organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o10-o11

Di­ethyl 5-amino-2,4,6-tri­iodo­isophthalate

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: wujunnju@hotmail.com

(Received 26 October 2009; accepted 27 November 2009; online 4 December 2009)

The title compound, C12H12I3NO4, crystallizes with two mol­ecules in an asymmetric unit. In one of the mol­ecules, the conformation of the O—C—O—C in one ester group is cis and trans in the other. The corresponding conformations for both the ester groups in the other mol­ecule are trans. The I atoms and the benzene rings in the two mol­ecules are approximately coplanar, the I atoms deviating by 0.219 (14), 0.056 (15) and −0.143 (14) Å from the mean plane of the benzene ring in one mol­ecule and 0.189 (14), −0.162 (15) and −0.068 (14) Å in the other. The planes of the ester groups are almost orthogonal to those of the benzene rings in both mol­ecules, forming dihedral angles of 88.1 (4), 72.2 (4), 73.0 (4) and 86.6 (4)°. The mean planes of the benzene rings in the two mol­ecules are inclined at 74.6 (4)° with respect to each other. In the crystal, inter­molecular I⋯O inter­actions [3.138 (7) and 3.144 (7) Å] link the mol­ecules into infinite chains along the a axis. In addition, non-classical C—H⋯O hydrogen bonds are observed.

Related literature

For iodine-based compounds as contrast agents for X-ray imaging, see: Stacul, (2001[Stacul, F. (2001). Eur. Radiol. 11, 690-697.]); Yu & Watson (1999[Yu, S. B. & Watson, A. D. (1999). Chem. Rev. 99, 2353-2378.]); Tonnessen et al. (1996[Tonnessen, L. E., Pedersen, B. F. & Klaveness, J. (1996). Acta Chem. Scand. 50, 603-608.]). For a related structure, see: Beck & Sheldrick (2008[Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12I3NO4

  • Mr = 614.93

  • Monoclinic, P 21 /n

  • a = 9.7410 (8) Å

  • b = 9.6870 (7) Å

  • c = 37.7290 (15) Å

  • β = 94.430 (3)°

  • V = 3549.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.29 mm−1

  • T = 296 K

  • 0.26 × 0.18 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CAD-4 Software; Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.362, Tmax = 0.528

  • 6676 measured reflections

  • 6281 independent reflections

  • 4259 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.162

  • S = 1.06

  • 6222 reflections

  • 365 parameters

  • 84 restraints

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A2⋯O2Ai 0.97 2.54 3.411 (8) 150
C12A—H12A⋯O2Bii 0.96 2.60 3.545 (11) 169
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Iodine-based compounds have been in the focus as contrast agents for X-ray imaging (Stacul, 2001). The 1,3,5-triiodobenzene core has been the basis of many contrast agents (Yu & Watson, 1999). The ionic monomer, diatrizoate was one of the first X-ray contrast agents in clinical use based on triiodinated benzene (Tonnessen et al., 1996). In this paper, we present the crystal structure of the title compound, (I).

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules (A, B) in an asymmetric unit. The three I atoms deviate from the mean-planes of the the phenyl rings, respectively, by 0.219 (14), 0.056 (15) and -0.143 (14) Å for molecule A and 0.189 (14), -0.162 (15) and -0.068 (14) Å for molecule B. Bond lengths and angles are comparable to those observed in a related structure (Beck & Sheldrick, 2008). In molecule A, the conformation of the O–C–O–C is cis with respect to the O1A—C3A bond (torsion angle, -90.6 (8)°) and trans with respect to the O3A—C11A bond (torsion angle, 158.0 (8)°). On the other hand, the corresponding bonds exhibit trans conformations for both the ester groups with torsion angles about O1B—C3B and O3B—C11B bonds being 157.5 (8) and 177.5 (6) °, respectively. The planes of the ester groups in both molecule are almost orthogonal to the benzene rings, as indicated by the dihedral angles of 88.1 (4)° (O1A/O2A/C3A/C4A; C4A—C9A), 72.2 (4)° (O3A/O4A/C8A/C10A; C4A—C9A), 73.0 (4)° (O1B/O2B/C3B/C4B; C4B—C9B) and 86.6 (4)° (O3B/O4B/C8B/C10B/C11B/C12B; C4B—C9B). The dihedral angle between the ring (C4A—C9A) and the ring (C4B—C9B) is 74.6 (4)°.

In the crystal structure, intermolecular I···O interactions of the order 3.138 (7) and 3.144 (7) Å link the molecules into infinite one-dimensional chains along the a axis (Fig. 2). In addition, non-classical C—H···O hydrogen bonds are observed (Table 1).

Related literature top

For iodine-based compounds as contrast agents for X-ray imaging, see: Stacul, (2001); Yu & Watson (1999); Tonnessen et al. (1996). For a related structure, see: Beck & Sheldrick (2008).

Experimental top

A mixture of 5-amino-2,4,6-triiodoisophthaloyl dichloride (5.95 g, 10 mmol) and ethanol (30 ml) was heated under reflux for four hours to produce diethyl 5-amino-2,4,6-triiodoisophthalate. It was recrystallized from an ethanol solution by slowly evaporating the solvent to obtain crystals suitable for X-ray single-crystal diffraction.

Refinement top

All H atoms were initially located from a difference Fourier map and then were regenerated at ideal positions and treated as riding, with N—H = 0.86 Å, C—H = 0.96–0.97 Å and Uiso(H) = 1.2Ueq (C, N). The residual electron density was located close to the iodine atoms and was essentially meaningless. Because the completeness of the data is a bit low, the high angle is restrained at 50.02; and as a result of that, the number of reflections used in refinement is only 6222.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the two molecules of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the molecular structure of the title compound showing infinite one dimensional chains formed by I···O interactions (dashed lines).
Diethyl 5-amino-2,4,6-triiodoisophthalate top
Crystal data top
C12H12I3NO4F(000) = 2256
Mr = 614.93Dx = 2.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5986 reflections
a = 9.7410 (8) Åθ = 3.2–25.2°
b = 9.6870 (7) ŵ = 5.29 mm1
c = 37.7290 (15) ÅT = 296 K
β = 94.430 (3)°Chunk, colorless
V = 3549.5 (4) Å30.26 × 0.18 × 0.12 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
4259 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.0°, θmin = 1.1°
ω/2θ scansh = 1111
Absorption correction: ψ scan
(CAD-4 Software; Enraf–Nonius, 1989)
k = 011
Tmin = 0.362, Tmax = 0.528l = 043
6676 measured reflections3 standard reflections every 200 reflections
6281 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.085P)2 + 12.P]
where P = (Fo2 + 2Fc2)/3
6222 reflections(Δ/σ)max = 0.004
365 parametersΔρmax = 0.84 e Å3
84 restraintsΔρmin = 1.05 e Å3
Crystal data top
C12H12I3NO4V = 3549.5 (4) Å3
Mr = 614.93Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.7410 (8) ŵ = 5.29 mm1
b = 9.6870 (7) ÅT = 296 K
c = 37.7290 (15) Å0.26 × 0.18 × 0.12 mm
β = 94.430 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4259 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CAD-4 Software; Enraf–Nonius, 1989)
Rint = 0.045
Tmin = 0.362, Tmax = 0.5283 standard reflections every 200 reflections
6676 measured reflections intensity decay: 1%
6281 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06084 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.085P)2 + 12.P]
where P = (Fo2 + 2Fc2)/3
6222 reflectionsΔρmax = 0.84 e Å3
365 parametersΔρmin = 1.05 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I1B0.91907 (6)0.24382 (7)0.092312 (16)0.04395 (16)
I1A0.42314 (6)0.32088 (7)0.091767 (17)0.04606 (17)
I3A0.32374 (7)0.63629 (7)0.228910 (16)0.04879 (18)
I2B0.81984 (6)0.08251 (7)0.227645 (16)0.04797 (18)
I3B0.50611 (7)0.22049 (8)0.08379 (2)0.0610 (2)
I2A0.00810 (7)0.78328 (8)0.08607 (2)0.0644 (2)
C7A0.2827 (8)0.6055 (9)0.1725 (2)0.031 (2)
O1A0.2558 (6)0.5972 (7)0.03825 (7)0.0469 (17)
O3B0.7559 (6)0.0349 (7)0.03756 (7)0.0504 (18)
O1B0.8887 (4)0.2728 (4)0.18292 (16)0.0426 (17)
O4A0.5601 (6)0.4411 (6)0.18705 (18)0.0473 (18)
O3A0.3932 (4)0.2852 (4)0.18200 (16)0.0433 (17)
C3A0.1782 (9)0.5254 (10)0.0593 (2)0.042 (2)
O2B1.0594 (6)0.1144 (7)0.18664 (19)0.0493 (18)
O4B0.5915 (7)0.1160 (8)0.04744 (18)0.056 (2)
C5B0.7797 (8)0.0506 (9)0.1708 (2)0.033 (2)
C10B0.6797 (8)0.0387 (9)0.0585 (2)0.031 (2)
O2A0.0891 (6)0.4496 (7)0.04842 (18)0.0550 (19)
C6A0.1885 (8)0.6946 (9)0.1533 (2)0.036 (2)
C5A0.1544 (9)0.6638 (9)0.1165 (2)0.036 (2)
C9B0.8118 (7)0.0883 (8)0.11840 (19)0.0262 (18)
N1B0.6258 (8)0.2450 (8)0.1678 (2)0.050 (2)
H1B10.64540.25890.19020.060*
H1B20.56850.29850.15600.060*
C9A0.3143 (8)0.4725 (8)0.1186 (2)0.033 (2)
N1A0.1263 (9)0.8035 (8)0.1696 (2)0.056 (2)
H1A10.14460.81840.19190.068*
H1A20.06950.85620.15740.068*
C4A0.2167 (7)0.5527 (8)0.0986 (2)0.0280 (19)
C10A0.4476 (8)0.4076 (9)0.1766 (2)0.033 (2)
C4B0.8418 (8)0.0606 (8)0.1547 (2)0.030 (2)
C7B0.6511 (8)0.1024 (9)0.1146 (2)0.037 (2)
C6B0.6866 (8)0.1361 (8)0.1508 (3)0.038 (2)
C8A0.3445 (7)0.4994 (9)0.1557 (2)0.031 (2)
C12A0.4169 (10)0.0442 (10)0.1878 (3)0.055 (3)
H12A0.31970.05350.18980.066*
H12B0.45250.02830.20320.066*
H12C0.43310.02190.16370.066*
C3B0.9446 (9)0.1487 (9)0.1769 (2)0.036 (2)
C8B0.7160 (8)0.0048 (9)0.0982 (2)0.034 (2)
C2A0.2210 (5)0.5890 (6)0.00099 (8)0.066 (3)
H2A10.24340.67670.01150.079*
H2A20.12240.57560.00530.079*
C11A0.4865 (7)0.1753 (7)0.1980 (3)0.059 (3)
H11A0.57620.18020.18850.071*
H11B0.49800.18470.22360.071*
C1A0.2940 (11)0.4747 (10)0.0198 (3)0.079 (6)
H1A30.38200.50740.02610.095*
H1A40.23920.44820.04100.095*
H1A50.30680.39640.00430.095*
C11B0.7246 (4)0.0172 (6)0.00162 (7)0.075 (4)
H11C0.73240.07960.00770.090*
H11D0.63060.04600.00810.090*
C2B0.9858 (5)0.3800 (3)0.1986 (2)0.055 (3)
H2B11.07440.37330.18860.066*
H2B20.99930.36970.22420.066*
C12B0.82239 (15)0.1014 (4)0.02254 (14)0.091 (4)
H12D0.91440.06690.01800.109*
H12E0.79520.09420.04750.109*
H12F0.81920.19640.01540.109*
C1B0.9166 (8)0.5171 (5)0.1888 (3)0.065 (3)
H1B30.92700.53710.16420.078*
H1B40.95870.58910.20340.078*
H1B50.82050.51150.19260.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I1B0.0448 (3)0.0435 (4)0.0429 (3)0.0117 (3)0.0009 (3)0.0084 (3)
I1A0.0493 (4)0.0430 (4)0.0450 (3)0.0190 (3)0.0021 (3)0.0076 (3)
I3A0.0498 (4)0.0544 (4)0.0417 (3)0.0005 (3)0.0010 (3)0.0106 (3)
I2B0.0499 (4)0.0517 (4)0.0420 (3)0.0022 (3)0.0012 (3)0.0126 (3)
I3B0.0494 (4)0.0581 (5)0.0734 (5)0.0217 (3)0.0083 (3)0.0128 (4)
I2A0.0537 (4)0.0603 (5)0.0769 (5)0.0315 (3)0.0088 (4)0.0136 (4)
C7A0.025 (4)0.036 (5)0.033 (4)0.012 (4)0.002 (3)0.003 (4)
O1A0.042 (3)0.059 (4)0.038 (3)0.001 (3)0.003 (3)0.011 (3)
O3B0.047 (3)0.066 (4)0.036 (3)0.023 (3)0.006 (3)0.013 (3)
O1B0.028 (3)0.027 (3)0.072 (4)0.001 (3)0.003 (3)0.007 (3)
O4A0.030 (3)0.044 (4)0.065 (4)0.007 (3)0.010 (3)0.003 (3)
O3A0.033 (3)0.036 (4)0.060 (4)0.007 (3)0.002 (3)0.018 (3)
C3A0.037 (5)0.036 (5)0.050 (6)0.012 (4)0.012 (4)0.004 (4)
O2B0.024 (3)0.044 (4)0.078 (5)0.002 (3)0.014 (3)0.007 (4)
O4B0.057 (4)0.060 (4)0.048 (4)0.012 (4)0.018 (3)0.004 (4)
C5B0.031 (4)0.036 (5)0.030 (4)0.001 (4)0.005 (3)0.010 (4)
C10B0.027 (4)0.033 (5)0.034 (4)0.007 (4)0.002 (3)0.002 (4)
O2A0.046 (4)0.054 (4)0.061 (4)0.018 (3)0.014 (3)0.002 (4)
C6A0.022 (4)0.030 (5)0.056 (6)0.006 (4)0.004 (4)0.013 (4)
C5A0.037 (5)0.028 (4)0.042 (5)0.014 (4)0.001 (4)0.012 (4)
C9B0.020 (4)0.035 (5)0.024 (4)0.002 (3)0.004 (3)0.004 (3)
N1B0.046 (5)0.037 (4)0.069 (5)0.018 (4)0.011 (4)0.006 (4)
C9A0.026 (4)0.018 (4)0.056 (5)0.008 (3)0.000 (4)0.000 (4)
N1A0.057 (5)0.041 (5)0.071 (6)0.011 (4)0.003 (4)0.014 (4)
C4A0.018 (4)0.029 (4)0.037 (4)0.001 (3)0.001 (3)0.004 (4)
C10A0.029 (4)0.027 (5)0.040 (5)0.006 (4)0.004 (4)0.001 (4)
C4B0.023 (4)0.021 (4)0.047 (5)0.005 (3)0.002 (3)0.004 (4)
C7B0.018 (4)0.043 (5)0.049 (5)0.002 (4)0.005 (4)0.013 (4)
C6B0.026 (4)0.022 (5)0.066 (6)0.003 (3)0.006 (4)0.001 (4)
C8A0.022 (4)0.036 (5)0.033 (4)0.002 (3)0.001 (3)0.009 (4)
C12A0.051 (5)0.041 (5)0.074 (6)0.014 (4)0.018 (5)0.003 (5)
C3B0.036 (5)0.031 (5)0.041 (5)0.003 (4)0.002 (4)0.002 (4)
C8B0.035 (4)0.030 (5)0.035 (5)0.004 (4)0.007 (4)0.005 (4)
C2A0.077 (7)0.085 (7)0.031 (5)0.010 (6)0.016 (5)0.022 (5)
C11A0.047 (5)0.040 (5)0.086 (7)0.014 (4)0.014 (5)0.003 (5)
C1A0.059 (11)0.052 (11)0.110 (10)0.007 (9)0.001 (9)0.008 (9)
C11B0.078 (7)0.081 (8)0.064 (7)0.022 (6)0.005 (5)0.003 (6)
C2B0.040 (5)0.035 (5)0.086 (7)0.008 (4)0.011 (5)0.021 (5)
C12B0.105 (9)0.102 (9)0.068 (7)0.002 (7)0.030 (6)0.015 (7)
C1B0.058 (6)0.048 (6)0.090 (7)0.001 (5)0.021 (5)0.001 (6)
Geometric parameters (Å, º) top
I1B—C9B2.119 (8)C9A—C4A1.403 (10)
I1A—C9A2.115 (8)C9A—C8A1.433 (11)
I3A—C7A2.156 (8)N1A—H1A10.8600
I2B—C5B2.171 (8)N1A—H1A20.8600
I3B—C7B2.098 (8)C10A—C8A1.515 (11)
I2A—C5A2.107 (8)C4B—C3B1.517 (11)
C7A—C8A1.370 (12)C7B—C8B1.386 (12)
C7A—C6A1.418 (11)C7B—C6B1.421 (13)
O1A—C3A1.334 (11)C12A—C11A1.477 (12)
O1A—C2A1.495 (4)C12A—H12A0.9600
O3B—C10B1.333 (9)C12A—H12B0.9600
O3B—C11B1.496 (4)C12A—H12C0.9600
O1B—C3B1.347 (9)C2A—C1A1.521 (12)
O1B—C2B1.496 (6)C2A—H2A10.9700
O4A—C10A1.182 (9)C2A—H2A20.9700
O3A—C10A1.321 (9)C11A—H11A0.9700
O3A—C11A1.495 (9)C11A—H11B0.9700
C3A—O2A1.186 (10)C1A—H1A30.9600
C3A—C4A1.521 (12)C1A—H1A40.9600
O2B—C3B1.197 (10)C1A—H1A50.9600
O4B—C10B1.191 (10)C11B—C12B1.521 (6)
C5B—C4B1.397 (11)C11B—H11C0.9700
C5B—C6B1.405 (12)C11B—H11D0.9700
C10B—C8B1.547 (11)C2B—C1B1.522 (7)
C6A—N1A1.384 (11)C2B—H2B10.9700
C6A—C5A1.432 (12)C2B—H2B20.9700
C5A—C4A1.431 (11)C12B—H12D0.9600
C9B—C4B1.405 (11)C12B—H12E0.9600
C9B—C8B1.412 (11)C12B—H12F0.9600
N1B—C6B1.390 (11)C1B—H1B30.9600
N1B—H1B10.8600C1B—H1B40.9600
N1B—H1B20.8600C1B—H1B50.9600
C8A—C7A—C6A120.7 (7)C11A—C12A—H12B109.5
C8A—C7A—I3A120.3 (6)H12A—C12A—H12B109.5
C6A—C7A—I3A119.0 (6)C11A—C12A—H12C109.5
C3A—O1A—C2A117.8 (6)H12A—C12A—H12C109.5
C10B—O3B—C11B116.3 (5)H12B—C12A—H12C109.5
C3B—O1B—C2B115.8 (5)O2B—C3B—O1B125.2 (8)
C10A—O3A—C11A117.6 (5)O2B—C3B—C4B125.1 (8)
O2A—C3A—O1A123.3 (8)O1B—C3B—C4B109.7 (6)
O2A—C3A—C4A124.3 (9)C7B—C8B—C9B119.5 (7)
O1A—C3A—C4A112.4 (7)C7B—C8B—C10B120.9 (7)
C4B—C5B—C6B120.3 (8)C9B—C8B—C10B119.5 (7)
C4B—C5B—I2B119.2 (6)O1A—C2A—C1A115.0 (7)
C6B—C5B—I2B120.4 (6)O1A—C2A—H2A1108.5
O4B—C10B—O3B123.3 (7)C1A—C2A—H2A1108.5
O4B—C10B—C8B125.3 (8)O1A—C2A—H2A2108.5
O3B—C10B—C8B111.4 (6)C1A—C2A—H2A2108.5
N1A—C6A—C7A121.6 (8)H2A1—C2A—H2A2107.5
N1A—C6A—C5A120.9 (8)C12A—C11A—O3A104.8 (6)
C7A—C6A—C5A117.4 (7)C12A—C11A—H11A110.8
C4A—C5A—C6A122.7 (7)O3A—C11A—H11A110.8
C4A—C5A—I2A116.6 (6)C12A—C11A—H11B110.8
C6A—C5A—I2A120.7 (6)O3A—C11A—H11B110.8
C4B—C9B—C8B119.7 (7)H11A—C11A—H11B108.9
C4B—C9B—I1B121.0 (5)C2A—C1A—H1A3109.5
C8B—C9B—I1B119.0 (6)C2A—C1A—H1A4109.5
C6B—N1B—H1B1120.0H1A3—C1A—H1A4109.5
C6B—N1B—H1B2120.0C2A—C1A—H1A5109.5
H1B1—N1B—H1B2120.0H1A3—C1A—H1A5109.5
C4A—C9A—C8A120.4 (7)H1A4—C1A—H1A5109.5
C4A—C9A—I1A118.1 (6)O3B—C11B—C12B111.3 (4)
C8A—C9A—I1A121.4 (5)O3B—C11B—H11C109.4
C6A—N1A—H1A1120.0C12B—C11B—H11C109.4
C6A—N1A—H1A2120.0O3B—C11B—H11D109.4
H1A1—N1A—H1A2120.0C12B—C11B—H11D109.4
C9A—C4A—C5A117.1 (7)H11C—C11B—H11D108.0
C9A—C4A—C3A122.2 (7)O1B—C2B—C1B104.8 (4)
C5A—C4A—C3A120.7 (7)O1B—C2B—H2B1110.8
O4A—C10A—O3A124.5 (7)C1B—C2B—H2B1110.8
O4A—C10A—C8A125.0 (8)O1B—C2B—H2B2110.8
O3A—C10A—C8A110.5 (6)C1B—C2B—H2B2110.8
C5B—C4B—C9B120.5 (7)H2B1—C2B—H2B2108.9
C5B—C4B—C3B118.9 (7)C11B—C12B—H12D109.5
C9B—C4B—C3B120.6 (7)C11B—C12B—H12E109.5
C8B—C7B—C6B121.1 (7)H12D—C12B—H12E109.5
C8B—C7B—I3B118.1 (6)C11B—C12B—H12F109.5
C6B—C7B—I3B120.7 (6)H12D—C12B—H12F109.5
N1B—C6B—C5B118.7 (8)H12E—C12B—H12F109.5
N1B—C6B—C7B122.5 (8)C2B—C1B—H1B3109.5
C5B—C6B—C7B118.7 (8)C2B—C1B—H1B4109.5
C7A—C8A—C9A121.6 (7)H1B3—C1B—H1B4109.5
C7A—C8A—C10A119.9 (7)C2B—C1B—H1B5109.5
C9A—C8A—C10A118.6 (7)H1B3—C1B—H1B5109.5
C11A—C12A—H12A109.5H1B4—C1B—H1B5109.5
C2A—O1A—C3A—O2A4.7 (12)C8B—C7B—C6B—N1B178.5 (8)
C2A—O1A—C3A—C4A175.0 (6)I3B—C7B—C6B—N1B1.7 (11)
C11B—O3B—C10B—O4B0.5 (12)C8B—C7B—C6B—C5B6.0 (12)
C11B—O3B—C10B—C8B176.6 (6)I3B—C7B—C6B—C5B177.3 (6)
C8A—C7A—C6A—N1A179.1 (8)C6A—C7A—C8A—C9A1.4 (12)
I3A—C7A—C6A—N1A2.4 (11)I3A—C7A—C8A—C9A177.0 (6)
C8A—C7A—C6A—C5A3.9 (12)C6A—C7A—C8A—C10A178.5 (7)
I3A—C7A—C6A—C5A174.6 (6)I3A—C7A—C8A—C10A3.1 (10)
N1A—C6A—C5A—C4A179.6 (8)C4A—C9A—C8A—C7A1.8 (12)
C7A—C6A—C5A—C4A3.4 (12)I1A—C9A—C8A—C7A174.2 (6)
N1A—C6A—C5A—I2A0.1 (12)C4A—C9A—C8A—C10A178.3 (7)
C7A—C6A—C5A—I2A176.9 (6)I1A—C9A—C8A—C10A5.7 (10)
C8A—C9A—C4A—C5A2.3 (11)O4A—C10A—C8A—C7A72.2 (12)
I1A—C9A—C4A—C5A173.8 (6)O3A—C10A—C8A—C7A106.5 (9)
C8A—C9A—C4A—C3A178.2 (7)O4A—C10A—C8A—C9A107.7 (10)
I1A—C9A—C4A—C3A5.6 (10)O3A—C10A—C8A—C9A73.6 (9)
C6A—C5A—C4A—C9A0.3 (12)C2B—O1B—C3B—O2B8.9 (12)
I2A—C5A—C4A—C9A180.0 (6)C2B—O1B—C3B—C4B169.2 (6)
C6A—C5A—C4A—C3A179.2 (8)C5B—C4B—C3B—O2B73.7 (12)
I2A—C5A—C4A—C3A0.5 (10)C9B—C4B—C3B—O2B104.8 (10)
O2A—C3A—C4A—C9A89.2 (11)C5B—C4B—C3B—O1B108.2 (8)
O1A—C3A—C4A—C9A91.1 (9)C9B—C4B—C3B—O1B73.3 (10)
O2A—C3A—C4A—C5A91.4 (11)C6B—C7B—C8B—C9B4.6 (12)
O1A—C3A—C4A—C5A88.3 (9)I3B—C7B—C8B—C9B178.6 (6)
C11A—O3A—C10A—O4A9.2 (13)C6B—C7B—C8B—C10B178.4 (7)
C11A—O3A—C10A—C8A172.1 (7)I3B—C7B—C8B—C10B1.6 (10)
C6B—C5B—C4B—C9B0.1 (12)C4B—C9B—C8B—C7B0.9 (12)
I2B—C5B—C4B—C9B176.5 (6)I1B—C9B—C8B—C7B176.3 (6)
C6B—C5B—C4B—C3B178.4 (7)C4B—C9B—C8B—C10B178.0 (7)
I2B—C5B—C4B—C3B5.0 (10)I1B—C9B—C8B—C10B6.7 (10)
C8B—C9B—C4B—C5B1.4 (12)O4B—C10B—C8B—C7B89.1 (11)
I1B—C9B—C4B—C5B173.9 (6)O3B—C10B—C8B—C7B87.9 (9)
C8B—C9B—C4B—C3B179.8 (7)O4B—C10B—C8B—C9B87.9 (11)
I1B—C9B—C4B—C3B4.5 (10)O3B—C10B—C8B—C9B95.1 (9)
C4B—C5B—C6B—N1B179.4 (8)C3A—O1A—C2A—C1A90.6 (9)
I2B—C5B—C6B—N1B2.9 (11)C10A—O3A—C11A—C12A158.0 (8)
C4B—C5B—C6B—C7B3.6 (12)C10B—O3B—C11B—C12B177.5 (6)
I2B—C5B—C6B—C7B172.9 (6)C3B—O1B—C2B—C1B157.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2A2···O2Ai0.972.543.411 (8)150
C12A—H12A···O2Bii0.962.603.545 (11)169
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12I3NO4
Mr614.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.7410 (8), 9.6870 (7), 37.7290 (15)
β (°) 94.430 (3)
V3)3549.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)5.29
Crystal size (mm)0.26 × 0.18 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CAD-4 Software; Enraf–Nonius, 1989)
Tmin, Tmax0.362, 0.528
No. of measured, independent and
observed [I > 2σ(I)] reflections
6676, 6281, 4259
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.162, 1.06
No. of reflections6222
No. of parameters365
No. of restraints84
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.085P)2 + 12.P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.84, 1.05

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2A2···O2Ai0.972.543.411 (8)150
C12A—H12A···O2Bii0.962.603.545 (11)169
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.
 

Acknowledgements

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

References

First citationBeck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStacul, F. (2001). Eur. Radiol. 11, 690–697.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTonnessen, L. E., Pedersen, B. F. & Klaveness, J. (1996). Acta Chem. Scand. 50, 603–608.  CrossRef Web of Science Google Scholar
First citationYu, S. B. & Watson, A. D. (1999). Chem. Rev. 99, 2353–2378.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o10-o11
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds