metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-meth­­oxy-6-(3-pyridylmethyl­imino­meth­yl)phenolato-κ2N,O]copper(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bCollege of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 13 November 2009; accepted 5 December 2009; online 12 December 2009)

In the title complex, [Cu(C14H13N2O2)2], the CuII ion is located on a crystallographic inversion center. The complex thus adopts a square-planar trans-[CuN2O2] coordination geometry, with the CuII ion coordinated by two 2-meth­oxy-6-(3-pyridylmethyl­imino­meth­yl)phenolate (Schiff base) ligands. The aryl and pyridyl rings in the Schiff base are almost perpendicular to each other, with a dihedral angle of 87.61 (6)° between the planes of the two six-membered rings. The pyridyl ring was refined using a disorder model with approximately 70% occupancy for the major component

Related literature

For recent developments in functional switching materials, see: Sato et al. (2003[Sato, O., Hayami, S., Einaga, Y. & Gu, Z. (2003). Bull. Chem. Soc. Jpn, 76, 443-470.]). Bis-(N-alkysalicylideneimine)copper(II) complexes for induced structural phase transitions, see: Yamada (1999[Yamada, S. (1999). Coord. Chem. Rev. 190-192, 537-555.]), and the structural isomers can be isolated, see: Chia et al. (1997[Chia, P. C., Freyberg, D. P., Mockler, G. M. & Sinn, E. (1997). Inorg. Chem. 16, 254-264.]). For related metal complexes containing Schiff bases, see: You & Zhu (2004[You, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754-2760.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H13N2O2)2]

  • Mr = 546.07

  • Triclinic, [P \overline 1]

  • a = 5.175 (1) Å

  • b = 10.7291 (14) Å

  • c = 11.4369 (15) Å

  • α = 99.689 (1)°

  • β = 91.361 (1)°

  • γ = 103.241 (2)°

  • V = 608.03 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 298 K

  • 0.47 × 0.40 × 0.29 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.666, Tmax = 0.772

  • 3054 measured reflections

  • 2101 independent reflections

  • 1908 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.09

  • 2101 reflections

  • 171 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.9005 (18)
Cu1—N1 1.997 (2)
O1—Cu1—N1 91.31 (8)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recent developments in functional switching materials (Sato et al., 2003) have shown that a good way to discover candidate metal complexes is to examine compounds that show any changes between two or more states, such as structural phase transitions, isomerism, mixed valences and spin-crossover. In this respect, bis-(N-alkysalicylideneimine)copper(II) complexes have potential for induced structural phase transitions (Yamada, 1999) and the structural isomers can be isolated (Chia et al., 1997).

Herein, we reported a new crystal strucure of the title compound (I). The stucture of (I) is shown in Fig.1. It can be clearly seen that this compound possesses a slightly distorted square-planar trans-[CuN2O2] coordination geomentry with the CuII ion located on a crystallographic inversion center. In addition, the phenyl ring is almost on the same plane with the [CuN2O2] square plane with a dihedral angle of approximately 6.293° between the two planes, while the pyridyl ring is nearly vertical with the [CuN2O2] square plane with a dihedral angle of approximately 83.12°. The pyridyl ring was refined using a two-part disorder model, interchanging the positions of N2 and C13 with approximately 70% occupancy for the major component; this conformation is the most likely according to the ring geometry and the surrounding environment.

Related literature top

For recent developments in functional switching materials, see: Sato et al. (2003). Bis-(N-alkysalicylideneimine)copper(II) complexes for induced structural phase transitions, see: Yamada (1999), and the structural isomers can be isolated, see: Chia et al. (1997). For related literature, see: You & Zhu (2004).

Experimental top

The title compound was synthesized by Cu(NO3)2.3H2O and Schiff base ligand 2-methoxy-6-[(pyridin-3-ylmethylimino)-methyl]-phenol. All chemicals used (reagent grade) were commercially available. 2-Hydroxy-3-methoxy-benzaldehyde(0.108 g, 1 mmol) was dissolved in ethanol (5 mL) and ethanol solution (5 ml) containing 2-aminoethylpyri dine (0.152 g, 1 mmol) was added slowly with stirring. The resulting yellow solution was continuously stirred for about 30 min. at room temperature, and then Cu(NO3)2.3H2O (0.241 g, 1 mmol) in aqueous solution (5 ml) was added with stirring at room temperature. Brown crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement top

H atoms were placed in geometrical positions and refined using a riding model, with C—H distances in the range 0.93–0.97Å and Uiso(H) =1.5Ueq(C) for methyl groups and Uiso(H) =1.2Ueq(C) for all others. The N2 and C13 atoms in the pyridyl ring was refined using a disorder model with approximately 70% occupancy for the major component

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.All hydrogen atoms and the minor disorder component are omitted for clarity. [Symmetry code A: -x + 1, -y + 1, -z + 1]
Bis[2-methoxy-6-(3-pyridylmethyliminomethyl)phenolato- κ2N,O]copper(II) top
Crystal data top
[Cu(C14H13N2O2)2]Z = 1
Mr = 546.07F(000) = 283
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.175 (1) ÅCell parameters from 13380 reflections
b = 10.7291 (14) Åθ = 3.0–25.0°
c = 11.4369 (15) ŵ = 0.94 mm1
α = 99.689 (1)°T = 298 K
β = 91.361 (1)°Prism, brown
γ = 103.241 (2)°0.47 × 0.40 × 0.29 mm
V = 608.03 (16) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
2101 independent reflections
Radiation source: sealed tube1908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 1.8°
Thin–slice ω scansh = 56
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1112
Tmin = 0.666, Tmax = 0.772l = 1313
3054 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.3354P]
where P = (Fo2 + 2Fc2)/3
2101 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C14H13N2O2)2]γ = 103.241 (2)°
Mr = 546.07V = 608.03 (16) Å3
Triclinic, P1Z = 1
a = 5.175 (1) ÅMo Kα radiation
b = 10.7291 (14) ŵ = 0.94 mm1
c = 11.4369 (15) ÅT = 298 K
α = 99.689 (1)°0.47 × 0.40 × 0.29 mm
β = 91.361 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2101 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1908 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.772Rint = 0.021
3054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
2101 reflectionsΔρmin = 0.40 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.50000.50000.03467 (17)
N10.5603 (4)0.3229 (2)0.44427 (19)0.0374 (5)
C10.4647 (5)0.2520 (3)0.3428 (2)0.0396 (6)
H10.52770.17750.32010.048*
C20.2735 (5)0.2746 (3)0.2613 (2)0.0386 (6)
C30.1569 (5)0.3815 (3)0.2862 (2)0.0352 (6)
C40.0381 (5)0.3930 (3)0.2004 (2)0.0405 (6)
C50.0989 (6)0.3047 (3)0.0952 (3)0.0501 (8)
H50.22330.31440.03950.060*
C60.0245 (6)0.2009 (3)0.0715 (3)0.0549 (8)
H60.01750.14230.00020.066*
C70.2054 (6)0.1856 (3)0.1523 (3)0.0503 (7)
H70.28570.11600.13620.060*
C80.3148 (6)0.5261 (4)0.1431 (3)0.0615 (9)
H8A0.21390.54220.07550.092*
H8B0.37570.60210.17510.092*
H8C0.46500.45400.11910.092*
C90.7366 (6)0.2684 (3)0.5141 (2)0.0413 (6)
H9A0.88540.33760.55120.050*
H9B0.80680.20520.46140.050*
C100.7083 (8)0.2181 (3)0.7196 (3)0.0675 (10)
H100.87600.27430.73540.081*
C110.5900 (5)0.2036 (2)0.6089 (2)0.0386 (6)
C120.3393 (7)0.1225 (4)0.5890 (3)0.0689 (10)
H120.24800.10870.51510.083*
N20.6057 (10)0.1590 (4)0.8074 (3)0.0946 (16)0.70 (4)
C130.2220 (8)0.0611 (4)0.6786 (5)0.0910 (17)0.70 (4)
H13A0.05300.00570.66580.109*0.70 (4)
N2'0.2220 (8)0.0611 (4)0.6786 (5)0.0910 (17)0.30 (4)
C13'0.6057 (10)0.1590 (4)0.8074 (3)0.0946 (16)0.30 (4)
H13B0.69240.16800.87360.113*0.30 (4)
C140.3650 (12)0.0834 (5)0.7849 (4)0.0863 (14)
H140.28560.04190.84460.104*
O10.2170 (4)0.47043 (18)0.38216 (16)0.0423 (5)
O20.1501 (4)0.4964 (2)0.23188 (18)0.0514 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0353 (3)0.0383 (3)0.0307 (3)0.00863 (19)0.00441 (18)0.00810 (19)
N10.0374 (12)0.0430 (13)0.0360 (12)0.0136 (10)0.0011 (9)0.0134 (10)
C10.0449 (16)0.0396 (15)0.0368 (15)0.0137 (12)0.0045 (12)0.0083 (12)
C20.0395 (15)0.0416 (15)0.0320 (14)0.0029 (12)0.0028 (11)0.0080 (11)
C30.0314 (14)0.0420 (15)0.0303 (14)0.0018 (11)0.0006 (10)0.0107 (11)
C40.0332 (14)0.0480 (16)0.0386 (15)0.0008 (12)0.0024 (11)0.0152 (13)
C50.0418 (17)0.068 (2)0.0350 (15)0.0004 (15)0.0078 (12)0.0134 (14)
C60.057 (2)0.065 (2)0.0332 (16)0.0014 (16)0.0042 (14)0.0019 (14)
C70.0575 (19)0.0477 (17)0.0406 (16)0.0074 (14)0.0005 (14)0.0011 (13)
C80.0455 (18)0.080 (2)0.065 (2)0.0112 (16)0.0111 (15)0.0360 (18)
C90.0396 (16)0.0445 (15)0.0444 (16)0.0183 (12)0.0024 (12)0.0100 (12)
C100.081 (3)0.063 (2)0.048 (2)0.0061 (19)0.0108 (17)0.0142 (17)
C110.0462 (16)0.0346 (14)0.0396 (15)0.0188 (12)0.0011 (12)0.0075 (11)
C120.054 (2)0.087 (3)0.067 (2)0.0038 (19)0.0113 (17)0.036 (2)
N20.138 (4)0.090 (3)0.049 (2)0.004 (3)0.003 (2)0.0261 (19)
C130.063 (3)0.084 (3)0.140 (5)0.015 (2)0.026 (3)0.058 (3)
N2'0.063 (3)0.084 (3)0.140 (5)0.015 (2)0.026 (3)0.058 (3)
C13'0.138 (4)0.090 (3)0.049 (2)0.004 (3)0.003 (2)0.0261 (19)
C140.125 (4)0.081 (3)0.080 (3)0.052 (3)0.049 (3)0.046 (3)
O10.0422 (11)0.0475 (11)0.0375 (10)0.0166 (9)0.0117 (8)0.0017 (9)
O20.0450 (12)0.0587 (13)0.0516 (12)0.0133 (10)0.0159 (9)0.0141 (10)
Geometric parameters (Å, º) top
Cu1—O11.9005 (18)C8—O21.432 (3)
Cu1—O1i1.9005 (18)C8—H8A0.9600
Cu1—N1i1.997 (2)C8—H8B0.9600
Cu1—N11.997 (2)C8—H8C0.9600
N1—C11.294 (3)C9—C111.512 (4)
N1—C91.476 (3)C9—H9A0.9700
C1—C21.432 (4)C9—H9B0.9700
C1—H10.9300C10—N21.333 (5)
C2—C31.406 (4)C10—C111.362 (4)
C2—C71.418 (4)C10—H100.9300
C3—O11.306 (3)C11—C121.377 (4)
C3—C41.431 (4)C12—C131.389 (5)
C4—O21.366 (3)C12—H120.9301
C4—C51.381 (4)N2—C141.314 (7)
C5—C61.397 (4)N2—H13B0.8506
C5—H50.9300C13—C141.364 (7)
C6—C71.356 (4)C13—H13A0.9305
C6—H60.9300C14—H140.9300
C7—H70.9300
O1—Cu1—O1i180.000 (1)O2—C8—H8B109.5
O1—Cu1—N1i88.69 (8)H8A—C8—H8B109.5
O1i—Cu1—N1i91.31 (8)O2—C8—H8C109.5
O1—Cu1—N191.31 (8)H8A—C8—H8C109.5
O1i—Cu1—N188.69 (8)H8B—C8—H8C109.5
N1i—Cu1—N1180.000 (1)N1—C9—C11111.4 (2)
C1—N1—C9115.3 (2)N1—C9—H9A109.3
C1—N1—Cu1123.32 (19)C11—C9—H9A109.3
C9—N1—Cu1121.18 (18)N1—C9—H9B109.3
N1—C1—C2127.6 (3)C11—C9—H9B109.3
N1—C1—H1116.2H9A—C9—H9B108.0
C2—C1—H1116.2N2—C10—C11125.9 (4)
C3—C2—C7120.3 (3)N2—C10—H10117.1
C3—C2—C1121.9 (2)C11—C10—H10117.0
C7—C2—C1117.8 (3)C10—C11—C12115.8 (3)
O1—C3—C2124.0 (2)C10—C11—C9120.7 (3)
O1—C3—C4118.5 (2)C12—C11—C9123.4 (3)
C2—C3—C4117.5 (2)C11—C12—C13120.2 (4)
O2—C4—C5124.9 (3)C11—C12—H12119.9
O2—C4—C3114.6 (2)C13—C12—H12119.8
C5—C4—C3120.5 (3)C14—N2—C10116.2 (4)
C4—C5—C6120.7 (3)C14—N2—H13B121.7
C4—C5—H5119.6C10—N2—H13B122.0
C6—C5—H5119.6C14—C13—C12117.6 (4)
C7—C6—C5120.1 (3)C14—C13—H13A121.5
C7—C6—H6119.9C12—C13—H13A120.9
C5—C6—H6119.9N2—C14—C13124.1 (4)
C6—C7—C2120.8 (3)N2—C14—H14118.6
C6—C7—H7119.6C13—C14—H14117.3
C2—C7—H7119.6C3—O1—Cu1129.26 (17)
O2—C8—H8A109.5C4—O2—C8117.5 (2)
O1—Cu1—N1—C115.6 (2)C3—C2—C7—C61.0 (4)
O1i—Cu1—N1—C1164.4 (2)C1—C2—C7—C6179.6 (3)
N1i—Cu1—N1—C1141 (100)C1—N1—C9—C1199.3 (3)
O1—Cu1—N1—C9169.17 (19)Cu1—N1—C9—C1185.1 (2)
O1i—Cu1—N1—C910.83 (19)N2—C10—C11—C121.6 (6)
N1i—Cu1—N1—C934 (100)N2—C10—C11—C9175.3 (4)
C9—N1—C1—C2174.5 (2)N1—C9—C11—C10139.2 (3)
Cu1—N1—C1—C29.9 (4)N1—C9—C11—C1244.1 (4)
N1—C1—C2—C31.8 (4)C10—C11—C12—C130.1 (5)
N1—C1—C2—C7177.6 (3)C9—C11—C12—C13176.7 (3)
C7—C2—C3—O1177.1 (2)C11—C10—N2—C142.3 (7)
C1—C2—C3—O12.2 (4)C11—C12—C13—C140.7 (6)
C7—C2—C3—C42.5 (4)C10—N2—C14—C131.4 (7)
C1—C2—C3—C4178.1 (2)C12—C13—C14—N20.0 (7)
O1—C3—C4—O22.5 (3)C2—C3—O1—Cu110.5 (4)
C2—C3—C4—O2177.9 (2)C4—C3—O1—Cu1169.14 (17)
O1—C3—C4—C5177.0 (2)O1i—Cu1—O1—C312 (100)
C2—C3—C4—C52.7 (4)N1i—Cu1—O1—C3163.5 (2)
O2—C4—C5—C6179.3 (3)N1—Cu1—O1—C316.5 (2)
C3—C4—C5—C61.3 (4)C5—C4—O2—C89.1 (4)
C4—C5—C6—C70.3 (4)C3—C4—O2—C8170.4 (2)
C5—C6—C7—C20.5 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C14H13N2O2)2]
Mr546.07
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.175 (1), 10.7291 (14), 11.4369 (15)
α, β, γ (°)99.689 (1), 91.361 (1), 103.241 (2)
V3)608.03 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.47 × 0.40 × 0.29
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.666, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
3054, 2101, 1908
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.09
No. of reflections2101
No. of parameters171
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.40

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.9005 (18)Cu1—N1i1.997 (2)
Cu1—O1i1.9005 (18)Cu1—N11.997 (2)
O1—Cu1—N1i88.69 (8)O1—Cu1—N191.31 (8)
O1i—Cu1—N1i91.31 (8)O1i—Cu1—N188.69 (8)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project 20671019)

References

First citationChia, P. C., Freyberg, D. P., Mockler, G. M. & Sinn, E. (1997). Inorg. Chem. 16, 254–264.  CSD CrossRef Web of Science Google Scholar
First citationSato, O., Hayami, S., Einaga, Y. & Gu, Z. (2003). Bull. Chem. Soc. Jpn, 76, 443–470.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 190–192, 537–555.  CrossRef CAS Google Scholar
First citationYou, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754–2760.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds