metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­iodido(1,10-phenanthroline-κ2N,N′)platinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 1 December 2009; accepted 10 December 2009; online 16 December 2009)

In the title complex, [PtI2(C12H8N2)], the Pt2+ ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 1,10-phenanthroline ligand and two iodide ions. The nearly planar mol­ecules, with a maximum deviation of 0.170 (3) Å from the least-squares plane, are stacked in columns along the c axis with a Pt⋯Pt distance of 4.8510 (6) Å. In the column, ππ inter­actions between adjacent six-membered rings are present, the shortest centroid–centroid distance being 3.703 (5) Å.

Related literature

For the syntheses of [PtX2(phen)] (phen = 1,10-phenanthroline; X = Cl, Br or I), see: Hodges & Rund (1975[Hodges, K. D. & Rund, J. V. (1975). Inorg. Chem. 14, 525-528.]). For the crystal structure of yellow [PtCl2(phen)] which is isotypic to the title complex, see: Grzesiak & Matzger (2007[Grzesiak, A. L. & Matzger, A. J. (2007). Inorg. Chem. 46, 453-457.]).

[Scheme 1]

Experimental

Crystal data
  • [PtI2(C12H8N2)]

  • Mr = 629.09

  • Monoclinic, P 21 /c

  • a = 10.3284 (9) Å

  • b = 17.9462 (16) Å

  • c = 7.3833 (7) Å

  • β = 108.569 (2)°

  • V = 1297.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 15.55 mm−1

  • T = 200 K

  • 0.32 × 0.13 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.422, Tmax = 1.000

  • 7331 measured reflections

  • 2284 independent reflections

  • 2110 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.06

  • 2284 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 3.05 e Å−3

  • Δρmin = −1.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—N2 2.039 (6)
Pt1—N1 2.060 (7)
Pt1—I2 2.5774 (7)
Pt1—I1 2.5847 (6)
N2—Pt1—N1 80.6 (2)

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PtI2(phen)] (where phen is 1,10-phenanthroline, C12H8N2), is isomorphous with the yellow form of [PtCl2(phen)], whereas the orange form of [PtCl2(phen)] crystallized in the orthorhombic space group Pca21 (Grzesiak & Matzger, 2007).

In the title complex, the Pt2+ ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 1,10-phenanthroline ligand and two iodide ions (Fig. 1). The main contribution to the distortion is the tight N1—Pt1—N2 chelate angle [80.6 (2)°], which results in non-linear trans arrangement [<N1—Pt1—I1 = 175.72 (17)° and <N2—Pt1—I2 = 175.02 (17)°]. The Pt1—N and Pt1—I bond lengths are almost equal, respectively [Pt1—N: 2.060 (7) and 2.039 (6) Å; Pt1—I 2.5847 (6) and 2.5774 (7) Å] (Table 1). The complex displays numerous intermolecular π-π interactions between adjacent six-membered rings, with a shortest centroid-centroid distance of 3.703 (5) Å and the dihedral angle between the ring planes is 3.4 (4)°. The nearly planar [PtI2(phen)] molecules, with a largest deviation of 0.170 (3) Å from the least-squares plane, stack in columns along the c axis with a Pt···Pt distance of 4.8510 (6) Å (Fig. 2).

Related literature top

For the syntheses of [PtX2(phen)] (phen = 1,10-phenanthroline; X = Cl, Br or I), see: Hodges & Rund (1975). For the crystal structure of yellow [PtCl2(phen)] which is isotypic to the title complex, see: Grzesiak & Matzger (2007).

Experimental top

To a solution of K2PtCl4 (0.2011 g, 0.484 mmol) in H2O (20 ml) were added KI (1.6010 g, 9.644 mmol) and 1,10-phenanthroline (0.0967 g, 0.537 mmol), and refluxed for 3 h. The precipitate obtained was separated by filtration, washed with water and acetone, and dried at 100 °C, to give a dark yellow powder (0.2732 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an N,N-dimethylformamide solution at 50 °C.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The maximum and minimum residual electron density peaks of 3.05 and -1.40 e Å-3, respectively, were located 0.97 and 0.92 Å from the Pt Atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title complex.
Diiodido(1,10-phenanthroline-κ2N,N')platinum(II) top
Crystal data top
[PtI2(C12H8N2)]F(000) = 1112
Mr = 629.09Dx = 3.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5463 reflections
a = 10.3284 (9) Åθ = 2.3–28.2°
b = 17.9462 (16) ŵ = 15.55 mm1
c = 7.3833 (7) ÅT = 200 K
β = 108.569 (2)°Needle, yellow
V = 1297.3 (2) Å30.32 × 0.13 × 0.08 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2284 independent reflections
Radiation source: fine-focus sealed tube2110 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1112
Tmin = 0.422, Tmax = 1.000k = 2121
7331 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.9657P]
where P = (Fo2 + 2Fc2)/3
2284 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 3.05 e Å3
0 restraintsΔρmin = 1.40 e Å3
Crystal data top
[PtI2(C12H8N2)]V = 1297.3 (2) Å3
Mr = 629.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3284 (9) ŵ = 15.55 mm1
b = 17.9462 (16) ÅT = 200 K
c = 7.3833 (7) Å0.32 × 0.13 × 0.08 mm
β = 108.569 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2284 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2110 reflections with I > 2σ(I)
Tmin = 0.422, Tmax = 1.000Rint = 0.033
7331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.06Δρmax = 3.05 e Å3
2284 reflectionsΔρmin = 1.40 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.71220 (3)0.337678 (16)0.39502 (4)0.02011 (13)
I10.74244 (6)0.48072 (3)0.41617 (8)0.03146 (17)
I20.45788 (6)0.35783 (3)0.20604 (9)0.03744 (18)
N10.7037 (6)0.2230 (4)0.3858 (8)0.0245 (15)
N20.9082 (6)0.3142 (4)0.5563 (9)0.0219 (13)
C10.6012 (9)0.1789 (5)0.2965 (12)0.034 (2)
H10.51670.20050.22370.041*
C20.6130 (9)0.1009 (5)0.3056 (13)0.035 (2)
H20.53760.07090.23670.042*
C30.7305 (10)0.0681 (6)0.4114 (11)0.036 (2)
H30.73750.01530.41950.044*
C40.8426 (9)0.1132 (4)0.5097 (12)0.0291 (19)
C50.9726 (10)0.0861 (5)0.6267 (13)0.034 (2)
H50.98620.03380.64190.041*
C61.0755 (9)0.1317 (5)0.7155 (13)0.0317 (19)
H61.16020.11140.79210.038*
C71.0598 (8)0.2110 (4)0.6964 (11)0.0248 (17)
C81.1647 (8)0.2622 (5)0.7825 (11)0.0311 (19)
H81.25190.24530.86000.037*
C91.1388 (9)0.3359 (4)0.7527 (12)0.0300 (19)
H91.20910.37080.81010.036*
C101.0137 (8)0.3614 (5)0.6417 (11)0.0261 (17)
H100.99990.41350.62360.031*
C110.9351 (8)0.2394 (4)0.5838 (10)0.0208 (16)
C120.8236 (8)0.1915 (4)0.4917 (11)0.0233 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0168 (2)0.0209 (2)0.0209 (2)0.00133 (10)0.00349 (14)0.00034 (10)
I10.0309 (3)0.0217 (3)0.0393 (3)0.0010 (2)0.0077 (3)0.0001 (2)
I20.0184 (3)0.0439 (4)0.0433 (4)0.0001 (2)0.0004 (2)0.0026 (3)
N10.024 (4)0.028 (4)0.023 (3)0.004 (3)0.010 (3)0.002 (3)
N20.018 (4)0.025 (3)0.022 (3)0.001 (3)0.006 (3)0.001 (3)
C10.031 (5)0.040 (5)0.032 (5)0.019 (4)0.010 (4)0.012 (4)
C20.030 (5)0.034 (5)0.041 (5)0.015 (4)0.011 (4)0.007 (4)
C30.059 (7)0.026 (5)0.031 (5)0.006 (4)0.025 (5)0.005 (3)
C40.043 (5)0.021 (4)0.031 (4)0.005 (4)0.023 (4)0.001 (3)
C50.048 (6)0.024 (5)0.038 (5)0.009 (4)0.023 (5)0.002 (4)
C60.028 (5)0.032 (5)0.038 (5)0.003 (4)0.014 (4)0.004 (4)
C70.019 (4)0.030 (4)0.027 (4)0.007 (3)0.009 (3)0.003 (3)
C80.020 (4)0.046 (5)0.025 (4)0.010 (4)0.005 (3)0.006 (4)
C90.026 (5)0.033 (5)0.025 (4)0.005 (3)0.000 (4)0.001 (3)
C100.017 (4)0.023 (4)0.032 (4)0.008 (3)0.001 (3)0.003 (3)
C110.024 (4)0.019 (4)0.021 (4)0.003 (3)0.010 (3)0.000 (3)
C120.033 (5)0.021 (4)0.022 (4)0.001 (3)0.016 (4)0.003 (3)
Geometric parameters (Å, º) top
Pt1—N22.039 (6)C4—C121.419 (11)
Pt1—N12.060 (7)C4—C51.431 (13)
Pt1—I22.5774 (7)C5—C61.337 (12)
Pt1—I12.5847 (6)C5—H50.9500
N1—C11.319 (10)C6—C71.434 (11)
N1—C121.360 (10)C6—H60.9500
N2—C101.365 (10)C7—C111.389 (11)
N2—C111.374 (10)C7—C81.407 (12)
C1—C21.405 (13)C8—C91.354 (12)
C1—H10.9500C8—H80.9500
C2—C31.351 (13)C9—C101.369 (12)
C2—H20.9500C9—H90.9500
C3—C41.410 (12)C10—H100.9500
C3—H30.9500C11—C121.423 (11)
N2—Pt1—N180.6 (2)C6—C5—C4122.3 (8)
N2—Pt1—I2175.02 (17)C6—C5—H5118.9
N1—Pt1—I295.57 (17)C4—C5—H5118.9
N2—Pt1—I195.23 (18)C5—C6—C7120.8 (8)
N1—Pt1—I1175.72 (17)C5—C6—H6119.6
I2—Pt1—I188.63 (2)C7—C6—H6119.6
C1—N1—C12118.5 (8)C11—C7—C8117.7 (7)
C1—N1—Pt1129.5 (6)C11—C7—C6118.5 (7)
C12—N1—Pt1112.1 (5)C8—C7—C6123.8 (7)
C10—N2—C11116.4 (7)C9—C8—C7118.7 (8)
C10—N2—Pt1129.8 (5)C9—C8—H8120.6
C11—N2—Pt1113.8 (5)C7—C8—H8120.6
N1—C1—C2122.1 (9)C8—C9—C10121.5 (8)
N1—C1—H1119.0C8—C9—H9119.2
C2—C1—H1119.0C10—C9—H9119.2
C3—C2—C1120.6 (8)N2—C10—C9122.1 (8)
C3—C2—H2119.7N2—C10—H10118.9
C1—C2—H2119.7C9—C10—H10118.9
C2—C3—C4119.2 (9)N2—C11—C7123.5 (7)
C2—C3—H3120.4N2—C11—C12115.2 (7)
C4—C3—H3120.4C7—C11—C12121.3 (7)
C3—C4—C12117.0 (8)N1—C12—C4122.6 (7)
C3—C4—C5125.0 (8)N1—C12—C11118.2 (7)
C12—C4—C5117.9 (7)C4—C12—C11119.1 (7)
N2—Pt1—N1—C1178.5 (7)Pt1—N2—C10—C9177.2 (6)
I2—Pt1—N1—C14.8 (7)C8—C9—C10—N20.4 (13)
N2—Pt1—N1—C122.5 (5)C10—N2—C11—C72.1 (10)
I2—Pt1—N1—C12174.3 (4)Pt1—N2—C11—C7176.9 (6)
N1—Pt1—N2—C10179.0 (7)C10—N2—C11—C12179.5 (6)
I1—Pt1—N2—C100.1 (7)Pt1—N2—C11—C121.6 (8)
N1—Pt1—N2—C112.2 (5)C8—C7—C11—N21.6 (11)
I1—Pt1—N2—C11178.8 (4)C6—C7—C11—N2179.6 (7)
C12—N1—C1—C20.9 (11)C8—C7—C11—C12179.9 (7)
Pt1—N1—C1—C2179.9 (6)C6—C7—C11—C121.2 (10)
N1—C1—C2—C31.6 (12)C1—N1—C12—C40.0 (10)
C1—C2—C3—C41.4 (12)Pt1—N1—C12—C4179.2 (5)
C2—C3—C4—C120.5 (11)C1—N1—C12—C11178.4 (7)
C2—C3—C4—C5179.9 (8)Pt1—N1—C12—C112.4 (8)
C3—C4—C5—C6179.5 (7)C3—C4—C12—N10.2 (10)
C12—C4—C5—C61.1 (12)C5—C4—C12—N1179.3 (7)
C4—C5—C6—C70.2 (12)C3—C4—C12—C11178.2 (7)
C5—C6—C7—C110.1 (11)C5—C4—C12—C112.4 (10)
C5—C6—C7—C8178.6 (8)N2—C11—C12—N10.6 (10)
C11—C7—C8—C90.4 (11)C7—C11—C12—N1179.1 (6)
C6—C7—C8—C9179.2 (7)N2—C11—C12—C4179.0 (6)
C7—C8—C9—C100.1 (12)C7—C11—C12—C42.5 (10)
C11—N2—C10—C91.5 (11)

Experimental details

Crystal data
Chemical formula[PtI2(C12H8N2)]
Mr629.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.3284 (9), 17.9462 (16), 7.3833 (7)
β (°) 108.569 (2)
V3)1297.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)15.55
Crystal size (mm)0.32 × 0.13 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.422, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7331, 2284, 2110
Rint0.033
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.06
No. of reflections2284
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.05, 1.40

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pt1—N22.039 (6)Pt1—I22.5774 (7)
Pt1—N12.060 (7)Pt1—I12.5847 (6)
N2—Pt1—N180.6 (2)
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrzesiak, A. L. & Matzger, A. J. (2007). Inorg. Chem. 46, 453–457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHodges, K. D. & Rund, J. V. (1975). Inorg. Chem. 14, 525–528.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds