metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m103-m104

Tris(ethane-1,2-di­amine-κ2N,N′)nickel(II) diiodide

aDepartment of Chemistry, Catholic University, 620 Michigan Av. NE, Washington, DC 20059, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 2 November 2009; accepted 18 December 2009; online 24 December 2009)

The title compound, [Ni(C2H8N2)3]I2, crystallizes with an [Ni(en)32+] cation (en is ethane-1,2-diamine) and two iodide ions in the asymmetric unit. Two of the en ligands surrrounding the Ni2+ ion have disordered C atoms, while the third exhibits extensive weak N—H⋯I inter­actions with the two iodide ions that extend throughout the crystalline lattice, producing an infinite network along (011).

Related literature

For related structures, see: Cramer et al. (1976[Cramer, R. E., van Doorne, W. & Huneke, J. T. (1976). Inorg. Chem. 15, 529-535.]); Cramer & Huneke (1978[Cramer, R. E. & Huneke, J. T. (1978). Inorg. Chem. 17, 365-374.]); Korp et al. (1980[Korp, J. D., Bernal, I., Palmer, R. A. & Robinson, J. C. (1980). Acta Cryst. B36, 560-564.]); Raston et al. (1978[Raston, C. L., White, A. H. & Willis, A. C. (1978). Aust. J. Chem. 31, 415-418.]); Swink & Atoji (1960[Swink, L. N. & Atoji, M. (1960). Acta Cryst. 13, 639-643.]); Wieczorrek (2000[Wieczorrek, C. (2000). Acta Cryst. C56, 1079-1081.]). For double salts, see: Alvarado et al. (2009[Alvarado, L., Brewer, C. T., Brewer, G., Butcher, R. J., Straka, A. & Viragh, C. (2009). CrystEngComm, 11, 2297-2307.]); Brewer et al. (2007[Brewer, G., Butcher, R. J., Viragh, C. & White, G. (2007). Dalton Trans. pp. 4132-4142.]); Dvorkin et al. (1989[Dvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Sinkevich, A. V. (1989). Dokl. Acad. Nauk Ukr. SSR Ser. B Geol. Khim. Biol. Nauk., 10, 31-34.], 1991[Dvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Simonov, Y. A. (1991). Ukr. Khim. Zh. 57, 5-8.]); Farago et al. (1967[Farago, M. E., James, J. M. & Trew, V. C. G. (1967). J. Chem. Soc. A, 5, 728-729.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H8N2)3]I2

  • Mr = 492.82

  • Orthorhombic, P b c a

  • a = 14.7502 (6) Å

  • b = 13.4881 (4) Å

  • c = 15.9624 (7) Å

  • V = 3175.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.10 mm−1

  • T = 200 K

  • 0.55 × 0.47 × 0.38 mm

Data collection
  • Oxford Diffraction Gemini R Mo diffractometer

  • Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.337, Tmax = 1.000

  • 19070 measured reflections

  • 5271 independent reflections

  • 2835 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 0.96

  • 5271 reflections

  • 161 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni—N31 2.101 (3)
Ni—N22A 2.105 (7)
Ni—N12A 2.113 (7)
Ni—N21A 2.116 (7)
Ni—N32 2.122 (3)
Ni—N11A 2.140 (5)
N31—Ni—N22A 93.25 (16)
N31—Ni—N12A 91.3 (3)
N22A—Ni—N12A 90.2 (2)
N31—Ni—N21A 171.6 (2)
N22A—Ni—N21A 81.1 (2)
N12A—Ni—N21A 94.9 (3)
N31—Ni—N32 81.99 (11)
N22A—Ni—N32 95.9 (2)
N12A—Ni—N32 171.2 (2)
N21A—Ni—N32 92.4 (2)
N31—Ni—N11A 97.93 (14)
N22A—Ni—N11A 166.02 (19)
N12A—Ni—N11A 81.26 (19)
N21A—Ni—N11A 88.6 (2)
N32—Ni—N11A 93.98 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N31—H31A⋯I2 0.92 2.83 3.731 (3) 167
N31—H31B⋯I1 0.92 2.79 3.663 (3) 158
N32—H32A⋯I2i 0.92 3.05 3.786 (3) 138
N32—H32B⋯I1ii 0.92 2.86 3.724 (3) 157
N11A—H11B⋯I2iii 0.92 2.97 3.854 (4) 162
N12A—H12C⋯I2 0.92 3.15 3.940 (8) 145
N11B—H11F⋯I2iii 0.92 3.15 3.619 (12) 114
N12B—H12G⋯I2 0.92 3.07 3.94 (2) 159
N12B—H12H⋯I1iv 0.92 3.27 3.824 (16) 121
N21A—H21A⋯I2i 0.92 2.92 3.826 (8) 171
N21A—H21B⋯I1i 0.92 2.77 3.665 (7) 166
N22A—H22D⋯I1ii 0.92 3.19 3.905 (7) 136
N21B—H21E⋯I2i 0.92 3.05 3.86 (2) 148
N21B—H21F⋯I1i 0.92 3.22 3.832 (16) 125
N22B—H22G⋯I2 0.92 3.21 4.061 (16) 154
N22B—H22H⋯I1ii 0.92 2.80 3.69 (2) 163
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recent work has shown that an iron(II) Schiff base complex of tris(2-aminoethyl)amine(tren) with imidazole-2-carboxaldehyde form double salts with metal (K+, Rb+, Cs+ and NH4+) perchlorates (Brewer et al., 2007) and metal (M = Na+, K+, Rb+, Cs+ and NH4+) tetrafluoroborates (Alvarado et al., 2009). Thus this system shows size selectivity for alkali metal cations. Structural studies of the thiocyanate salts reveal a linear polymeric anion, [(M(SCN)3)2-]n. [Ni(en)3]2+ and [Zn(en)3]2+ react with MX (M = K+ or NH4+, X=SCN- or SeCN-–) to form double salts, [Ni(en)3](SCN)2.NH4(SCN) (Dvorkin et al., 1991) and [Ni(en)3](SeCN)2.K(SeCN) (Farago et al., 1967) or [Zn(en)3](SCN)2.K(SCN) (Dvorkin et al., 1989). Many of these structures also reveal a linear polymeric anion, [(MX3)2-]n (X=ClO4- or BF4–), similar to that observed above suggesting that anions of this type are stable in certain settings and may be used in other reactions. The anions in all of the above complexes are tethered to the cations through hydogen bonds involving either amine, –NH2 or the bidentate hydrogen bonding donor, -N=Cimine(H)—Cimidazole—Nimidazole(H). In an effort to determine the nature of the interactions between the amine, –NH2 (in the cation building unit used in the formation of double salts) and the anion in stabilizing these salts we report the crystal structure of the title compound, C6H24N6NiI2, (I).

C6H24N6NiI2, (I), crystallizes with a [Ni(en)32+] cation and two I_ ions in the asymmetric unit (Fig. 1). In the cation, two of the 1,2-ethanediamine-N,N' rings surrrounding the Ni2+ ion contain disordered carbon and nitrogen atoms while the third exhibits extensive weak N—H···I interactions with the two iodide ions (Table 1) that extend throughout the crystalline lattice producing an infinite network along the (011) plane of the unit cell (Fig. 2). The major components of the two disordered 5-membered Ni2+-1,2-ethanediamine-N,N' rings adopt sightly distorted half-chair conformations (Cremer & Pople, 1975) with puckering parameters Q(2), and Phi(2) of 0.403 (2) Å, 86.767 (6)° (ring 11 = Ni/N11/C11A/C12A/N12; 0.744) and 0.423 (5) Å, 82.357 (0)° (ring 21 = Ni/N21/C21A/C22A/N22; 0.684), respectively. The Q(2), and Phi(2) values for ring 31 (Ni/N31/C31/C32/N32) are 0.438 (4)Å and 270.967 (6)°. For an ideal half-chair, Phi(2) = k x 36° + 18° or 180° + Phi(2). The dihedral angle between the mean planes of the normal ring (31) and the major components of the disordered rings (11 & 21) measures 85.6 (8)° and 83.5 (0)°, while between rings 11 and 21 themselves is 87.2 (7)°. Bond distances within the cation are normal (Allen et al., 2002) and comparable to those in similar structures (Dvorkin et al., 1989, 1991; Farago et al., 1967; Cramer et al. 1976; Cramer & Huneke, 1978).

The presence of I1 and I2 in the crystal lattice allows for the formation of a collection of weak intermolecular N–H···I interactions which thereby influences crystal stability (Table 1).

Related literature top

For related structures, see: Cramer et al. (1976); Cramer & Huneke (1978); Korp et al. (1980); Raston et al. (1978); Swink & Atoji (1960); Wieczorrek (2000). For double salts, see: Alvarado et al. (2009); Brewer et al. (2007); Dvorkin et al. (1989, 1991); Farago et al. (1967). For a description of the Cambridge Structural Database, see: Allen (2002). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Nickel(II) chloride hexahydrate was dissolved in water and excess ethylenediamine was added to the green solution. The resulting violet/purple solution was allowed to go to dryness. The crude [Ni(en)3]Cl2 was redissolved in water saturated with potassium iodide. The dark blockish crystals suitable for x-ray studies, in space group Pbca, were collected by filtration on standing.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.93 Å, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.18–1.51Ueq(C,N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, C6H24N6NiI2, showing the [Ni(en)32+] cation and two I_ ions in the asymmetric unit, the atom labeling scheme and 50% probability displacement ellipsoids. Only the major components of disordered carbon atoms (C11A, C12A & C21A, C22A) in rings 11 (Ni—N11—C11A—C12A—N12: 0.744 (12)) and 21 (Ni—N21—C21A—C22A—N22; 0.684 (9)) are depicted. Dashed lines indicate weak N—H···I hydrogen bond interactions.
[Figure 2] Fig. 2. Packing diagram of the title compound, (I), viewed down the a axis. Dashed lines indicate weak intermolecular N—H···I interactions which produces a infinite weak bonding network arranged along the (011) plane of the unit cell.
Tris(ethane-1,2-diamine-κ2N,N')nickel(II) diiodide top
Crystal data top
[Ni(C2H8N2)3]I2F(000) = 1888
Mr = 492.82Dx = 2.061 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8584 reflections
a = 14.7502 (6) Åθ = 4.6–32.4°
b = 13.4881 (4) ŵ = 5.10 mm1
c = 15.9624 (7) ÅT = 200 K
V = 3175.8 (2) Å3Prism, pale purple
Z = 80.55 × 0.47 × 0.38 mm
Data collection top
Oxford Diffraction Gemini R Mo
diffractometer
5271 independent reflections
Radiation source: Enhance (Mo) X-ray Source2835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.6°
ω scansh = 2119
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2009)
k = 1019
Tmin = 0.337, Tmax = 1.000l = 2416
19070 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.043P)2]
where P = (Fo2 + 2Fc2)/3
5271 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 1.65 e Å3
36 restraintsΔρmin = 1.09 e Å3
Crystal data top
[Ni(C2H8N2)3]I2V = 3175.8 (2) Å3
Mr = 492.82Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.7502 (6) ŵ = 5.10 mm1
b = 13.4881 (4) ÅT = 200 K
c = 15.9624 (7) Å0.55 × 0.47 × 0.38 mm
Data collection top
Oxford Diffraction Gemini R Mo
diffractometer
5271 independent reflections
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2009)
2835 reflections with I > 2σ(I)
Tmin = 0.337, Tmax = 1.000Rint = 0.042
19070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03436 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 0.96Δρmax = 1.65 e Å3
5271 reflectionsΔρmin = 1.09 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.611433 (17)0.132498 (19)0.122134 (16)0.03800 (7)
I20.362274 (19)0.435966 (17)0.131522 (15)0.03860 (7)
Ni0.42318 (3)0.25520 (3)0.37608 (3)0.02275 (10)
N310.4175 (2)0.20616 (19)0.25125 (19)0.0332 (7)
H31A0.39590.25610.21740.040*
H31B0.47460.18910.23310.040*
N320.3624 (2)0.11503 (19)0.39826 (18)0.0293 (7)
H32A0.39020.08420.44280.035*
H32B0.30190.12280.41060.035*
C310.3571 (3)0.1199 (3)0.2463 (2)0.0391 (9)
H31C0.36960.08210.19440.047*
H31D0.29310.14190.24500.047*
C320.3731 (3)0.0550 (2)0.3218 (2)0.0358 (9)
H32C0.32910.00050.32220.043*
H32D0.43500.02670.31960.043*
N11A0.5571 (3)0.2044 (3)0.4045 (3)0.0245 (10)0.707 (4)
H11A0.56820.21020.46110.029*0.707 (4)
H11B0.56340.13890.38960.029*0.707 (4)
C11A0.6215 (5)0.2661 (5)0.3569 (5)0.0366 (12)0.707 (4)
H11C0.62150.24660.29720.044*0.707 (4)
H11D0.68360.25790.37930.044*0.707 (4)
C12A0.5913 (4)0.3713 (4)0.3662 (4)0.0398 (13)0.707 (4)
H12A0.59800.39210.42540.048*0.707 (4)
H12B0.63020.41470.33140.048*0.707 (4)
N12A0.4962 (4)0.3832 (5)0.3404 (6)0.0336 (8)0.707 (4)
H12C0.49300.39160.28320.040*0.707 (4)
H12D0.47160.43830.36560.040*0.707 (4)
N11B0.5522 (9)0.1873 (8)0.3751 (7)0.0245 (10)0.293 (4)
H11E0.55960.14900.42230.029*0.293 (4)
H11F0.55800.14710.32890.029*0.293 (4)
C11B0.6210 (11)0.2659 (11)0.3730 (12)0.0366 (12)0.293 (4)
H11G0.68000.23760.35550.044*0.293 (4)
H11H0.62830.29450.42970.044*0.293 (4)
C12B0.5934 (8)0.3463 (9)0.3126 (9)0.0398 (13)0.293 (4)
H12E0.63780.40130.31440.048*0.293 (4)
H12F0.59190.31970.25480.048*0.293 (4)
N12B0.5030 (10)0.3828 (13)0.3364 (15)0.0336 (8)0.293 (4)
H12G0.47570.41350.29150.040*0.293 (4)
H12H0.50770.42790.37940.040*0.293 (4)
N21A0.4089 (4)0.2980 (6)0.5029 (5)0.0373 (9)0.707 (4)
H21A0.39060.24460.53470.045*0.707 (4)
H21B0.46350.32020.52350.045*0.707 (4)
C21A0.3404 (4)0.3778 (4)0.5075 (4)0.0418 (13)0.707 (4)
H21C0.31790.38410.56570.050*0.707 (4)
H21D0.36830.44170.49120.050*0.707 (4)
C22A0.2648 (4)0.3553 (4)0.4514 (3)0.0352 (13)0.707 (4)
H22A0.22260.41230.44930.042*0.707 (4)
H22B0.23110.29690.47250.042*0.707 (4)
N22A0.3007 (5)0.3345 (5)0.3666 (3)0.0279 (10)0.707 (4)
H22C0.31050.39310.33850.033*0.707 (4)
H22D0.25910.29790.33670.033*0.707 (4)
N21B0.3959 (10)0.3014 (15)0.5003 (12)0.0373 (9)0.293 (4)
H21E0.41260.25280.53760.045*0.293 (4)
H21F0.42810.35810.51250.045*0.293 (4)
C21B0.2973 (9)0.3207 (9)0.5064 (8)0.0418 (13)0.293 (4)
H21G0.26350.25730.50660.050*0.293 (4)
H21H0.28350.35660.55900.050*0.293 (4)
C22B0.2706 (12)0.3802 (11)0.4348 (8)0.0352 (13)0.293 (4)
H22E0.30500.44310.43430.042*0.293 (4)
H22F0.20520.39610.43820.042*0.293 (4)
N22B0.2895 (13)0.3231 (14)0.3576 (9)0.0279 (10)0.293 (4)
H22G0.29010.36440.31170.033*0.293 (4)
H22H0.24610.27520.34950.033*0.293 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02763 (13)0.04501 (14)0.04135 (15)0.00301 (10)0.00464 (11)0.00509 (12)
I20.05250 (17)0.02837 (11)0.03493 (14)0.00384 (10)0.00855 (12)0.00025 (11)
Ni0.0228 (2)0.01934 (17)0.0261 (2)0.00048 (15)0.00030 (19)0.00281 (17)
N310.0388 (18)0.0298 (14)0.0311 (16)0.0024 (13)0.0089 (14)0.0018 (14)
N320.0307 (16)0.0246 (13)0.0327 (16)0.0070 (12)0.0054 (13)0.0054 (13)
C310.047 (2)0.045 (2)0.0248 (18)0.0084 (18)0.0037 (18)0.0089 (18)
C320.051 (2)0.0238 (16)0.033 (2)0.0079 (16)0.0012 (18)0.0016 (16)
N11A0.0270 (18)0.0242 (19)0.022 (3)0.0039 (15)0.007 (2)0.0052 (18)
C11A0.035 (2)0.0383 (17)0.036 (3)0.0028 (14)0.0021 (18)0.0046 (18)
C12A0.031 (3)0.051 (3)0.037 (3)0.020 (2)0.010 (3)0.001 (3)
N12A0.0333 (19)0.0277 (15)0.0398 (19)0.0044 (13)0.0086 (16)0.0071 (15)
N11B0.0270 (18)0.0242 (19)0.022 (3)0.0039 (15)0.007 (2)0.0052 (18)
C11B0.035 (2)0.0383 (17)0.036 (3)0.0028 (14)0.0021 (18)0.0046 (18)
C12B0.031 (3)0.051 (3)0.037 (3)0.020 (2)0.010 (3)0.001 (3)
N12B0.0333 (19)0.0277 (15)0.0398 (19)0.0044 (13)0.0086 (16)0.0071 (15)
N21A0.052 (2)0.0343 (17)0.0254 (17)0.0082 (18)0.0119 (18)0.0056 (15)
C21A0.055 (4)0.033 (3)0.037 (3)0.003 (2)0.001 (3)0.002 (3)
C22A0.039 (2)0.036 (3)0.031 (2)0.0025 (19)0.0101 (19)0.003 (2)
N22A0.027 (2)0.0278 (19)0.0286 (19)0.0027 (16)0.0043 (16)0.0020 (16)
N21B0.052 (2)0.0343 (17)0.0254 (17)0.0082 (18)0.0119 (18)0.0056 (15)
C21B0.055 (4)0.033 (3)0.037 (3)0.003 (2)0.001 (3)0.002 (3)
C22B0.039 (2)0.036 (3)0.031 (2)0.0025 (19)0.0101 (19)0.003 (2)
N22B0.027 (2)0.0278 (19)0.0286 (19)0.0027 (16)0.0043 (16)0.0020 (16)
Geometric parameters (Å, º) top
Ni—N312.101 (3)N11B—H11E0.9200
Ni—N22A2.105 (7)N11B—H11F0.9200
Ni—N11B2.113 (13)C11B—C12B1.507 (14)
Ni—N12A2.113 (7)C11B—H11G0.9900
Ni—N21A2.116 (7)C11B—H11H0.9900
Ni—N21B2.117 (19)C12B—N12B1.472 (14)
Ni—N322.122 (3)C12B—H12E0.9900
Ni—N11A2.140 (5)C12B—H12F0.9900
Ni—N12B2.180 (18)N12B—H12G0.9200
Ni—N22B2.194 (18)N12B—H12H0.9200
N31—C311.467 (4)N21A—C21A1.478 (8)
N31—H31A0.9200N21A—H21A0.9200
N31—H31B0.9200N21A—H21B0.9200
N32—C321.473 (4)C21A—C22A1.462 (8)
N32—H32A0.9200C21A—H21C0.9900
N32—H32B0.9200C21A—H21D0.9900
C31—C321.508 (5)C22A—N22A1.482 (6)
C31—H31C0.9900C22A—H22A0.9900
C31—H31D0.9900C22A—H22B0.9900
C32—H32C0.9900N22A—H22C0.9200
C32—H32D0.9900N22A—H22D0.9200
N11A—C11A1.473 (7)N21B—C21B1.481 (14)
N11A—H11A0.9200N21B—H21E0.9200
N11A—H11B0.9200N21B—H21F0.9200
C11A—C12A1.495 (8)C21B—C22B1.450 (14)
C11A—H11C0.9900C21B—H21G0.9900
C11A—H11D0.9900C21B—H21H0.9900
C12A—N12A1.470 (8)C22B—N22B1.480 (14)
C12A—H12A0.9900C22B—H22E0.9900
C12A—H12B0.9900C22B—H22F0.9900
N12A—H12C0.9200N22B—H22G0.9200
N12A—H12D0.9200N22B—H22H0.9200
N11B—C11B1.467 (14)
N31—Ni—N22A93.25 (16)C11A—C12A—H12A109.4
N31—Ni—N11B83.9 (3)N12A—C12A—H12B109.4
N22A—Ni—N11B173.3 (4)C11A—C12A—H12B109.4
N31—Ni—N12A91.3 (3)H12A—C12A—H12B108.0
N22A—Ni—N12A90.2 (2)C12A—N12A—Ni108.7 (4)
N11B—Ni—N12A83.8 (3)C12A—N12A—H12C109.9
N31—Ni—N21A171.6 (2)Ni—N12A—H12C109.9
N22A—Ni—N21A81.1 (2)C12A—N12A—H12D109.9
N11B—Ni—N21A102.4 (4)Ni—N12A—H12D109.9
N12A—Ni—N21A94.9 (3)H12C—N12A—H12D108.3
N31—Ni—N21B166.7 (4)C11B—N11B—Ni108.0 (9)
N22A—Ni—N21B75.8 (4)C11B—N11B—H11E110.1
N11B—Ni—N21B107.8 (5)Ni—N11B—H11E110.1
N12A—Ni—N21B96.2 (6)C11B—N11B—H11F110.1
N21A—Ni—N21B5.4 (5)Ni—N11B—H11F110.1
N31—Ni—N3281.99 (11)H11E—N11B—H11F108.4
N22A—Ni—N3295.9 (2)N11B—C11B—C12B110.4 (12)
N11B—Ni—N3289.7 (3)N11B—C11B—H11G109.6
N12A—Ni—N32171.2 (2)C12B—C11B—H11G109.6
N21A—Ni—N3292.4 (2)N11B—C11B—H11H109.6
N21B—Ni—N3291.5 (6)C12B—C11B—H11H109.6
N31—Ni—N11A97.93 (14)H11G—C11B—H11H108.1
N22A—Ni—N11A166.02 (19)N12B—C12B—C11B108.7 (12)
N11B—Ni—N11A14.3 (3)N12B—C12B—H12E110.0
N12A—Ni—N11A81.26 (19)C11B—C12B—H12E110.0
N21A—Ni—N11A88.6 (2)N12B—C12B—H12F110.0
N21B—Ni—N11A94.0 (4)C11B—C12B—H12F110.0
N32—Ni—N11A93.98 (14)H12E—C12B—H12F108.3
N31—Ni—N12B89.7 (6)C12B—N12B—Ni107.5 (10)
N22A—Ni—N12B92.4 (4)C12B—N12B—H12G110.2
N11B—Ni—N12B81.6 (4)Ni—N12B—H12G110.2
N12A—Ni—N12B2.6 (6)C12B—N12B—H12H110.2
N21A—Ni—N12B96.7 (7)Ni—N12B—H12H110.2
N21B—Ni—N12B98.2 (8)H12G—N12B—H12H108.5
N32—Ni—N12B168.6 (5)C21A—N21A—Ni108.3 (4)
N11A—Ni—N12B79.4 (4)C21A—N21A—H21A110.0
N31—Ni—N22B88.1 (4)Ni—N21A—H21A110.0
N22A—Ni—N22B6.7 (5)C21A—N21A—H21B110.0
N11B—Ni—N22B171.8 (5)Ni—N21A—H21B110.0
N12A—Ni—N22B94.6 (5)H21A—N21A—H21B108.4
N21A—Ni—N22B85.7 (4)C22A—C21A—N21A109.8 (5)
N21B—Ni—N22B80.4 (5)C22A—C21A—H21C109.7
N32—Ni—N22B90.9 (5)N21A—C21A—H21C109.7
N11A—Ni—N22B172.7 (4)C22A—C21A—H21D109.7
N12B—Ni—N22B96.7 (6)N21A—C21A—H21D109.7
C31—N31—Ni109.0 (2)H21C—C21A—H21D108.2
C31—N31—H31A109.9C21A—C22A—N22A109.1 (5)
Ni—N31—H31A109.9C21A—C22A—H22A109.9
C31—N31—H31B109.9N22A—C22A—H22A109.9
Ni—N31—H31B109.9C21A—C22A—H22B109.9
H31A—N31—H31B108.3N22A—C22A—H22B109.9
C32—N32—Ni107.9 (2)H22A—C22A—H22B108.3
C32—N32—H32A110.1C22A—N22A—Ni109.7 (4)
Ni—N32—H32A110.1C22A—N22A—H22C109.7
C32—N32—H32B110.1Ni—N22A—H22C109.7
Ni—N32—H32B110.1C22A—N22A—H22D109.7
H32A—N32—H32B108.4Ni—N22A—H22D109.7
N31—C31—C32108.8 (3)H22C—N22A—H22D108.2
N31—C31—H31C109.9C21B—N21B—Ni107.4 (10)
C32—C31—H31C109.9C21B—N21B—H21E110.2
N31—C31—H31D109.9Ni—N21B—H21E110.2
C32—C31—H31D109.9C21B—N21B—H21F110.2
H31C—C31—H31D108.3Ni—N21B—H21F110.2
N32—C32—C31109.0 (3)H21E—N21B—H21F108.5
N32—C32—H32C109.9C22B—C21B—N21B108.2 (12)
C31—C32—H32C109.9C22B—C21B—H21G110.1
N32—C32—H32D109.9N21B—C21B—H21G110.1
C31—C32—H32D109.9C22B—C21B—H21H110.1
H32C—C32—H32D108.3N21B—C21B—H21H110.1
C11A—N11A—Ni107.8 (3)H21G—C21B—H21H108.4
C11A—N11A—H11A110.2C21B—C22B—N22B108.5 (12)
Ni—N11A—H11A110.2C21B—C22B—H22E110.0
C11A—N11A—H11B110.2N22B—C22B—H22E110.0
Ni—N11A—H11B110.2C21B—C22B—H22F110.0
H11A—N11A—H11B108.5N22B—C22B—H22F110.0
N11A—C11A—C12A107.0 (5)H22E—C22B—H22F108.4
N11A—C11A—H11C110.3C22B—N22B—Ni105.9 (10)
C12A—C11A—H11C110.3C22B—N22B—H22G110.5
N11A—C11A—H11D110.3Ni—N22B—H22G110.5
C12A—C11A—H11D110.3C22B—N22B—H22H110.5
H11C—C11A—H11D108.6Ni—N22B—H22H110.5
N12A—C12A—C11A111.1 (5)H22G—N22B—H22H108.7
N12A—C12A—H12A109.4
N22A—Ni—N31—C3181.5 (3)C11B—C12B—N12B—Ni38.7 (17)
N11B—Ni—N31—C31104.6 (4)N31—Ni—N12B—C12B70.9 (13)
N12A—Ni—N31—C31171.7 (3)N22A—Ni—N12B—C12B164.2 (13)
N21A—Ni—N31—C3134.1 (14)N11B—Ni—N12B—C12B12.9 (13)
N21B—Ni—N31—C3147 (2)N12A—Ni—N12B—C12B162 (18)
N32—Ni—N31—C3114.0 (2)N21A—Ni—N12B—C12B114.5 (13)
N11A—Ni—N31—C31106.9 (3)N21B—Ni—N12B—C12B119.8 (13)
N12B—Ni—N31—C31173.8 (4)N32—Ni—N12B—C12B28 (4)
N22B—Ni—N31—C3177.1 (6)N11A—Ni—N12B—C12B27.2 (12)
N31—Ni—N32—C3214.7 (2)N22B—Ni—N12B—C12B159.0 (13)
N22A—Ni—N32—C32107.2 (3)N31—Ni—N21A—C21A63.5 (16)
N11B—Ni—N32—C3269.1 (4)N22A—Ni—N21A—C21A15.4 (5)
N12A—Ni—N32—C3225.7 (15)N11B—Ni—N21A—C21A158.8 (5)
N21A—Ni—N32—C32171.5 (3)N12A—Ni—N21A—C21A74.0 (5)
N21B—Ni—N32—C32176.9 (4)N21B—Ni—N21A—C21A30 (8)
N11A—Ni—N32—C3282.7 (3)N32—Ni—N21A—C21A111.0 (5)
N12B—Ni—N32—C3229 (3)N11A—Ni—N21A—C21A155.1 (5)
N22B—Ni—N32—C32102.7 (4)N12B—Ni—N21A—C21A75.9 (6)
Ni—N31—C31—C3239.9 (3)N22B—Ni—N21A—C21A20.3 (7)
Ni—N32—C32—C3140.5 (3)Ni—N21A—C21A—C22A41.1 (6)
N31—C31—C32—N3254.4 (4)N21A—C21A—C22A—N22A52.7 (7)
N31—Ni—N11A—C11A69.7 (4)C21A—C22A—N22A—Ni37.8 (6)
N22A—Ni—N11A—C11A73.1 (10)N31—Ni—N22A—C22A161.9 (4)
N11B—Ni—N11A—C11A79.1 (15)N11B—Ni—N22A—C22A134 (3)
N12A—Ni—N11A—C11A20.4 (4)N12A—Ni—N22A—C22A106.9 (5)
N21A—Ni—N11A—C11A115.6 (4)N21A—Ni—N22A—C22A11.9 (5)
N21B—Ni—N11A—C11A116.1 (7)N21B—Ni—N22A—C22A10.5 (7)
N32—Ni—N11A—C11A152.1 (4)N32—Ni—N22A—C22A79.6 (4)
N12B—Ni—N11A—C11A18.5 (7)N11A—Ni—N22A—C22A55.0 (11)
N22B—Ni—N11A—C11A76 (4)N12B—Ni—N22A—C22A108.3 (8)
Ni—N11A—C11A—C12A44.7 (6)N22B—Ni—N22A—C22A121 (5)
N11A—C11A—C12A—N12A54.8 (7)N31—Ni—N21B—C21B13 (3)
C11A—C12A—N12A—Ni36.2 (7)N22A—Ni—N21B—C21B22.5 (10)
N31—Ni—N12A—C12A106.1 (5)N11B—Ni—N21B—C21B163.3 (10)
N22A—Ni—N12A—C12A160.6 (5)N12A—Ni—N21B—C21B111.1 (11)
N11B—Ni—N12A—C12A22.4 (6)N21A—Ni—N21B—C21B172 (9)
N21A—Ni—N12A—C12A79.5 (5)N32—Ni—N21B—C21B73.1 (12)
N21B—Ni—N12A—C12A84.8 (6)N11A—Ni—N21B—C21B167.2 (11)
N32—Ni—N12A—C12A66.1 (18)N12B—Ni—N21B—C21B112.9 (12)
N11A—Ni—N12A—C12A8.3 (5)N22B—Ni—N21B—C21B17.5 (12)
N12B—Ni—N12A—C12A53 (17)Ni—N21B—C21B—C22B47.1 (15)
N22B—Ni—N12A—C12A165.6 (6)N21B—C21B—C22B—N22B61.4 (18)
N31—Ni—N11B—C11B106.4 (10)C21B—C22B—N22B—Ni42.9 (16)
N22A—Ni—N11B—C11B41 (3)N31—Ni—N22B—C22B173.6 (11)
N12A—Ni—N11B—C11B14.4 (10)N22A—Ni—N22B—C22B34 (4)
N21A—Ni—N11B—C11B79.3 (11)N11B—Ni—N22B—C22B161 (3)
N21B—Ni—N11B—C11B80.2 (12)N12A—Ni—N22B—C22B82.5 (12)
N32—Ni—N11B—C11B171.7 (10)N21A—Ni—N22B—C22B12.2 (11)
N11A—Ni—N11B—C11B64.3 (15)N21B—Ni—N22B—C22B13.1 (12)
N12B—Ni—N11B—C11B15.8 (12)N32—Ni—N22B—C22B104.5 (11)
N22B—Ni—N11B—C11B94 (4)N11A—Ni—N22B—C22B27 (5)
Ni—N11B—C11B—C12B42.4 (16)N12B—Ni—N22B—C22B84.1 (13)
N11B—C11B—C12B—N12B55.6 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31A···I20.922.833.731 (3)167
N31—H31B···I10.922.793.663 (3)158
N32—H32A···I2i0.923.053.786 (3)138
N32—H32B···I1ii0.922.863.724 (3)157
N11A—H11B···I2iii0.922.973.854 (4)162
N12A—H12C···I20.923.153.940 (8)145
N11B—H11F···I2iii0.923.153.619 (12)114
N12B—H12G···I20.923.073.94 (2)159
N12B—H12H···I1iv0.923.273.824 (16)121
N21A—H21A···I2i0.922.923.826 (8)171
N21A—H21B···I1i0.922.773.665 (7)166
N22A—H22D···I1ii0.923.193.905 (7)136
N21B—H21E···I2i0.923.053.86 (2)148
N21B—H21F···I1i0.923.223.832 (16)125
N22B—H22G···I20.923.214.061 (16)154
N22B—H22H···I1ii0.922.803.69 (2)163
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H8N2)3]I2
Mr492.82
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)14.7502 (6), 13.4881 (4), 15.9624 (7)
V3)3175.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)5.10
Crystal size (mm)0.55 × 0.47 × 0.38
Data collection
DiffractometerOxford Diffraction Gemini R Mo
diffractometer
Absorption correctionMulti-scan
CrysAlis RED (Oxford Diffraction, 2009)
Tmin, Tmax0.337, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19070, 5271, 2835
Rint0.042
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 0.96
No. of reflections5271
No. of parameters161
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 1.09

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni—N312.101 (3)Ni—N21A2.116 (7)
Ni—N22A2.105 (7)Ni—N322.122 (3)
Ni—N12A2.113 (7)Ni—N11A2.140 (5)
N31—Ni—N22A93.25 (16)N12A—Ni—N32171.2 (2)
N31—Ni—N12A91.3 (3)N21A—Ni—N3292.4 (2)
N22A—Ni—N12A90.2 (2)N31—Ni—N11A97.93 (14)
N31—Ni—N21A171.6 (2)N22A—Ni—N11A166.02 (19)
N22A—Ni—N21A81.1 (2)N12A—Ni—N11A81.26 (19)
N12A—Ni—N21A94.9 (3)N21A—Ni—N11A88.6 (2)
N31—Ni—N3281.99 (11)N32—Ni—N11A93.98 (14)
N22A—Ni—N3295.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31A···I20.922.833.731 (3)166.6
N31—H31B···I10.922.793.663 (3)158.4
N32—H32A···I2i0.923.053.786 (3)138.0
N32—H32B···I1ii0.922.863.724 (3)156.7
N11A—H11B···I2iii0.922.973.854 (4)162.2
N12A—H12C···I20.923.153.940 (8)144.7
N11B—H11F···I2iii0.923.153.619 (12)114.0
N12B—H12G···I20.923.073.94 (2)158.6
N12B—H12H···I1iv0.923.273.824 (16)120.8
N21A—H21A···I2i0.922.923.826 (8)170.8
N21A—H21B···I1i0.922.773.665 (7)165.7
N22A—H22D···I1ii0.923.193.905 (7)136.3
N21B—H21E···I2i0.923.053.86 (2)148.2
N21B—H21F···I1i0.923.223.832 (16)125.4
N22B—H22G···I20.923.214.061 (16)153.8
N22B—H22H···I1ii0.922.803.69 (2)162.6
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlvarado, L., Brewer, C. T., Brewer, G., Butcher, R. J., Straka, A. & Viragh, C. (2009). CrystEngComm, 11, 2297–2307.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrewer, G., Butcher, R. J., Viragh, C. & White, G. (2007). Dalton Trans. pp. 4132–4142.  Web of Science CSD CrossRef Google Scholar
First citationCramer, R. E. & Huneke, J. T. (1978). Inorg. Chem. 17, 365–374.  CSD CrossRef CAS Web of Science Google Scholar
First citationCramer, R. E., van Doorne, W. & Huneke, J. T. (1976). Inorg. Chem. 15, 529–535.  CSD CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Simonov, Y. A. (1991). Ukr. Khim. Zh. 57, 5–8.  CAS Google Scholar
First citationDvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Sinkevich, A. V. (1989). Dokl. Acad. Nauk Ukr. SSR Ser. B Geol. Khim. Biol. Nauk., 10, 31–34.  Google Scholar
First citationFarago, M. E., James, J. M. & Trew, V. C. G. (1967). J. Chem. Soc. A, 5, 728–729.  CrossRef Web of Science Google Scholar
First citationKorp, J. D., Bernal, I., Palmer, R. A. & Robinson, J. C. (1980). Acta Cryst. B36, 560–564.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRaston, C. L., White, A. H. & Willis, A. C. (1978). Aust. J. Chem. 31, 415–418.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwink, L. N. & Atoji, M. (1960). Acta Cryst. 13, 639–643.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWieczorrek, C. (2000). Acta Cryst. C56, 1079–1081.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m103-m104
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds