metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromido[(1,2,5,6-η)-cyclo­octa-1,5-diene]methyl­platinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 25 November 2009; accepted 8 December 2009; online 12 December 2009)

In the title complex, [PtBr(CH3)(C8H12)], the PtII ion is in a distorted square-planar environment defined by the Br and methyl C atoms and the mid-points of the two π-coordinated double bonds of cyclo­octa-1,5-diene. As a result of the different trans influences of the Br atom and the methyl group, the Pt—C bonds trans to the methyl group [2.262 (11) and 2.261 (10) Å] are longer than those trans to the Br atom [2.118 (8) and 2.138 (9) Å].

Related literature

For the crystal structure of [(cod)PtCl2] (cod = cyclo­octa-1,5-diene), see: Goel et al. (1982[Goel, A. B., Goel, S. & van der Veer, D. (1982). Inorg. Chim. Acta, 65, L205-L206.]); Syed et al. (1984[Syed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673-3674.]). For the crystal structures of [(cod)Pt(CH3)L] (L = OH, CH3 or Cl), see: Klein et al. (1999[Klein, A., Klinkhammer, K.-W. & Scheiring, T. (1999). J. Organomet. Chem. 592, 128-135.]). For the crystal structure of [(cod)Pt(CH3)I], see: Nieger (2008[Nieger, M. (2008). Private communication (CCDC No. 677297). CCDC, Cambridge, England.]). For related Pt–cot complexes, [(cot )PtX2] (cot = cyclo­octa-1,3,5,7-tetra­ene; X = Br or I), see: Song et al. (2007a[Song, A.-R., Hwang, I.-C. & Ha, K. (2007a). Acta Cryst. E63, m2484.],b[Song, A.-R., Hwang, I.-C. & Ha, K. (2007b). Acta Cryst. E63, m1879.]).

[Scheme 1]

Experimental

Crystal data
  • [PtBr(CH3)(C8H12)]

  • Mr = 398.21

  • Orthorhombic, P 21 21 21

  • a = 7.1013 (15) Å

  • b = 11.184 (2) Å

  • c = 12.691 (3) Å

  • V = 1007.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 17.82 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.537, Tmax = 1.000

  • 7369 measured reflections

  • 2514 independent reflections

  • 1988 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.067

  • S = 1.04

  • 2514 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −1.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1023 Friedel pairs

  • Flack parameter: −0.02 (3)

Data collection: SMART (Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title complex, [PtBr(CH3)(C8H12)], the central PtII ion lies in a distorted square-planar environment defined by the Br and methyl C atoms and the two mid-points (M1, M2) of the π-coordinated double bonds of cycloocta-1,5-diene (cod) ligand (M1 and M2 denote the mid-points of the olefinic bonds C1—C2 and C5—C6, respectively) (Fig. 1). The Pt, Br, C9 atoms and the mid-points lie in a coordination plane with the largest deviation of 0.018 Å (M2) from the least-squares plane, and with bond angles in the range of 85.4°–94.5°. Because of the different trans influences of the Br atom and the methyl group, the Pt—C bonds trans to C9 of the methyl group (2.261 (10)–2.262 (11) Å) are longer than those trans to the Br atom (2.118 (8)–2.138 (9) Å). The cod ligand coordinates to the Pt atom in the twist-boat conformation with the coordinated double-bond lengths of 1.334 (13) and 1.367 (14) Å, and the cod ring angles lie in the range of 115.1 (10)°–127.3 (9)°.

Related literature top

For the crystal structure of [(cod)PtCl2] (cod = cycloocta-1,5-diene), see: Goel et al. (1982); Syed et al. (1984). For the crystal structures of [(cod)Pt(CH3)L] (L = OH, CH3 or Cl), see: Klein et al. (1999). For the crystal structure of [(cod)Pt(CH3)I], see: Nieger (2008). For related Pt–cot complexes, [(cot)PtX2] (cot = cycloocta-1,3,5,7-tetraene; X = Br or I), see: Song et al. (2007a,b).

Experimental top

To a solution of cyclooctadienedimethylplatinum(II) (0.1677 g, 0.503 mmol) in CH2Cl2/MeOH (15 ml/15 ml) was added acetyl bromide (0.0740 g, 0.602 mmol), and stirred for 5 h at room temperature. The solvent was removed under vacuum, the residue was washed with pentane and dried, to give a white powder (0.1611 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a methanol solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.98 (CH), 0.97 (CH2) or 0.96 (CH3) Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. The highest peak (0.92 e Å-3) and the deepest hole (-1.27 e Å-3) in the difference Fourier map are located 0.95 and 0.56 Å from the atoms Pt1 and Br1, respectively.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
Bromido[(1,2,5,6-η)-cycloocta-1,5-diene]methylplatinum(II) top
Crystal data top
[PtBr(CH3)(C8H12)]F(000) = 728
Mr = 398.21Dx = 2.624 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3683 reflections
a = 7.1013 (15) Åθ = 2.4–28.4°
b = 11.184 (2) ŵ = 17.82 mm1
c = 12.691 (3) ÅT = 296 K
V = 1007.9 (4) Å3Block, colourless
Z = 40.25 × 0.22 × 0.12 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2514 independent reflections
Radiation source: fine-focus sealed tube1988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 89
Tmin = 0.537, Tmax = 1.000k = 158
7369 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0196P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2514 reflectionsΔρmax = 0.92 e Å3
101 parametersΔρmin = 1.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1023 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[PtBr(CH3)(C8H12)]V = 1007.9 (4) Å3
Mr = 398.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1013 (15) ŵ = 17.82 mm1
b = 11.184 (2) ÅT = 296 K
c = 12.691 (3) Å0.25 × 0.22 × 0.12 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2514 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1988 reflections with I > 2σ(I)
Tmin = 0.537, Tmax = 1.000Rint = 0.041
7369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.92 e Å3
S = 1.04Δρmin = 1.27 e Å3
2514 reflectionsAbsolute structure: Flack (1983), 1023 Friedel pairs
101 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.14514 (4)0.09470 (4)0.38595 (2)0.03996 (10)
Br10.13276 (14)0.10500 (13)0.27310 (7)0.0679 (3)
C10.0998 (13)0.1007 (10)0.4243 (7)0.052 (2)
H10.01120.14080.37680.063*
C20.0164 (14)0.0373 (11)0.5001 (7)0.059 (3)
H20.12150.04030.50060.071*
C30.109 (2)0.0160 (13)0.6061 (8)0.091 (4)
H3A0.00920.00390.65750.110*
H3B0.17420.08870.62580.110*
C40.2370 (16)0.0801 (14)0.6157 (9)0.091 (4)
H4A0.33610.05630.66400.109*
H4B0.17150.14720.64740.109*
C50.3254 (13)0.1214 (11)0.5168 (7)0.066 (3)
H50.37420.20320.52130.079*
C60.4194 (13)0.0527 (11)0.4448 (9)0.060 (3)
H60.52180.09470.40860.072*
C70.4495 (15)0.0771 (15)0.4554 (9)0.082 (4)
H7A0.48500.09290.52790.098*
H7B0.55620.09850.41160.098*
C80.2914 (17)0.1587 (11)0.4282 (9)0.083 (4)
H8A0.28790.22290.47950.099*
H8B0.31710.19430.36000.099*
C90.2351 (11)0.2549 (9)0.3069 (7)0.043 (2)
H9A0.37020.25690.30410.064*
H9B0.19000.32350.34470.064*
H9C0.18540.25580.23650.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03947 (15)0.03876 (19)0.04166 (15)0.0015 (2)0.00064 (15)0.00082 (18)
Br10.0593 (5)0.0812 (9)0.0631 (5)0.0112 (9)0.0145 (5)0.0043 (6)
C10.062 (6)0.030 (5)0.065 (6)0.018 (6)0.020 (4)0.009 (5)
C20.055 (6)0.064 (8)0.059 (6)0.017 (6)0.006 (5)0.012 (6)
C30.130 (11)0.100 (11)0.045 (6)0.011 (10)0.012 (7)0.012 (7)
C40.079 (7)0.128 (14)0.066 (7)0.002 (10)0.021 (6)0.017 (11)
C50.057 (6)0.078 (10)0.063 (6)0.004 (7)0.025 (5)0.024 (6)
C60.035 (5)0.059 (8)0.086 (7)0.008 (5)0.013 (5)0.009 (6)
C70.060 (6)0.095 (12)0.089 (8)0.020 (9)0.017 (6)0.003 (9)
C80.106 (10)0.045 (8)0.097 (9)0.009 (8)0.006 (7)0.006 (7)
C90.038 (4)0.029 (6)0.061 (5)0.008 (5)0.004 (4)0.007 (5)
Geometric parameters (Å, º) top
Pt1—C52.118 (8)C4—H4A0.9700
Pt1—C62.138 (9)C4—H4B0.9700
Pt1—C92.151 (9)C5—C61.367 (14)
Pt1—C22.261 (10)C5—H50.9800
Pt1—C12.262 (11)C6—C71.473 (18)
Pt1—Br12.4410 (11)C6—H60.9800
C1—C21.334 (13)C7—C81.488 (17)
C1—C81.508 (14)C7—H7A0.9700
C1—H10.9800C7—H7B0.9700
C2—C31.515 (13)C8—H8A0.9700
C2—H20.9800C8—H8B0.9700
C3—C41.415 (17)C9—H9A0.9600
C3—H3A0.9700C9—H9B0.9600
C3—H3B0.9700C9—H9C0.9600
C4—C51.478 (14)
C5—Pt1—C637.5 (4)C5—C4—H4A108.3
C5—Pt1—C993.9 (4)C3—C4—H4B108.3
C6—Pt1—C994.3 (4)C5—C4—H4B108.3
C5—Pt1—C280.5 (4)H4A—C4—H4B107.4
C6—Pt1—C290.1 (4)C6—C5—C4126.8 (12)
C9—Pt1—C2164.3 (4)C6—C5—Pt172.1 (5)
C5—Pt1—C193.1 (4)C4—C5—Pt1111.4 (7)
C6—Pt1—C180.9 (4)C6—C5—H5113.1
C9—Pt1—C1161.4 (4)C4—C5—H5113.1
C2—Pt1—C134.3 (3)Pt1—C5—H5113.1
C5—Pt1—Br1160.4 (3)C5—C6—C7124.3 (11)
C6—Pt1—Br1162.1 (3)C5—C6—Pt170.4 (5)
C9—Pt1—Br185.8 (2)C7—C6—Pt1112.3 (7)
C2—Pt1—Br194.6 (2)C5—C6—H6114.0
C1—Pt1—Br193.3 (2)C7—C6—H6114.0
C2—C1—C8127.3 (9)Pt1—C6—H6114.0
C2—C1—Pt172.8 (7)C6—C7—C8118.3 (10)
C8—C1—Pt1107.1 (7)C6—C7—H7A107.7
C2—C1—H1113.7C8—C7—H7A107.7
C8—C1—H1113.7C6—C7—H7B107.7
Pt1—C1—H1113.7C8—C7—H7B107.7
C1—C2—C3122.1 (10)H7A—C7—H7B107.1
C1—C2—Pt172.9 (6)C7—C8—C1115.1 (10)
C3—C2—Pt1107.0 (8)C7—C8—H8A108.5
C1—C2—H2115.5C1—C8—H8A108.5
C3—C2—H2115.5C7—C8—H8B108.5
Pt1—C2—H2115.5C1—C8—H8B108.5
C4—C3—C2118.3 (10)H8A—C8—H8B107.5
C4—C3—H3A107.7Pt1—C9—H9A109.5
C2—C3—H3A107.7Pt1—C9—H9B109.5
C4—C3—H3B107.7H9A—C9—H9B109.5
C2—C3—H3B107.7Pt1—C9—H9C109.5
H3A—C3—H3B107.1H9A—C9—H9C109.5
C3—C4—C5116.0 (10)H9B—C9—H9C109.5
C3—C4—H4A108.3
C5—Pt1—C1—C268.1 (6)C9—Pt1—C5—C692.0 (7)
C6—Pt1—C1—C2103.7 (6)C2—Pt1—C5—C6102.8 (7)
C9—Pt1—C1—C2179.9 (9)C1—Pt1—C5—C670.7 (7)
Br1—Pt1—C1—C293.3 (5)Br1—Pt1—C5—C6179.4 (7)
C5—Pt1—C1—C856.6 (7)C6—Pt1—C5—C4123.3 (13)
C6—Pt1—C1—C821.0 (7)C9—Pt1—C5—C4144.7 (9)
C9—Pt1—C1—C855.4 (13)C2—Pt1—C5—C420.6 (9)
C2—Pt1—C1—C8124.7 (9)C1—Pt1—C5—C452.6 (9)
Br1—Pt1—C1—C8142.0 (7)Br1—Pt1—C5—C456.1 (15)
C8—C1—C2—C30.9 (18)C4—C5—C6—C70.5 (16)
Pt1—C1—C2—C399.6 (10)Pt1—C5—C6—C7104.2 (10)
C8—C1—C2—Pt198.8 (11)C4—C5—C6—Pt1103.7 (9)
C5—Pt1—C2—C1110.0 (6)C9—Pt1—C6—C590.8 (7)
C6—Pt1—C2—C173.7 (6)C2—Pt1—C6—C574.1 (7)
C9—Pt1—C2—C1179.9 (11)C1—Pt1—C6—C5107.3 (8)
Br1—Pt1—C2—C189.1 (5)Br1—Pt1—C6—C5179.4 (8)
C5—Pt1—C2—C39.2 (8)C5—Pt1—C6—C7120.0 (12)
C6—Pt1—C2—C345.6 (8)C9—Pt1—C6—C7149.1 (9)
C9—Pt1—C2—C360.9 (16)C2—Pt1—C6—C745.9 (9)
C1—Pt1—C2—C3119.2 (10)C1—Pt1—C6—C712.7 (9)
Br1—Pt1—C2—C3151.7 (8)Br1—Pt1—C6—C759.4 (15)
C1—C2—C3—C484.4 (16)C5—C6—C7—C879.3 (14)
Pt1—C2—C3—C44.3 (14)Pt1—C6—C7—C81.6 (14)
C2—C3—C4—C522.8 (17)C6—C7—C8—C117.9 (16)
C3—C4—C5—C653.1 (15)C2—C1—C8—C754.7 (15)
C3—C4—C5—Pt130.0 (14)Pt1—C1—C8—C726.4 (12)

Experimental details

Crystal data
Chemical formula[PtBr(CH3)(C8H12)]
Mr398.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.1013 (15), 11.184 (2), 12.691 (3)
V3)1007.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)17.82
Crystal size (mm)0.25 × 0.22 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.537, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7369, 2514, 1988
Rint0.041
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.067, 1.04
No. of reflections2514
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 1.27
Absolute structureFlack (1983), 1023 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Pt1—C52.118 (8)Pt1—C22.261 (10)
Pt1—C62.138 (9)Pt1—C12.262 (11)
 

Acknowledgements

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

References

First citationBruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoel, A. B., Goel, S. & van der Veer, D. (1982). Inorg. Chim. Acta, 65, L205–L206.  CSD CrossRef CAS Web of Science Google Scholar
First citationKlein, A., Klinkhammer, K.-W. & Scheiring, T. (1999). J. Organomet. Chem. 592, 128–135.  Web of Science CSD CrossRef CAS Google Scholar
First citationNieger, M. (2008). Private communication (CCDC No. 677297). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, A.-R., Hwang, I.-C. & Ha, K. (2007a). Acta Cryst. E63, m2484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, A.-R., Hwang, I.-C. & Ha, K. (2007b). Acta Cryst. E63, m1879.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSyed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673–3674.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds