organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2,N2,N5,N5-Tetra­kis(2-chloro­ethyl)-3,4-di­methyl­thio­phene-2,5-dicarboxamide

aSchool of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 4 December 2009; accepted 5 December 2009; online 12 December 2009)

In the title compound, C16H22Cl4N2O2S, the two imide groups adopt a trans arrangement relative to the central thienyl ring, so the four terminal 2-chloro­ethyl arms adopt different orientations. In the crystal, mol­ecules are linked by weak C—H⋯Cl and C—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For general background to nitro­gen mustard agents as anti­tumor dugs, see: Zhuang et al. (2008[Zhuang, Y. Y., Zhou, C. H., Wang, Y. F. & Li, D. H. (2008). Chin. Pharm. J. 43, 1281-1287.]). For the synthesis, see: Luo et al. (2007[Luo, Q., Eibauer, S. & Reiser, O. (2007). J. Mol. Catal. A Chem. 268, 65-69.]). For a related structure, see: Dong et al. (2006[Dong, Y. B., Xu, H. X., Ma, J. P. & Huang, R. Q. (2006). Inorg. Chem. 45, 3325-3343.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22Cl4N2O2S

  • Mr = 448.22

  • Monoclinic, P 21 /c

  • a = 7.9238 (4) Å

  • b = 21.1712 (11) Å

  • c = 12.6186 (7) Å

  • β = 99.2380 (10)°

  • V = 2089.39 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 298 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.849, Tmax = 0.876

  • 13412 measured reflections

  • 4008 independent reflections

  • 3342 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.04

  • 4008 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O2i 0.97 2.45 3.257 (3) 141
C14—H14A⋯Cl1ii 0.97 2.80 3.632 (3) 145
C6—H6B⋯O1iii 0.96 2.54 3.474 (3) 166
C5—H5B⋯O1iv 0.96 2.54 3.477 (3) 165
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z-1; (iii) -x+1, -y, -z+1; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Nitrogen mustard agents are one of the most important antitumor dugs, and have been widely used for the treatment of solid neoplastic and leukemia tumor for many years. The incorporation of amido and/or conjugated moiety into nitrogen mustards often helps to decrease the toxicity and improve the target affinity due to the dispersion of N atom electron atmosphere density (Zhuang et al., 2008). Herein, in order to find new antitumor dugs, we have successfully synthesized the title compound (I) by an acylation reaction of bis(2-chloroethyl)amine wiht 3,4-dimethylthiophene-2,5-dicarbonyl dichloride (Luo et al., 2007) and fully characterized by single-crystal X-ray diffraction.

The molecular structure of the title compound is shown in Fig. 1. Single crystal analysis revealed that two imide groups of the title compound adopt trans-conformation arrangement (Dong et al., 2006) compared with the central thiophene ring, so the four terminal 2-chloroethyl arms are oriented in the different orientation. As indicated in Fig. 2, in the solid state, these moleculers are bonded together with Cl···H—C hydrogen bonds into an H-bonding-driven three-dimensional network, corresponding O(7)···H(3 A), O(7)···O(3), and O(7)···H(3 A)—O(3) data are 2.33 Å, 3.19 Å and 145.1°, respectively.

Related literature top

For general background to nitrogen mustard agents as antitumor dugs, see: Zhuang et al. (2008). For the synthesis, see: Luo et al. (2007). For a related structure, see: Dong et al. (2006).

Experimental top

The title compound (I) was gained by amidation of 3,4-dimethylthiophene-2,5-dicarbonyl dichloride (1 mmol) with bis(2-chloroethyl)amine (2 mmol) according to literature (Luo et al., 2007). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of ethyl acetate and petroleum ether by slow evaporation at room temperature.

Refinement top

Hydrogenatoms were placed in calculated positions with C—H =0.97Å (methylene) and 0.96Å (methyl) with Uiso(H) = 1.2Ueq(C)(methylene C) or 1.5Ueq(C) (methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXLTL (Sheldrick, 2008); software used to prepare material for publication: APEX2 (Bruker, 2004) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram.
N2,N2,N5,N5-Tetrakis(2-chloroethyl)-3,4- dimethylthiophene-2,5-dicarboxamide top
Crystal data top
C16H22Cl4N2O2SF(000) = 928
Mr = 448.22Dx = 1.425 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7657 reflections
a = 7.9238 (4) Åθ = 1.0–28.3°
b = 21.1712 (11) ŵ = 0.68 mm1
c = 12.6186 (7) ÅT = 298 K
β = 99.238 (1)°Block, white
V = 2089.39 (19) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
4008 independent reflections
Radiation source: fine-focus sealed tube3342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scanθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.849, Tmax = 0.876k = 2626
13412 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0694P)2 + 1.0128P]
where P = (Fo2 + 2Fc2)/3
4008 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C16H22Cl4N2O2SV = 2089.39 (19) Å3
Mr = 448.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9238 (4) ŵ = 0.68 mm1
b = 21.1712 (11) ÅT = 298 K
c = 12.6186 (7) Å0.25 × 0.22 × 0.20 mm
β = 99.238 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
4008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3342 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.876Rint = 0.018
13412 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.88 e Å3
4008 reflectionsΔρmin = 0.63 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6440 (3)0.16192 (11)0.56639 (16)0.0422 (5)
C20.4663 (3)0.10478 (11)0.41970 (16)0.0443 (5)
C30.7314 (3)0.11337 (11)0.52879 (16)0.0443 (5)
C40.6267 (3)0.07973 (11)0.44327 (16)0.0452 (5)
C50.9129 (3)0.09640 (14)0.5718 (2)0.0604 (7)
H5A0.95960.12670.62510.091*
H5B0.97880.09650.51420.091*
H5C0.91660.05510.60340.091*
C60.6887 (4)0.02243 (13)0.3905 (2)0.0622 (7)
H6A0.59470.00330.34410.093*
H6B0.73620.00730.44450.093*
H6C0.77490.03480.34910.093*
C70.3109 (3)0.08236 (11)0.34627 (17)0.0458 (5)
C80.7126 (3)0.21071 (11)0.64859 (17)0.0422 (5)
C90.6710 (3)0.13373 (12)0.79073 (18)0.0500 (6)
H9A0.75020.12030.85340.060*
H9B0.67170.10220.73500.060*
C100.4939 (4)0.13895 (13)0.8188 (2)0.0643 (7)
H10A0.41280.14830.75470.077*
H10B0.49040.17320.86940.077*
C110.7869 (4)0.24259 (14)0.8346 (2)0.0575 (6)
H11A0.75870.22910.90310.069*
H11B0.72690.28190.81520.069*
C120.9744 (4)0.25440 (18)0.8472 (3)0.0832 (10)
H12A1.00700.28380.90590.100*
H12B1.00090.27380.78220.100*
C130.4527 (3)0.10073 (11)0.18708 (17)0.0459 (5)
H13A0.49240.06700.14510.055*
H13B0.54780.11320.24140.055*
C140.4016 (3)0.15598 (12)0.11482 (18)0.0504 (6)
H14A0.31090.14340.05770.060*
H14B0.49850.16960.08240.060*
C150.1637 (3)0.05019 (11)0.17242 (19)0.0497 (6)
H15A0.12730.01250.20630.060*
H15B0.19370.03790.10380.060*
C160.0165 (3)0.09661 (13)0.1536 (2)0.0577 (6)
H16A0.05140.13420.11900.069*
H16B0.01480.10890.22190.069*
Cl11.09507 (11)0.18434 (6)0.87299 (8)0.0971 (3)
Cl20.43645 (12)0.06673 (3)0.87659 (6)0.0720 (2)
Cl30.16257 (10)0.06186 (4)0.07135 (7)0.0781 (3)
Cl40.32971 (10)0.22004 (3)0.18815 (6)0.0651 (2)
N10.3156 (2)0.07637 (9)0.24030 (14)0.0420 (4)
N20.7258 (2)0.19471 (9)0.75320 (14)0.0434 (4)
O10.1805 (3)0.06964 (11)0.38336 (14)0.0699 (6)
O20.7529 (3)0.26329 (8)0.62021 (14)0.0593 (5)
S10.43739 (8)0.16811 (3)0.50083 (4)0.04896 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0423 (12)0.0513 (12)0.0326 (10)0.0084 (9)0.0052 (8)0.0022 (9)
C20.0492 (13)0.0534 (13)0.0302 (10)0.0059 (10)0.0066 (9)0.0019 (9)
C30.0471 (13)0.0543 (13)0.0321 (10)0.0109 (10)0.0082 (9)0.0025 (9)
C40.0547 (14)0.0508 (12)0.0307 (10)0.0123 (10)0.0089 (9)0.0026 (9)
C50.0496 (15)0.0781 (18)0.0526 (14)0.0201 (13)0.0054 (11)0.0018 (13)
C60.0777 (19)0.0630 (16)0.0451 (13)0.0261 (14)0.0073 (12)0.0057 (11)
C70.0508 (14)0.0507 (12)0.0361 (11)0.0023 (10)0.0072 (10)0.0025 (9)
C80.0369 (12)0.0505 (12)0.0390 (11)0.0072 (9)0.0058 (9)0.0011 (9)
C90.0589 (15)0.0538 (13)0.0373 (11)0.0106 (11)0.0077 (10)0.0037 (10)
C100.0720 (19)0.0531 (14)0.0737 (17)0.0027 (13)0.0295 (14)0.0103 (13)
C110.0556 (16)0.0686 (16)0.0464 (13)0.0011 (12)0.0026 (11)0.0132 (12)
C120.068 (2)0.096 (2)0.079 (2)0.0103 (17)0.0062 (16)0.0104 (18)
C130.0453 (13)0.0577 (13)0.0357 (11)0.0011 (10)0.0093 (9)0.0033 (9)
C140.0542 (15)0.0603 (14)0.0376 (11)0.0078 (11)0.0100 (10)0.0009 (10)
C150.0568 (15)0.0478 (12)0.0435 (12)0.0091 (11)0.0049 (10)0.0084 (10)
C160.0510 (15)0.0590 (15)0.0592 (15)0.0086 (12)0.0024 (11)0.0083 (12)
Cl10.0548 (5)0.1416 (9)0.0898 (6)0.0198 (5)0.0041 (4)0.0276 (6)
Cl20.1030 (6)0.0533 (4)0.0654 (4)0.0134 (3)0.0309 (4)0.0015 (3)
Cl30.0515 (4)0.1027 (6)0.0773 (5)0.0200 (4)0.0019 (3)0.0212 (4)
Cl40.0750 (5)0.0475 (3)0.0758 (5)0.0069 (3)0.0213 (4)0.0027 (3)
N10.0468 (11)0.0451 (10)0.0340 (9)0.0025 (8)0.0056 (8)0.0029 (7)
N20.0432 (11)0.0517 (10)0.0346 (9)0.0023 (8)0.0037 (7)0.0030 (8)
O10.0591 (12)0.1096 (17)0.0431 (9)0.0159 (11)0.0148 (8)0.0033 (10)
O20.0674 (12)0.0544 (10)0.0566 (10)0.0052 (8)0.0112 (9)0.0066 (8)
S10.0447 (3)0.0604 (4)0.0402 (3)0.0135 (3)0.0020 (2)0.0095 (2)
Geometric parameters (Å, º) top
C1—C31.366 (3)C10—H10A0.9700
C1—C81.502 (3)C10—H10B0.9700
C1—S11.717 (2)C11—N21.468 (3)
C2—C41.365 (3)C11—C121.490 (4)
C2—C71.494 (3)C11—H11A0.9700
C2—S11.724 (2)C11—H11B0.9700
C3—C41.440 (3)C12—Cl11.766 (4)
C3—C51.497 (3)C12—H12A0.9700
C4—C61.504 (3)C12—H12B0.9700
C5—H5A0.9600C13—N11.460 (3)
C5—H5B0.9600C13—C141.498 (3)
C5—H5C0.9600C13—H13A0.9700
C6—H6A0.9600C13—H13B0.9700
C6—H6B0.9600C14—Cl41.786 (3)
C6—H6C0.9600C14—H14A0.9700
C7—O11.231 (3)C14—H14B0.9700
C7—N11.350 (3)C15—N11.469 (3)
C8—O21.227 (3)C15—C161.514 (4)
C8—N21.350 (3)C15—H15A0.9700
C9—N21.465 (3)C15—H15B0.9700
C9—C101.505 (4)C16—Cl31.777 (3)
C9—H9A0.9700C16—H16A0.9700
C9—H9B0.9700C16—H16B0.9700
C10—Cl21.784 (3)
C3—C1—C8127.6 (2)N2—C11—H11A108.8
C3—C1—S1112.81 (17)C12—C11—H11A108.8
C8—C1—S1119.44 (16)N2—C11—H11B108.8
C4—C2—C7131.1 (2)C12—C11—H11B108.8
C4—C2—S1112.36 (17)H11A—C11—H11B107.7
C7—C2—S1116.12 (17)C11—C12—Cl1112.3 (3)
C1—C3—C4111.6 (2)C11—C12—H12A109.1
C1—C3—C5124.5 (2)Cl1—C12—H12A109.1
C4—C3—C5123.9 (2)C11—C12—H12B109.1
C2—C4—C3112.1 (2)Cl1—C12—H12B109.1
C2—C4—C6125.2 (2)H12A—C12—H12B107.9
C3—C4—C6122.7 (2)N1—C13—C14114.0 (2)
C3—C5—H5A109.5N1—C13—H13A108.7
C3—C5—H5B109.5C14—C13—H13A108.7
H5A—C5—H5B109.5N1—C13—H13B108.7
C3—C5—H5C109.5C14—C13—H13B108.7
H5A—C5—H5C109.5H13A—C13—H13B107.6
H5B—C5—H5C109.5C13—C14—Cl4110.80 (15)
C4—C6—H6A109.5C13—C14—H14A109.5
C4—C6—H6B109.5Cl4—C14—H14A109.5
H6A—C6—H6B109.5C13—C14—H14B109.5
C4—C6—H6C109.5Cl4—C14—H14B109.5
H6A—C6—H6C109.5H14A—C14—H14B108.1
H6B—C6—H6C109.5N1—C15—C16112.64 (19)
O1—C7—N1121.0 (2)N1—C15—H15A109.1
O1—C7—C2119.5 (2)C16—C15—H15A109.1
N1—C7—C2119.6 (2)N1—C15—H15B109.1
O2—C8—N2122.0 (2)C16—C15—H15B109.1
O2—C8—C1120.3 (2)H15A—C15—H15B107.8
N2—C8—C1117.7 (2)C15—C16—Cl3110.22 (18)
N2—C9—C10110.34 (19)C15—C16—H16A109.6
N2—C9—H9A109.6Cl3—C16—H16A109.6
C10—C9—H9A109.6C15—C16—H16B109.6
N2—C9—H9B109.6Cl3—C16—H16B109.6
C10—C9—H9B109.6H16A—C16—H16B108.1
H9A—C9—H9B108.1C7—N1—C13124.28 (19)
C9—C10—Cl2110.00 (19)C7—N1—C15117.58 (19)
C9—C10—H10A109.7C13—N1—C15117.75 (17)
Cl2—C10—H10A109.7C8—N2—C9123.80 (19)
C9—C10—H10B109.7C8—N2—C11118.4 (2)
Cl2—C10—H10B109.7C9—N2—C11117.63 (19)
H10A—C10—H10B108.2C1—S1—C291.11 (11)
N2—C11—C12113.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.972.453.257 (3)141
C14—H14A···Cl1ii0.972.803.632 (3)145
C6—H6B···O1iii0.962.543.474 (3)166
C5—H5B···O1iv0.962.543.477 (3)165
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z1; (iii) x+1, y, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H22Cl4N2O2S
Mr448.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.9238 (4), 21.1712 (11), 12.6186 (7)
β (°) 99.238 (1)
V3)2089.39 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.849, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
13412, 4008, 3342
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.04
No. of reflections4008
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.63

Computer programs: , SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXLTL (Sheldrick, 2008), APEX2 (Bruker, 2004) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.972.453.257 (3)140.5
C14—H14A···Cl1ii0.972.803.632 (3)144.6
C6—H6B···O1iii0.962.543.474 (3)165.5
C5—H5B···O1iv0.962.543.477 (3)165.1
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z1; (iii) x+1, y, z+1; (iv) x+1, y, z.
 

Acknowledgements

The authors thank the Southwest University (grant Nos. SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (grant Nos. 2007BB5369, 2006BB4341) for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y. B., Xu, H. X., Ma, J. P. & Huang, R. Q. (2006). Inorg. Chem. 45, 3325–3343.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLuo, Q., Eibauer, S. & Reiser, O. (2007). J. Mol. Catal. A Chem. 268, 65–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhuang, Y. Y., Zhou, C. H., Wang, Y. F. & Li, D. H. (2008). Chin. Pharm. J. 43, 1281–1287.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds