organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o142-o143

Tert-butyl 3-oxo-2,3,4,5,6,7-hexa­hydro-1H-pyrazolo[4,3-c]pyridine-5-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 9 December 2009; accepted 9 December 2009; online 16 December 2009)

In the title compound, C11H17N3O3, the pyrazole ring is approximately planar, with a maximum deviation of 0.005 (2) Å, and forms a dihedral angle of 5.69 (13)° with the plane through the six atoms of the piperidine ring. In the crystal, pairs of inter­molecular N—H⋯O hydrogen bonds form dimers with neighbouring mol­ecules, generating R22(8) ring motifs. These dimers are further linked into two-dimensional arrays parallel to the bc plane by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the biological activity of pyrazolone derivatives, see: Al-Haiza et al. (2001[Al-Haiza, M. A., El-Assiery, S. A. & Sayed, G. H. (2001). Acta Pharm. 51, 251-261.]); Brogden, (1986[Brogden, R. N. (1986). Drugs, 32, 60-70.]); Coersmeier et al. (1986[Coersmeier, C., Wittenberg, H. R., Aehringhaus, U., Dreyling, K. W., Peskar, B. M., Brune, K. & Pesker, B. A. (1986). Agents Actions Suppl. 19, 137-153.]); Gursoy et al. (2000[Gursoy, A., Demirayak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359-364.]). For myocardial ischemia, see: Wu et al. (2002[Wu, T. W., Zeng, L. H., Wu, J. & Fung, K. P. (2002). Life Sci. 71, 2249-2255.]). For brain ischemia, see: Watanabe et al. (1984[Watanabe, T., Yuki, S., Egawa, M. & Nishi, H. (1984). J. Pharmacol. Exp. Ther. 268, 1597-1604.]); Kawai et al. (1997[Kawai, H., Nakai, H., Suga, M., Yuki, S., Watanabe, T. & Saito, K. I. (1997). J. Pharmcol. Exp. Ther. 281, 921-927.]). For new compounds with the pyrazolone unit, see: Al-Haiza et al. (2001[Al-Haiza, M. A., El-Assiery, S. A. & Sayed, G. H. (2001). Acta Pharm. 51, 251-261.]). For a related structure, see: Shahani et al. (2009[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249-o3250.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17N3O3

  • Mr = 239.28

  • Monoclinic, P 21 /c

  • a = 18.6250 (12) Å

  • b = 6.0893 (5) Å

  • c = 10.7414 (7) Å

  • β = 104.100 (4)°

  • V = 1181.51 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.97 × 0.35 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.910, Tmax = 0.986

  • 13101 measured reflections

  • 2690 independent reflections

  • 2136 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.172

  • S = 1.24

  • 2690 reflections

  • 222 parameters

  • All H-atom parameters refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.99 (3) 1.77 (3) 2.748 (3) 171 (3)
N2—H1N2⋯O2ii 0.94 (3) 1.75 (4) 2.665 (3) 167 (3)
C1—H1B⋯O2iii 0.98 (3) 2.57 (3) 3.492 (3) 157 (3)
C11—H11C⋯O3iv 0.97 (3) 2.60 (3) 3.504 (3) 156 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+2, -z+1; (iii) x, y-1, z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazolone derivatives have a broad spectrum of biological activities being used as analgesic, antipyretic and anti-inflammatory therapeutical drugs (Brogden, 1986; Gursoy et al., 2000). A class of new compounds with pyrazolone moiety was synthesized and reported for their antibacterial, antifungal activities by Al-Haiza et al. (2001). A new pyrazolone derivative, edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is being used as a drug in clinical practice for brain ischemia (Watanabe et al., 1984; Kawai et al., 1997) and the same has been found to be effective against myocardial ischemia (Wu et al., 2002).

In the crystal structure (Fig. 1), the pyrazole ring (C3/N1/N2/C4/C5) is approximately planar, with a maximum deviation of 0.005 (2) Å at atom N2. The piperidine ring (C1/C2/C3/C5/C6/N3) adopts a half-boat conformation (Cremer & Pople, 1975) with puckering of Q = 0.465 (2) Å, Θ = 52.9 (2)° & ϕ = 39.8 (4)°. The maximum deviation in this piperidine ring is 0.286 Å at atom N3. The dihedral angle formed between the mean planes of pyrazole and piperidine rings is 5.69 (13)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to a closely related structure (Shahani et al., 2009).

In the crystal packing (Fig. 2), pairs of intermolecular N2—H1N2···O2 hydrogen bonds form dimers with neighbouring molecules, generating R22(8) ring motifs (Bernstein et al., 1995). These dimers are further linked into two-dimensional arrays parallel to the bc plane by intermolecular N1—H1N1···O2, C1—H1B···O2 and C11—H11C···O3 hydrogen bonds.

Related literature top

For the biological activity of pyrazolone derivatives, see: Al-Haiza et al. (2001); Brogden, (1986); Coersmeier et al. (1986); Gursoy et al. (2000). For myocardial ischemia, see: Wu et al. (2002). For brain ischemia, see: Watanabe et al. (1984); Kawai et al. (1997). For new compounds with the pyrazolone unit, see: Al-Haiza et al. (2001). For a related structure, see: Shahani et al. (2009). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

LiHMDS (1.0 M solution in toluene, 11 mmol) was added quickly to a solution of tert-butyl 4-oxopiperidine-1-carboxylate (10 mmol 15 ml of toluene) using syringe at 273 K with stirring for 10 minutes. Ethyl chloro formate (11 mmol) was then added quickly. The reaction mixture was slowly (10 minutes) brought to room temperature and stirred for 10 minutes. Acetic acid (2 ml), ethanol (15 ml), and hydrazine hydrate (30 mmol) were added and refluxed for 15 minutes. The reaction mixture was concentrated to dryness under reduced pressure and re-dissolved in ethyl acetate. The organic layer was washed with saturated brine solution, dried over Na2SO4, evaporated under reduced pressure and purified by crystallizing using ethanol (white solid). The recrystallization was done using 1:1 mixture of ethanol and acetone. Yield: 78%. M.p. 498.5–500.5 K. MS calculated for C11H17N3O3: 239.126. Found: 239.80 (M+).

Refinement top

All hydrogen atoms were located in a difference map and were refined freely [range of N—H = 0.94 and 0.99 Å; and C—H = 0.95–1.02 Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along b axis, showing two-dimensional arrays parallel to the bc plane.
Tert-butyl 3-oxo-2,3,4,5,6,7-hexahydro-1H- pyrazolo[4,3-c]pyridine-5-carboxylate top
Crystal data top
C11H17N3O3F(000) = 512
Mr = 239.28Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7287 reflections
a = 18.6250 (12) Åθ = 2.3–33.5°
b = 6.0893 (5) ŵ = 0.10 mm1
c = 10.7414 (7) ÅT = 100 K
β = 104.100 (4)°Plate, colourless
V = 1181.51 (15) Å30.97 × 0.35 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2690 independent reflections
Radiation source: fine-focus sealed tube2136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2424
Tmin = 0.910, Tmax = 0.986k = 77
13101 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172All H-atom parameters refined
S = 1.24 w = 1/[σ2(Fo2) + (0.0688P)2 + 1.2823P]
where P = (Fo2 + 2Fc2)/3
2690 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C11H17N3O3V = 1181.51 (15) Å3
Mr = 239.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.6250 (12) ŵ = 0.10 mm1
b = 6.0893 (5) ÅT = 100 K
c = 10.7414 (7) Å0.97 × 0.35 × 0.14 mm
β = 104.100 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2690 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2136 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.986Rint = 0.035
13101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.172All H-atom parameters refined
S = 1.24Δρmax = 0.39 e Å3
2690 reflectionsΔρmin = 0.31 e Å3
222 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30793 (9)0.5995 (3)0.33483 (16)0.0205 (4)
O20.04609 (9)0.9437 (3)0.36561 (15)0.0205 (4)
O30.34752 (9)0.2971 (3)0.45801 (16)0.0231 (4)
N10.07659 (11)0.5955 (4)0.62882 (18)0.0191 (4)
N20.04170 (11)0.7682 (4)0.55702 (19)0.0186 (4)
N30.23023 (11)0.4313 (3)0.43120 (19)0.0191 (4)
C10.20586 (14)0.2460 (4)0.4972 (2)0.0215 (5)
C20.17706 (14)0.3233 (4)0.6127 (2)0.0225 (5)
C30.12708 (12)0.5145 (4)0.5701 (2)0.0185 (5)
C40.06920 (12)0.7945 (4)0.4514 (2)0.0167 (5)
C50.12428 (12)0.6319 (4)0.4598 (2)0.0172 (5)
C60.17364 (13)0.5912 (4)0.3715 (2)0.0190 (5)
C70.30029 (12)0.4308 (4)0.4123 (2)0.0180 (5)
C80.38126 (12)0.6603 (4)0.3140 (2)0.0186 (5)
C90.43236 (15)0.7313 (5)0.4403 (3)0.0258 (6)
C100.36107 (14)0.8534 (5)0.2231 (3)0.0249 (6)
C110.41358 (14)0.4723 (5)0.2519 (2)0.0215 (5)
H1A0.2501 (16)0.144 (5)0.527 (3)0.027 (7)*
H1B0.1645 (16)0.173 (5)0.437 (3)0.025 (7)*
H2A0.1514 (16)0.203 (6)0.639 (3)0.032 (8)*
H2B0.2187 (16)0.364 (5)0.682 (3)0.026 (7)*
H6A0.1980 (15)0.727 (5)0.353 (3)0.023 (7)*
H6B0.1445 (14)0.539 (5)0.286 (3)0.021 (7)*
H9A0.4124 (16)0.854 (5)0.476 (3)0.026 (8)*
H9B0.4808 (16)0.779 (5)0.428 (3)0.026 (7)*
H9C0.4426 (16)0.611 (6)0.504 (3)0.035 (9)*
H10A0.4080 (17)0.909 (5)0.201 (3)0.035 (8)*
H10B0.3254 (17)0.809 (5)0.139 (3)0.033 (8)*
H10C0.3394 (19)0.970 (6)0.264 (3)0.049 (10)*
H11A0.4596 (16)0.530 (5)0.227 (3)0.031 (8)*
H11B0.4299 (15)0.344 (5)0.313 (3)0.027 (7)*
H11C0.3819 (18)0.421 (6)0.172 (3)0.042 (9)*
H1N10.0676 (18)0.566 (6)0.714 (3)0.043 (9)*
H1N20.0081 (18)0.852 (6)0.589 (3)0.046 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0230 (8)0.0192 (9)0.0230 (8)0.0028 (7)0.0124 (6)0.0066 (7)
O20.0288 (8)0.0201 (9)0.0164 (8)0.0054 (7)0.0128 (6)0.0019 (7)
O30.0267 (8)0.0206 (10)0.0245 (9)0.0053 (7)0.0109 (7)0.0061 (8)
N10.0267 (10)0.0186 (11)0.0152 (9)0.0001 (8)0.0111 (7)0.0008 (8)
N20.0246 (9)0.0184 (11)0.0160 (9)0.0018 (8)0.0110 (7)0.0002 (8)
N30.0250 (10)0.0148 (11)0.0210 (10)0.0028 (8)0.0121 (8)0.0043 (9)
C10.0285 (12)0.0144 (12)0.0253 (12)0.0000 (10)0.0138 (10)0.0016 (11)
C20.0299 (12)0.0177 (13)0.0237 (12)0.0001 (10)0.0134 (10)0.0069 (11)
C30.0235 (11)0.0153 (12)0.0192 (11)0.0036 (9)0.0103 (9)0.0027 (10)
C40.0212 (10)0.0163 (12)0.0153 (10)0.0027 (9)0.0099 (8)0.0018 (9)
C50.0224 (10)0.0151 (12)0.0164 (10)0.0015 (9)0.0094 (8)0.0019 (9)
C60.0259 (11)0.0182 (13)0.0166 (11)0.0041 (10)0.0121 (9)0.0014 (10)
C70.0244 (11)0.0150 (12)0.0167 (10)0.0001 (10)0.0089 (8)0.0012 (10)
C80.0222 (11)0.0162 (12)0.0213 (11)0.0014 (9)0.0127 (9)0.0010 (10)
C90.0327 (13)0.0248 (15)0.0224 (13)0.0028 (11)0.0115 (10)0.0041 (12)
C100.0298 (12)0.0237 (14)0.0250 (13)0.0024 (11)0.0140 (10)0.0053 (11)
C110.0265 (12)0.0208 (13)0.0198 (12)0.0023 (10)0.0106 (9)0.0032 (11)
Geometric parameters (Å, º) top
O1—C71.351 (3)C3—C51.374 (3)
O1—C81.484 (3)C4—C51.413 (3)
O2—C41.290 (3)C5—C61.494 (3)
O3—C71.212 (3)C6—H6A0.98 (3)
N1—C31.347 (3)C6—H6B1.00 (3)
N1—N21.371 (3)C8—C101.516 (4)
N1—H1N10.99 (3)C8—C91.518 (4)
N2—C41.364 (3)C8—C111.521 (3)
N2—H1N20.94 (4)C9—H9A0.96 (3)
N3—C71.369 (3)C9—H9B0.99 (3)
N3—C11.462 (3)C9—H9C0.99 (3)
N3—C61.463 (3)C10—H10A1.02 (3)
C1—C21.540 (3)C10—H10B1.02 (3)
C1—H1A1.02 (3)C10—H10C0.97 (4)
C1—H1B0.98 (3)C11—H11A1.02 (3)
C2—C31.491 (4)C11—H11B1.02 (3)
C2—H2A0.95 (3)C11—H11C0.97 (3)
C2—H2B0.97 (3)
C7—O1—C8121.42 (18)N3—C6—H6A109.1 (16)
C3—N1—N2107.86 (19)C5—C6—H6A111.8 (17)
C3—N1—H1N1132 (2)N3—C6—H6B111.4 (16)
N2—N1—H1N1120 (2)C5—C6—H6B110.9 (15)
C4—N2—N1109.62 (19)H6A—C6—H6B105 (2)
C4—N2—H1N2132 (2)O3—C7—O1125.9 (2)
N1—N2—H1N2118 (2)O3—C7—N3124.4 (2)
C7—N3—C1119.4 (2)O1—C7—N3109.70 (19)
C7—N3—C6123.2 (2)O1—C8—C10101.39 (18)
C1—N3—C6116.77 (19)O1—C8—C9109.63 (18)
N3—C1—C2111.4 (2)C10—C8—C9111.0 (2)
N3—C1—H1A107.4 (17)O1—C8—C11110.8 (2)
C2—C1—H1A110.2 (16)C10—C8—C11111.3 (2)
N3—C1—H1B108.7 (17)C9—C8—C11112.2 (2)
C2—C1—H1B107.2 (16)C8—C9—H9A111.1 (17)
H1A—C1—H1B112 (2)C8—C9—H9B110.9 (16)
C3—C2—C1107.8 (2)H9A—C9—H9B106 (2)
C3—C2—H2A111.7 (19)C8—C9—H9C112.3 (19)
C1—C2—H2A107.4 (19)H9A—C9—H9C110 (2)
C3—C2—H2B111.2 (19)H9B—C9—H9C106 (2)
C1—C2—H2B108.9 (17)C8—C10—H10A108.3 (18)
H2A—C2—H2B110 (3)C8—C10—H10B111.7 (19)
N1—C3—C5109.2 (2)H10A—C10—H10B107 (2)
N1—C3—C2126.6 (2)C8—C10—H10C110 (2)
C5—C3—C2124.1 (2)H10A—C10—H10C110 (3)
O2—C4—N2123.3 (2)H10B—C10—H10C110 (3)
O2—C4—C5130.5 (2)C8—C11—H11A107.7 (18)
N2—C4—C5106.2 (2)C8—C11—H11B112.6 (17)
C3—C5—C4107.13 (19)H11A—C11—H11B107 (2)
C3—C5—C6124.1 (2)C8—C11—H11C114 (2)
C4—C5—C6128.7 (2)H11A—C11—H11C105 (3)
N3—C6—C5108.74 (19)H11B—C11—H11C110 (3)
C3—N1—N2—C41.0 (3)O2—C4—C5—C62.0 (4)
C7—N3—C1—C2125.7 (2)N2—C4—C5—C6177.9 (2)
C6—N3—C1—C263.6 (3)C7—N3—C6—C5148.5 (2)
N3—C1—C2—C345.8 (3)C1—N3—C6—C541.2 (3)
N2—N1—C3—C50.9 (3)C3—C5—C6—N37.8 (3)
N2—N1—C3—C2178.8 (2)C4—C5—C6—N3170.1 (2)
C1—C2—C3—N1162.0 (2)C8—O1—C7—O310.1 (4)
C1—C2—C3—C515.7 (3)C8—O1—C7—N3170.38 (19)
N1—N2—C4—O2179.3 (2)C1—N3—C7—O38.0 (4)
N1—N2—C4—C50.8 (3)C6—N3—C7—O3178.1 (2)
N1—C3—C5—C40.4 (3)C1—N3—C7—O1171.5 (2)
C2—C3—C5—C4178.4 (2)C6—N3—C7—O11.4 (3)
N1—C3—C5—C6178.6 (2)C7—O1—C8—C10179.8 (2)
C2—C3—C5—C63.4 (4)C7—O1—C8—C962.4 (3)
O2—C4—C5—C3179.8 (2)C7—O1—C8—C1161.9 (3)
N2—C4—C5—C30.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.99 (3)1.77 (3)2.748 (3)171 (3)
N2—H1N2···O2ii0.94 (3)1.75 (4)2.665 (3)167 (3)
C1—H1B···O2iii0.98 (3)2.57 (3)3.492 (3)157 (3)
C11—H11C···O3iv0.97 (3)2.60 (3)3.504 (3)156 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+2, z+1; (iii) x, y1, z; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H17N3O3
Mr239.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.6250 (12), 6.0893 (5), 10.7414 (7)
β (°) 104.100 (4)
V3)1181.51 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.97 × 0.35 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.910, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13101, 2690, 2136
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.172, 1.24
No. of reflections2690
No. of parameters222
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.39, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.99 (3)1.77 (3)2.748 (3)171 (3)
N2—H1N2···O2ii0.94 (3)1.75 (4)2.665 (3)167 (3)
C1—H1B···O2iii0.98 (3)2.57 (3)3.492 (3)157 (3)
C11—H11C···O3iv0.97 (3)2.60 (3)3.504 (3)156 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+2, z+1; (iii) x, y1, z; (iv) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAl-Haiza, M. A., El-Assiery, S. A. & Sayed, G. H. (2001). Acta Pharm. 51, 251–261.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrogden, R. N. (1986). Drugs, 32, 60–70.  CrossRef PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationCoersmeier, C., Wittenberg, H. R., Aehringhaus, U., Dreyling, K. W., Peskar, B. M., Brune, K. & Pesker, B. A. (1986). Agents Actions Suppl. 19, 137–153.  CAS PubMed Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGursoy, A., Demirayak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359–364.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKawai, H., Nakai, H., Suga, M., Yuki, S., Watanabe, T. & Saito, K. I. (1997). J. Pharmcol. Exp. Ther. 281, 921–927.  CAS Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, T., Yuki, S., Egawa, M. & Nishi, H. (1984). J. Pharmacol. Exp. Ther. 268, 1597–1604.  Google Scholar
First citationWu, T. W., Zeng, L. H., Wu, J. & Fung, K. P. (2002). Life Sci. 71, 2249–2255.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o142-o143
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds