organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(5-fluoro-1H-indol-3-yl)-2-oxo­acetate

aThe Affiliated Hospital of the Medical College of the Chinese People's Armed Police Forces, Tianjin 300162, People's Republic of China
*Correspondence e-mail: shupingwang203@yahoo.com.cn

(Received 2 December 2009; accepted 9 December 2009; online 16 December 2009)

The indolyl portion of the title mol­ecule, C11H8FNO3, is flat, the five- and six-membered rings making a dihedral angle of 0.815 (6)°. Inter­molecular N—H⋯O hydrogen bonds link adjacent mol­ecules into a linear chain. Slipped ππ stacking inter­actions between two neighboring indole groups further consolidate the mol­ecules into a three-dimensional supra­molecular architecture [centroid–centroid distances = 3.555 (10) and 3.569 (10) Å].

Related literature

For the biological activity of the title compound and its derivatives, see: Kozikowski et al. (2006[Kozikowski, A. P., Gaisina, I. N., Petukhov, P. A., Sridhar, J., King, L. S. T., Blond, S. Y., Duka, T., Rusnak, M. & Sidhu, A. (2006). ChemMedChem, 1, 256-266.]); Albert et al. (2002[Albert, R., Cooke, N. G., Cottens, S., Ehrhardt, C., Evenou, J. P., Sedrani, R., Von, M. P., Wagner, J. & Zenke, G. (2002). PCT Int. Appl. 60.]); Jaquith et al. (2005[Jaquith, J. B., Gillard, J. W. & Laurent, A. (2005). PCT Int. Appl. 50.]). For the preparation, see: Alawar et al. (2004[Alawar, R. S., Ray, J. E., Hecker, K. A., Joseph, S., Huang, J. P., Shih, C., Brooks, H. B., Spencer, C. D., Watkins, S. A., Schultz, R. M., Considine, E. L., Faul, M. M., Sullivan, K. A., Kolis, S. P., Carr, M. A. & Zhang, F. M. (2004). Bioorg. Med. Chem. Lett. 14, 3925-3928.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8FNO3

  • Mr = 221.18

  • Monoclinic, P 21 /c

  • a = 7.0584 (14) Å

  • b = 20.586 (4) Å

  • c = 7.3286 (15) Å

  • β = 112.01 (3)°

  • V = 987.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 113 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.964, Tmax = 0.976

  • 9472 measured reflections

  • 2328 independent reflections

  • 2097 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.06

  • 2328 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.932 (17) 2.420 (16) 3.1598 (13) 136.3 (13)
N1—H1⋯O1i 0.932 (17) 1.932 (17) 2.7861 (13) 151.3 (14)
Symmetry code: (i) x, y, z-1.

Data collection: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The synthesis of the title compound (I) and its derivatives has received considerable attention on account of their biological activity especially for both enzymic and cell-based study (Kozikowski et al., 2006). They also can be used as neuroprotective (Albert et al., 2002) and anti-proliferative agents (Jaquith et al., 2005).

In this work, the title molecule, C11H8FNO3, (Fig. 1), has been synthesized. In an asymmetric unit of (I) one molecule can be observed. (I) crystalizes in the Monoclinic P2(1)/n space group, a = 7.0584 (14) Å, b = 20.586 (4) Å, c = 7.3286 (15) Å, β = 112.01 (3)°. The heterocyclic rings (N1, C1, C6, C7, C8) make a small dihedral angle of 0.815 (6)° with benzene rings (C1, C2, C3, C4, C5, C6,). N atoms in the molecule act as hydrogen-bond donors to O atoms in the neighbouring molecule forming intermolecular N1—H1···O1 (symmetry code: x, y, z - 1) and N1—H1···O3 (symmetry code: x, y, z - 1) hydrogen bonds. These N—H···O hydrogen bonds, C3—H3···F1(symmetry code: x, -y + 1/2, z - 1/2), and intra-molecular C5—H5···O1, C8—H8···O2 hydrogen bonds stabilize the crystal structure and extend molecules (I) into a double-tape structure along the c direction. ππ interactions between the indole rings are also present, the centroid-centroid distances [symmetry code: 1 - x,-y,2 - z; 2 - x,-y,2 - z] are 3.555 (10) and 3.569 (10) Å. N—H···π interactions [symmetry code: 1 - x,-y,2 - z] are 3.218 (21) Å. These Parallel slipped π-π stacking interactions between two neighboring indole groups and N—H···π interactions also further consolidate (I) into the three-dimensional supramolecular architecture.

Perspective drawing with the atomic numbering scheme is illustrated in Figure 1. Selected geometric parameters (Å, °) for (I) are listed in table 1. Selected hydrogen-bonding geometric parameters (Å, °) for (I) are listed in table 2. The corresponding N—H···O, C—H···O and C—H···F hydrogen bonds are shown in Figure 2. The π-π stacking interactions and N—H···π interactions are shown in Ffigure 3. The three-dimensional supramolecular packing architecture of (I) is shown in Figure 4.

Related literature top

For the biological activity of the title compound and its derivatives, see: Kozikowski et al. (2006); Albert et al. (2002); Jaquith et al. (2005). For the preparation, see: Alawar et al. (2004).

Experimental top

Methyl 2-(5-fluoro-1H-indol-3-yl)-2-oxoacetate was prepared according to the previous literature (Alawar et al., 2004). Colorless block Single crystals were obtained by slow evaporation from a methanol and water mixed solution (150 ml) of (I) at room temperature.

Refinement top

H atoms on N atoms were located in a difference Fourier map and refined isotropically, with restrains of N—H = 0.90±0.01 Å. Other H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, for indole H atoms, respectively, and refined using a riding model, with Uiso(H) =1.2Ueq(C)(1.5 for methyl groups).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme of (I).
[Figure 2] Fig. 2. The corresponding N—H···O, C—H···O and C—H···F hydrogen bonds stabling the packing structure of (I). Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The π-π stacking interactions and N—H···π interactions in (I). Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. The three-dimensional supramolecular packing architecture of (I). cyan represent π-π stacking interactions and N—H···π interactions while purple represent N—H···O, C—H···F and C—H···O interactions.
Methyl 2-(5-fluoro-1H-indol-3-yl)-2-oxoacetate top
Crystal data top
C11H8FNO3F(000) = 456
Mr = 221.18Dx = 1.488 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2958 reflections
a = 7.0584 (14) Åθ = 3.1–27.9°
b = 20.586 (4) ŵ = 0.12 mm1
c = 7.3286 (15) ÅT = 113 K
β = 112.01 (3)°Block, colorless
V = 987.3 (3) Å30.30 × 0.24 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2328 independent reflections
Radiation source: rotating anode2097 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.024
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 3.1°
ω and ϕ scansh = 98
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
k = 2726
Tmin = 0.964, Tmax = 0.976l = 99
9472 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.338P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.38 e Å3
2328 reflectionsΔρmin = 0.20 e Å3
150 parameters
Crystal data top
C11H8FNO3V = 987.3 (3) Å3
Mr = 221.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0584 (14) ŵ = 0.12 mm1
b = 20.586 (4) ÅT = 113 K
c = 7.3286 (15) Å0.30 × 0.24 × 0.20 mm
β = 112.01 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2328 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
2097 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.976Rint = 0.024
9472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.38 e Å3
2328 reflectionsΔρmin = 0.20 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.12543 (14)0.29293 (3)0.65340 (12)0.0361 (2)
O10.26544 (13)0.51327 (4)0.99608 (11)0.02011 (19)
O20.38836 (16)0.66111 (4)0.83866 (13)0.0297 (2)
N10.26610 (14)0.52509 (5)0.37504 (13)0.0173 (2)
O30.28315 (14)0.63607 (4)1.08373 (12)0.0244 (2)
C10.23060 (16)0.46201 (5)0.42115 (15)0.0162 (2)
C20.19687 (18)0.40616 (6)0.30676 (16)0.0215 (2)
H20.19710.40720.17720.026*
C30.16302 (19)0.34900 (6)0.38896 (18)0.0247 (3)
H30.13960.30950.31670.030*
C40.16368 (19)0.35010 (5)0.57927 (18)0.0232 (3)
C50.20002 (17)0.40431 (5)0.69689 (16)0.0187 (2)
H50.20120.40250.82690.022*
C60.23508 (16)0.46224 (5)0.61507 (15)0.0149 (2)
C70.27633 (15)0.52844 (5)0.68412 (15)0.0146 (2)
C80.29297 (16)0.56415 (5)0.52914 (15)0.0161 (2)
H80.31940.60950.53230.019*
C90.28704 (16)0.55005 (5)0.87314 (15)0.0151 (2)
C100.32621 (17)0.62255 (5)0.92560 (15)0.0183 (2)
C110.3146 (2)0.70317 (6)1.14936 (19)0.0327 (3)
H11A0.45340.71661.16660.049*
H11B0.29620.70721.27490.049*
H11C0.21540.73101.05080.049*
H10.271 (2)0.5363 (8)0.253 (2)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0544 (5)0.0165 (3)0.0358 (4)0.0065 (3)0.0150 (4)0.0025 (3)
O10.0294 (4)0.0200 (4)0.0134 (4)0.0006 (3)0.0109 (3)0.0013 (3)
O20.0479 (6)0.0199 (4)0.0264 (5)0.0071 (4)0.0198 (4)0.0019 (3)
N10.0195 (5)0.0220 (5)0.0121 (4)0.0002 (3)0.0079 (4)0.0007 (3)
O30.0397 (5)0.0183 (4)0.0178 (4)0.0013 (3)0.0141 (4)0.0039 (3)
C10.0150 (5)0.0207 (5)0.0134 (5)0.0013 (4)0.0058 (4)0.0006 (4)
C20.0218 (6)0.0264 (6)0.0171 (5)0.0010 (4)0.0082 (4)0.0057 (4)
C30.0263 (6)0.0214 (5)0.0247 (6)0.0004 (4)0.0077 (5)0.0078 (4)
C40.0266 (6)0.0162 (5)0.0254 (6)0.0003 (4)0.0080 (5)0.0022 (4)
C50.0209 (5)0.0189 (5)0.0155 (5)0.0007 (4)0.0061 (4)0.0017 (4)
C60.0136 (5)0.0184 (5)0.0126 (5)0.0012 (4)0.0047 (4)0.0003 (4)
C70.0149 (5)0.0174 (5)0.0120 (5)0.0011 (4)0.0056 (4)0.0009 (4)
C80.0167 (5)0.0191 (5)0.0130 (5)0.0002 (4)0.0061 (4)0.0010 (4)
C90.0161 (5)0.0170 (5)0.0125 (5)0.0010 (4)0.0056 (4)0.0000 (4)
C100.0219 (5)0.0190 (5)0.0130 (5)0.0017 (4)0.0054 (4)0.0007 (4)
C110.0547 (9)0.0191 (6)0.0251 (6)0.0038 (5)0.0158 (6)0.0059 (5)
Geometric parameters (Å, º) top
F1—C41.3650 (13)C3—H30.9500
O1—C91.2295 (13)C4—C51.3742 (16)
O2—C101.1992 (14)C5—C61.3978 (14)
N1—C81.3406 (13)C5—H50.9500
N1—C11.3881 (14)C6—C71.4450 (14)
N1—H10.932 (17)C7—C81.3943 (14)
O3—C101.3330 (13)C7—C91.4297 (14)
O3—C111.4520 (14)C8—H80.9500
C1—C21.3898 (15)C9—C101.5400 (15)
C1—C61.4097 (14)C11—H11A0.9800
C2—C31.3829 (17)C11—H11B0.9800
C2—H20.9500C11—H11C0.9800
C3—C41.3932 (17)
C8—N1—C1109.72 (9)C5—C6—C7134.36 (9)
C8—N1—H1127.7 (10)C1—C6—C7106.36 (9)
C1—N1—H1122.6 (10)C8—C7—C9129.44 (10)
C10—O3—C11115.49 (9)C8—C7—C6106.22 (9)
N1—C1—C2129.26 (10)C9—C7—C6124.29 (9)
N1—C1—C6107.72 (9)N1—C8—C7109.97 (9)
C2—C1—C6123.02 (10)N1—C8—H8125.0
C3—C2—C1117.37 (10)C7—C8—H8125.0
C3—C2—H2121.3O1—C9—C7122.84 (10)
C1—C2—H2121.3O1—C9—C10118.29 (9)
C2—C3—C4119.07 (10)C7—C9—C10118.87 (9)
C2—C3—H3120.5O2—C10—O3124.87 (10)
C4—C3—H3120.5O2—C10—C9125.17 (10)
F1—C4—C5117.96 (11)O3—C10—C9109.96 (9)
F1—C4—C3117.22 (10)O3—C11—H11A109.5
C5—C4—C3124.82 (11)O3—C11—H11B109.5
C4—C5—C6116.43 (10)H11A—C11—H11B109.5
C4—C5—H5121.8O3—C11—H11C109.5
C6—C5—H5121.8H11A—C11—H11C109.5
C5—C6—C1119.27 (9)H11B—C11—H11C109.5
C8—N1—C1—C2179.36 (11)C1—C6—C7—C80.36 (11)
C8—N1—C1—C60.23 (12)C5—C6—C7—C91.23 (19)
N1—C1—C2—C3179.31 (11)C1—C6—C7—C9177.96 (10)
C6—C1—C2—C31.15 (17)C1—N1—C8—C70.00 (12)
C1—C2—C3—C40.19 (17)C9—C7—C8—N1177.67 (10)
C2—C3—C4—F1178.67 (11)C6—C7—C8—N10.23 (12)
C2—C3—C4—C51.38 (19)C8—C7—C9—O1178.43 (11)
F1—C4—C5—C6178.92 (10)C6—C7—C9—O11.41 (17)
C3—C4—C5—C61.13 (18)C8—C7—C9—C101.25 (17)
C4—C5—C6—C10.25 (15)C6—C7—C9—C10178.28 (10)
C4—C5—C6—C7179.36 (12)C11—O3—C10—O20.50 (17)
N1—C1—C6—C5178.98 (10)C11—O3—C10—C9179.76 (10)
C2—C1—C6—C51.40 (16)O1—C9—C10—O2164.82 (12)
N1—C1—C6—C70.36 (11)C7—C9—C10—O215.49 (17)
C2—C1—C6—C7179.26 (10)O1—C9—C10—O314.44 (14)
C5—C6—C7—C8178.83 (12)C7—C9—C10—O3165.25 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.932 (17)2.420 (16)3.1598 (13)136.3 (13)
N1—H1···O1i0.932 (17)1.932 (17)2.7861 (13)151.3 (14)
C3—H3···F1ii0.952.413.3532 (15)173
C5—H5···O10.952.553.0484 (14)113
C8—H8···O20.952.362.9049 (14)116
Symmetry codes: (i) x, y, z1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H8FNO3
Mr221.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)7.0584 (14), 20.586 (4), 7.3286 (15)
β (°) 112.01 (3)
V3)987.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2004)
Tmin, Tmax0.964, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
9472, 2328, 2097
Rint0.024
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.06
No. of reflections2328
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.20

Computer programs: CrystalClear (Rigaku/MSC, 2004), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.932 (17)2.420 (16)3.1598 (13)136.3 (13)
N1—H1···O1i0.932 (17)1.932 (17)2.7861 (13)151.3 (14)
Symmetry code: (i) x, y, z1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 30873363), the Great Program of the Science Foundation of Tianjin (09ZCKFNC01200) and the Program of the Science Foundation of Tianjin (08JCYBJC070000).

References

First citationAlawar, R. S., Ray, J. E., Hecker, K. A., Joseph, S., Huang, J. P., Shih, C., Brooks, H. B., Spencer, C. D., Watkins, S. A., Schultz, R. M., Considine, E. L., Faul, M. M., Sullivan, K. A., Kolis, S. P., Carr, M. A. & Zhang, F. M. (2004). Bioorg. Med. Chem. Lett. 14, 3925–3928.  CrossRef PubMed CAS Google Scholar
First citationAlbert, R., Cooke, N. G., Cottens, S., Ehrhardt, C., Evenou, J. P., Sedrani, R., Von, M. P., Wagner, J. & Zenke, G. (2002). PCT Int. Appl. 60.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJaquith, J. B., Gillard, J. W. & Laurent, A. (2005). PCT Int. Appl. 50.  Google Scholar
First citationKozikowski, A. P., Gaisina, I. N., Petukhov, P. A., Sridhar, J., King, L. S. T., Blond, S. Y., Duka, T., Rusnak, M. & Sidhu, A. (2006). ChemMedChem, 1, 256–266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds