (16)0.016 (2)0.3308 (16)0.034 (4)*0.100 (2)
H8D0.51350.01790.36940.052*0.100 (2)
H8E0.63350.07510.34360.052*0.100 (2)
H8F0.55530.01970.25650.052*0.100 (2)
C9X0.6514 (16)0.199 (3)0.4840 (12)0.032 (5)*0.100 (2)
H9D0.67660.32040.50650.048*0.100 (2)
H9E0.70960.10970.49640.048*0.100 (2)
H9F0.58930.16350.52310.048*0.100 (2)
C10X0.7138 (19)0.269 (4)0.308 (2)0.025 (8)*0.100 (2)
H10D0.73740.38930.33440.038*0.100 (2)
H10E0.69270.27930.23380.038*0.100 (2)
H10F0.77310.18130.31790.038*0.100 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0234 (6)0.0218 (7)0.0233 (6)0.0001 (5)0.0005 (5)0.0005 (5)
S10.0152 (2)0.0251 (2)0.0179 (2)0.00068 (16)0.00179 (14)0.00043 (17)
N10.0151 (8)0.0366 (11)0.0193 (8)0.0024 (7)0.0019 (6)0.0015 (7)
C10.0168 (8)0.0337 (10)0.0254 (9)0.0007 (6)0.0014 (6)0.0012 (7)
C20.0215 (9)0.0385 (10)0.0230 (8)0.0003 (7)0.0009 (6)0.0003 (7)
C30.0189 (8)0.0400 (10)0.0282 (9)0.0001 (7)0.0047 (7)0.0026 (7)
O20.0164 (7)0.0900 (13)0.0327 (8)0.0034 (7)0.0060 (5)0.0010 (7)
C110.0156 (9)0.0850 (19)0.0464 (12)0.0009 (10)0.0083 (8)0.0025 (12)
C40.0180 (8)0.0380 (10)0.0336 (10)0.0047 (7)0.0021 (7)0.0017 (8)
C50.0284 (10)0.0603 (14)0.0259 (9)0.0128 (9)0.0022 (7)0.0034 (9)
C60.0243 (9)0.0504 (12)0.0241 (9)0.0076 (8)0.0050 (7)0.0068 (8)
C70.0165 (8)0.0226 (10)0.0251 (9)0.0010 (7)0.0064 (6)0.0021 (8)
C80.0282 (10)0.0240 (10)0.0431 (12)0.0031 (8)0.0109 (9)0.0028 (9)
C90.0187 (9)0.0324 (12)0.0277 (10)0.0042 (8)0.0026 (7)0.0061 (8)
C100.0195 (12)0.0340 (18)0.0321 (14)0.0012 (10)0.0109 (8)0.0028 (13)
Geometric parameters (Å, º) top
O1—S11.4967 (14)C8—H8B0.9800
S1—N11.6652 (16)C8—H8C0.9800
S1—C71.8401 (19)C9—H9A0.9800
N1—C11.418 (2)C9—H9B0.9800
N1—H10.8800C9—H9C0.9800
C1—C61.388 (3)C10—H10A0.9800
C1—C21.390 (2)C10—H10B0.9800
C1—N1X1.457 (16)C10—H10C0.9800
C2—C31.392 (2)O1X—S1X1.493 (12)
C2—H20.9500S1X—N1X1.681 (13)
C3—O21.375 (2)S1X—C7X1.828 (13)
C3—C41.381 (3)N1X—H1X0.8800
O2—C111.435 (2)C7X—C8X1.528 (16)
C11—H11A0.9800C7X—C10X1.528 (16)
C11—H11B0.9800C7X—C9X1.555 (15)
C11—H11C0.9800C8X—H8D0.9800
C4—C51.381 (3)C8X—H8E0.9800
C4—H40.9500C8X—H8F0.9800
C5—C61.381 (3)C9X—H9D0.9800
C5—H50.9500C9X—H9E0.9800
C6—H60.9500C9X—H9F0.9800
C7—C91.522 (3)C10X—H10D0.9800
C7—C81.526 (3)C10X—H10E0.9800
C7—C101.534 (3)C10X—H10F0.9800
C8—H8A0.9800
O1—S1—N1108.28 (9)H8B—C8—H8C109.5
O1—S1—C7106.04 (8)C7—C9—H9A109.5
N1—S1—C799.44 (9)C7—C9—H9B109.5
C1—N1—S1121.54 (13)H9A—C9—H9B109.5
C1—N1—H1119.2C7—C9—H9C109.5
S1—N1—H1119.2H9A—C9—H9C109.5
C6—C1—C2119.54 (16)H9B—C9—H9C109.5
C6—C1—N1122.58 (16)C7—C10—H10A109.5
C2—C1—N1117.88 (15)C7—C10—H10B109.5
C6—C1—N1X114.7 (6)H10A—C10—H10B109.5
C2—C1—N1X119.7 (6)C7—C10—H10C109.5
C1—C2—C3119.86 (16)H10A—C10—H10C109.5
C1—C2—H2120.1H10B—C10—H10C109.5
C3—C2—H2120.1O1X—S1X—N1X111.3 (8)
O2—C3—C4124.38 (16)O1X—S1X—C7X106.8 (8)
O2—C3—C2114.58 (16)N1X—S1X—C7X97.7 (8)
C4—C3—C2121.03 (17)C1—N1X—S1X127.0 (11)
C3—O2—C11117.06 (16)C1—N1X—H1X116.5
O2—C11—H11A109.5S1X—N1X—H1X116.5
O2—C11—H11B109.5C8X—C7X—C10X112.9 (15)
H11A—C11—H11B109.5C8X—C7X—C9X109.8 (14)
O2—C11—H11C109.5C10X—C7X—C9X108.3 (16)
H11A—C11—H11C109.5C8X—C7X—S1X107.4 (11)
H11B—C11—H11C109.5C10X—C7X—S1X106.6 (14)
C5—C4—C3117.97 (16)C9X—C7X—S1X111.8 (11)
C5—C4—H4121.0C7X—C8X—H8D109.5
C3—C4—H4121.0C7X—C8X—H8E109.5
C6—C5—C4122.33 (17)H8D—C8X—H8E109.5
C6—C5—H5118.8C7X—C8X—H8F109.5
C4—C5—H5118.8H8D—C8X—H8F109.5
C5—C6—C1119.20 (17)H8E—C8X—H8F109.5
C5—C6—H6120.4C7X—C9X—H9D109.5
C1—C6—H6120.4C7X—C9X—H9E109.5
C9—C7—C8112.73 (17)H9D—C9X—H9E109.5
C9—C7—C10111.27 (18)C7X—C9X—H9F109.5
C8—C7—C10110.95 (19)H9D—C9X—H9F109.5
C9—C7—S1111.54 (13)H9E—C9X—H9F109.5
C8—C7—S1105.49 (13)C7X—C10X—H10D109.5
C10—C7—S1104.40 (18)C7X—C10X—H10E109.5
C7—C8—H8A109.5H10D—C10X—H10E109.5
C7—C8—H8B109.5C7X—C10X—H10F109.5
H8A—C8—H8B109.5H10D—C10X—H10F109.5
C7—C8—H8C109.5H10E—C10X—H10F109.5
H8A—C8—H8C109.5
O1—S1—N1—C1113.14 (17)N1X—C1—C6—C5152.9 (8)
C7—S1—N1—C1136.38 (17)O1—S1—C7—C959.63 (15)
S1—N1—C1—C626.5 (3)N1—S1—C7—C952.62 (15)
S1—N1—C1—C2154.05 (16)O1—S1—C7—C8177.66 (12)
S1—N1—C1—N1X104.9 (15)N1—S1—C7—C870.09 (14)
C6—C1—C2—C32.1 (3)O1—S1—C7—C1060.64 (17)
N1—C1—C2—C3177.31 (18)N1—S1—C7—C10172.89 (16)
N1X—C1—C2—C3149.0 (8)C6—C1—N1X—S1X10.0 (16)
C1—C2—C3—O2177.99 (17)C2—C1—N1X—S1X162.5 (9)
C1—C2—C3—C43.4 (3)N1—C1—N1X—S1X105 (2)
C4—C3—O2—C111.7 (3)O1X—S1X—N1X—C1125.7 (13)
C2—C3—O2—C11176.92 (19)C7X—S1X—N1X—C1122.9 (14)
O2—C3—C4—C5179.45 (19)O1X—S1X—C7X—C8X178.2 (12)
C2—C3—C4—C52.1 (3)N1X—S1X—C7X—C8X66.7 (13)
C3—C4—C5—C60.5 (3)O1X—S1X—C7X—C10X57.0 (15)
C4—C5—C6—C11.6 (3)N1X—S1X—C7X—C10X172.0 (15)
C2—C1—C6—C50.3 (3)O1X—S1X—C7X—C9X61.2 (14)
N1—C1—C6—C5179.7 (2)N1X—S1X—C7X—C9X53.9 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.242.884 (2)130
N1X—H1X···O1Xii0.882.212.94 (2)141
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H17NO2S
Mr227.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)12.4068 (13), 7.3076 (8), 12.9230 (13)
β (°) 93.2992 (15)
V3)1169.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.37 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.911, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
10627, 2633, 2237
Rint0.032
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.07
No. of reflections2633
No. of parameters166
No. of restraints149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.40

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.242.884 (2)129.6
N1X—H1X···O1Xii0.882.212.94 (2)141.0
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

MD and AJB thank KAIST for financial assistance.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatta, M., Buglass, A. J. & Elsegood, M. R. J. (2009). Acta Cryst. E65, o2823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDatta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269–5278.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357–3363.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds