metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[4,4′-bipyridinium [[di­aqua­di­sulfatocadmium(II)]-μ-4,4′-bi­pyridine-κ2N:N′] dihydrate]

aState Key Laboratory Base of Novel Functional Materials & Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 15 November 2009; accepted 30 November 2009; online 12 December 2009)

The title compound, {(C10H10N2)[Cd(SO4)2(C10H8N2)(H2O)2]·2H2O}n, consists of anionic chains of the Cd complex, diprotonated 4,4′-bipyridinium cations and uncoordinated water mol­ecules. In the anionic chain, the Cd atom lies on a center of inversion in an octa­hedral geometry. The midpoint of the coordinated bipyridine also resides on a center of inversion, as does the non-coordinated bipyridinium counterion. O—H⋯O and N—H⋯O hydrogen bonding inter­actions and ππ stacking inter­actions in the structure are responsible for the supra­molecular assembly.

Related literature

For background to the structures, topologies and potential applications of metal-organic frameworks, see: Batten & Robson (1998[ Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]). For the use of 4,4′-bipyridine (bpy) in the construction of supra­molecular architectures, see: Biradha et al. (2006[ Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169-4179.]). For the isostructural complex {(H2bpy)[Mn(SO4)2(bpy)(H2O)2]·2H2O}n, see: Fan & Zhu (2005[ Fan, S.-R. & Zhu, L.-G. (2005). Acta Cryst. E61, m1689-m1691.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10N2)[Cd(SO4)2(C10H8N2)(H2O)2]·2H2O

  • Mr = 690.97

  • Triclinic, [P \overline 1]

  • a = 7.0150 (14) Å

  • b = 9.4166 (19) Å

  • c = 10.020 (2) Å

  • α = 74.69 (3)°

  • β = 88.95 (3)°

  • γ = 77.89 (3)°

  • V = 623.7 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 295 K

  • 0.25 × 0.23 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[ Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.760, Tmax = 0.830

  • 6106 measured reflections

  • 2797 independent reflections

  • 2572 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 1.06

  • 2797 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.76 (4) 2.11 (4) 2.797 (2) 150
O1—H1B⋯O5ii 0.84 (3) 1.93 (3) 2.765 (2) 177
O6—H6A⋯O4 0.83 (3) 2.14 (3) 2.955 (3) 165
O6—H6B⋯O5iii 0.87 (4) 2.04 (4) 2.788 (6) 144
N2—H2A⋯O3iv 0.79 (3) 1.82 (3) 2.602 (6) 170
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+2, -z; (iii) -x+1, -y+2, -z+1; (iv) x, y-1, z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[ Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Over the past few decades, much attention has been devoted to the research of novel materials based on metal-organic frameworks (MOFs), motivated by their intriguing structures, new topologies, and potential applications (Batten & Robson, 1998). Since the onset, 4,4'-bipyridine (bpy) has been widely used to construct supramolecular architectures, for it has two potential binding sites which are arranged in a divergent (exo) fashion and has a rigid structure which will help in the predictability of network geometries (Biradha, et al., 2006). In the present contribution, we report a new cadmium complex, {(H2bpy)[Cd(SO4)2(bpy)(H2O)2].2H2O}n, which is isostructural with the previously reported complex {(H2bpy)[Mn(SO4)2(bpy)(H2O)2].2H2O}n (Fan & Zhu, 2005).

As shown in Fig. 1, the structure consists of {[Cd(SO4)2(bpy)(H2O)2)]2-}n complex anionic chains, 4,4'-bipyridinium dications and hydrate molecules. The unique Cd atom is coordinated in a slightly distorted octahdedral environment by two N atoms from two bridging 4,4'-bipyridine ligands, two O atoms from two sulfate ligands and two O atoms from two water ligands with Cd—O = 2.282 (1) Å, 2.332 (2) Å and Cd—N = 2.356 (2) Å. The Cd ions are bridged by bpy ligands to give linear –Cd-bpy-Cd- chains, in which the neighbouring cadmium ions are seperated by 11.80 Å. Each sulfate anion acts as a monodentate ligand, and through intra- and intermolecular hydrogen bond interactions with coordinating H2O ligands, hydrate molecules and 4,4'-bipyridinium dications to form the three-dimensional network (d(O···O) = 2.765–2.955 Å and d(O···N) = 2.602 Å) (Fig.2 and Table 1). The 4,4'-bipyridinium dications with the neighboring bpy in the one-dimensional chains form π-π stacking interactions with a distance of about 3.42 Å.

Related literature top

For background to the structures, topologies and potential applications of metal-organic frameworks, see: Batten & Robson (1998). For the use of 4,4'-bipyridine (bpy) in the construction of supramolecular architectures, see: Biradha et al. (2006). For the isostructural complex {(H2bpy)[Mn(SO4)2(bpy)(H2O)2].2H2O}n, see: Fan & Zhu (2005).

Experimental top

0.156 g (1 mmol) 4,4'-bipyridine and 0.151 g (1 mmol) DL-mercaptosuccinic acid were dissolved with stirring in aqueous methanol (20 ml, 1:1 v/v). A total of 0.256 g (1 mmol) CdSO4.8/3H2O was added to the above solution to obtain a cloudy solution (pH = 3.74), which was filtered. The resulting colorless filtrate was maintained at room temperature and afforded colorless crystals two week later by slow evaporation (yield 18% based on the initial CdSO4.8/3H2O input).

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and refined freely.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 40% probability level. [Symmetry code: #1 = -x + 1, -y + 2, -z + 1; #2 = -x, -y + 1, -z + 1; #3 = -x + 1, -y + 1, -z + 1]
[Figure 2] Fig. 2. A perspective view of the crystal structure, with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.
catena-Poly[4,4'-bipyridinium [[diaquadisulfatocadmium(II)]-µ-4,4'- bipyridine-κ2N:N'] dihydrate] top
Crystal data top
(C10H10N2)[Cd(SO4)2(C10H8N2)(H2O)2]·2H2OZ = 1
Mr = 690.97F(000) = 350
Triclinic, P1Dx = 1.840 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0150 (14) ÅCell parameters from 5820 reflections
b = 9.4166 (19) Åθ = 3.4–27.5°
c = 10.020 (2) ŵ = 1.12 mm1
α = 74.69 (3)°T = 295 K
β = 88.95 (3)°Block, light-yellow
γ = 77.89 (3)°0.25 × 0.23 × 0.17 mm
V = 623.7 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2797 independent reflections
Radiation source: fine-focus sealed tube2572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 89
Tmin = 0.760, Tmax = 0.830k = 1212
6106 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
2797 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
(C10H10N2)[Cd(SO4)2(C10H8N2)(H2O)2]·2H2Oγ = 77.89 (3)°
Mr = 690.97V = 623.7 (2) Å3
Triclinic, P1Z = 1
a = 7.0150 (14) ÅMo Kα radiation
b = 9.4166 (19) ŵ = 1.12 mm1
c = 10.020 (2) ÅT = 295 K
α = 74.69 (3)°0.25 × 0.23 × 0.17 mm
β = 88.95 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2797 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2572 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.830Rint = 0.028
6106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.61 e Å3
2797 reflectionsΔρmin = 0.35 e Å3
198 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00001.00000.00000.01975 (7)
S10.29197 (7)1.15768 (5)0.17257 (4)0.02264 (11)
O10.1945 (2)0.84005 (18)0.11454 (17)0.0314 (3)
H1A0.136 (6)0.833 (4)0.175 (4)0.088 (14)*
H1B0.290 (4)0.868 (3)0.157 (3)0.043 (8)*
O20.2561 (2)1.08582 (18)0.06347 (15)0.0317 (3)
O30.3055 (3)1.31472 (19)0.10627 (17)0.0436 (4)
O40.1344 (2)1.15595 (19)0.27022 (15)0.0368 (4)
O50.4799 (2)1.0756 (2)0.24417 (17)0.0450 (4)
N10.0296 (2)0.79779 (18)0.20108 (16)0.0239 (3)
C10.0538 (3)0.6552 (2)0.19390 (19)0.0256 (4)
H10.07660.63560.10810.031*
C20.0466 (3)0.5356 (2)0.30742 (19)0.0243 (4)
H20.06720.43810.29750.029*
C30.0080 (3)0.56194 (19)0.43746 (18)0.0196 (3)
C40.0128 (3)0.7102 (2)0.44466 (19)0.0252 (4)
H40.03470.73340.52900.030*
C50.0006 (3)0.8224 (2)0.3263 (2)0.0262 (4)
H50.01400.92040.33380.031*
N20.4126 (3)0.3731 (2)0.85093 (18)0.0298 (4)
H2A0.385 (4)0.344 (3)0.929 (3)0.036 (7)*
C60.4633 (3)0.2724 (2)0.7777 (2)0.0308 (4)
H60.47440.17040.82030.037*
C70.4990 (3)0.3192 (2)0.6395 (2)0.0284 (4)
H70.53440.24890.58860.034*
C80.4823 (3)0.4724 (2)0.57526 (19)0.0237 (4)
C90.4306 (3)0.5733 (2)0.6567 (2)0.0331 (5)
H90.41920.67610.61780.040*
C100.3968 (3)0.5197 (3)0.7943 (2)0.0346 (5)
H100.36240.58670.84860.041*
O60.2828 (3)0.9313 (2)0.5331 (2)0.0477 (4)
H6A0.257 (5)1.003 (4)0.462 (3)0.057 (9)*
H6B0.376 (5)0.956 (4)0.572 (4)0.064 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02501 (11)0.01778 (10)0.01586 (10)0.00645 (7)0.00012 (7)0.00191 (7)
S10.0271 (2)0.0267 (3)0.0168 (2)0.01104 (19)0.00086 (18)0.00635 (18)
O10.0293 (8)0.0344 (8)0.0308 (8)0.0052 (6)0.0055 (7)0.0106 (6)
O20.0315 (7)0.0432 (9)0.0301 (8)0.0156 (6)0.0030 (6)0.0206 (7)
O30.0716 (11)0.0319 (9)0.0338 (8)0.0240 (8)0.0179 (8)0.0110 (7)
O40.0407 (8)0.0481 (10)0.0286 (8)0.0195 (7)0.0121 (7)0.0154 (7)
O50.0375 (8)0.0620 (12)0.0330 (9)0.0084 (8)0.0092 (7)0.0093 (8)
N10.0291 (8)0.0226 (8)0.0183 (7)0.0080 (6)0.0015 (7)0.0005 (6)
C10.0338 (10)0.0258 (10)0.0164 (8)0.0068 (8)0.0011 (8)0.0037 (7)
C20.0332 (10)0.0187 (9)0.0208 (9)0.0060 (7)0.0016 (8)0.0048 (7)
C30.0207 (8)0.0179 (9)0.0177 (8)0.0035 (7)0.0011 (7)0.0010 (7)
C40.0368 (10)0.0207 (9)0.0179 (8)0.0064 (8)0.0009 (8)0.0043 (7)
C50.0383 (10)0.0175 (9)0.0214 (9)0.0072 (8)0.0010 (8)0.0014 (7)
N20.0336 (9)0.0325 (10)0.0217 (9)0.0090 (7)0.0035 (8)0.0031 (7)
C60.0348 (10)0.0243 (10)0.0290 (10)0.0048 (8)0.0015 (9)0.0007 (8)
C70.0317 (10)0.0235 (10)0.0284 (10)0.0033 (8)0.0025 (8)0.0062 (8)
C80.0219 (8)0.0244 (10)0.0233 (10)0.0054 (7)0.0015 (7)0.0033 (7)
C90.0461 (12)0.0251 (11)0.0285 (10)0.0098 (9)0.0034 (9)0.0059 (8)
C100.0466 (12)0.0317 (11)0.0279 (10)0.0106 (9)0.0039 (10)0.0107 (8)
O60.0668 (12)0.0383 (10)0.0360 (10)0.0107 (9)0.0098 (9)0.0058 (8)
Geometric parameters (Å, º) top
Cd1—O22.2821 (14)C3—C3ii1.491 (3)
Cd1—O2i2.2821 (14)C4—C51.379 (3)
Cd1—O12.3324 (17)C4—H40.9300
Cd1—O1i2.3324 (17)C5—H50.9300
Cd1—N12.3562 (18)N2—C101.328 (3)
Cd1—N1i2.3562 (18)N2—C61.334 (3)
S1—O41.4625 (16)N2—H2A0.80 (3)
S1—O51.4713 (17)C6—C71.373 (3)
S1—O31.4747 (17)C6—H60.9300
S1—O21.4793 (14)C7—C81.397 (3)
O1—H1A0.77 (4)C7—H70.9300
O1—H1B0.84 (3)C8—C91.397 (3)
N1—C11.338 (2)C8—C8iii1.494 (4)
N1—C51.341 (2)C9—C101.373 (3)
C1—C21.382 (3)C9—H90.9300
C1—H10.9300C10—H100.9300
C2—C31.401 (3)O6—H6A0.84 (3)
C2—H20.9300O6—H6B0.87 (3)
C3—C41.394 (3)
O2—Cd1—O2i180.0C1—C2—C3119.64 (17)
O2—Cd1—O193.80 (6)C1—C2—H2120.2
O2i—Cd1—O186.20 (6)C3—C2—H2120.2
O2—Cd1—O1i86.20 (6)C4—C3—C2116.60 (16)
O2i—Cd1—O1i93.80 (6)C4—C3—C3ii121.4 (2)
O1—Cd1—O1i180.0C2—C3—C3ii122.0 (2)
O2—Cd1—N194.14 (6)C5—C4—C3119.85 (17)
O2i—Cd1—N185.86 (6)C5—C4—H4120.1
O1—Cd1—N189.48 (6)C3—C4—H4120.1
O1i—Cd1—N190.52 (6)N1—C5—C4123.46 (18)
O2—Cd1—N1i85.86 (6)N1—C5—H5118.3
O2i—Cd1—N1i94.14 (6)C4—C5—H5118.3
O1—Cd1—N1i90.52 (6)C10—N2—C6121.81 (19)
O1i—Cd1—N1i89.48 (6)C10—N2—H2A119.5 (19)
N1—Cd1—N1i180.00 (7)C6—N2—H2A118.6 (19)
O4—S1—O5110.73 (10)N2—C6—C7120.1 (2)
O4—S1—O3109.56 (11)N2—C6—H6119.9
O5—S1—O3108.83 (11)C7—C6—H6119.9
O4—S1—O2110.99 (9)C6—C7—C8120.0 (2)
O5—S1—O2108.04 (10)C6—C7—H7120.0
O3—S1—O2108.62 (9)C8—C7—H7120.0
Cd1—O1—H1A110 (3)C7—C8—C9117.66 (19)
Cd1—O1—H1B118.7 (19)C7—C8—C8iii121.5 (2)
H1A—O1—H1B100 (3)C9—C8—C8iii120.8 (2)
S1—O2—Cd1134.77 (9)C10—C9—C8119.6 (2)
C1—N1—C5117.01 (16)C10—C9—H9120.2
C1—N1—Cd1121.51 (12)C8—C9—H9120.2
C5—N1—Cd1121.00 (13)N2—C10—C9120.7 (2)
N1—C1—C2123.39 (17)N2—C10—H10119.6
N1—C1—H1118.3C9—C10—H10119.6
C2—C1—H1118.3H6A—O6—H6B101 (3)
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.76 (4)2.11 (4)2.797 (2)150
O1—H1B···O5iv0.84 (3)1.93 (3)2.765 (2)177
O6—H6A···O40.83 (3)2.14 (3)2.955 (3)165
O6—H6B···O5v0.87 (4)2.04 (4)2.788 (6)144
N2—H2A···O3vi0.79 (3)1.82 (3)2.602 (6)170
Symmetry codes: (i) x, y+2, z; (iv) x+1, y+2, z; (v) x+1, y+2, z+1; (vi) x, y1, z+1.

Experimental details

Crystal data
Chemical formula(C10H10N2)[Cd(SO4)2(C10H8N2)(H2O)2]·2H2O
Mr690.97
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.0150 (14), 9.4166 (19), 10.020 (2)
α, β, γ (°)74.69 (3), 88.95 (3), 77.89 (3)
V3)623.7 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.25 × 0.23 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.760, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
6106, 2797, 2572
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.06
No. of reflections2797
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.35

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.76 (4)2.11 (4)2.797 (2)150
O1—H1B···O5ii0.84 (3)1.93 (3)2.765 (2)177
O6—H6A···O40.83 (3)2.14 (3)2.955 (3)165
O6—H6B···O5iii0.87 (4)2.04 (4)2.788 (6)144
N2—H2A···O3iv0.79 (3)1.82 (3)2.602 (6)170
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z; (iii) x+1, y+2, z+1; (iv) x, y1, z+1.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University and supported by the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105), the Education Department of Zhejiang Province and the Scientific Research Fund of Ningbo University (grant No. XYL08012).

References

First citation Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  CrossRef Google Scholar
First citation Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179.  Web of Science CrossRef Google Scholar
First citation Fan, S.-R. & Zhu, L.-G. (2005). Acta Cryst. E61, m1689–m1691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citation Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds