organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o75-o76

1-(5-Hy­droxy-1-phenyl-3-tri­fluoro­methyl-1H-pyrazol-1-yl)ethanone

aDepto. de Química - Universidade Federal de Santa Catarina, 88040-900 - Florianópolis, SC, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br

(Received 2 November 2009; accepted 1 December 2009; online 9 December 2009)

The crystal structure of the title compound, C12H9F3N2O2, contains two independent mol­ecules in the asymmetric unit. The mol­ecules are chemically identical but exhibit a significant difference in the dihedral angles between the mean planes of the phenyl and pyrazole rings, with values of of 11.62 (13) and 18.17 (11)°. Moreover, the trifluoro­methyl group in one of the mol­ecules shows rotational disorder of the F atoms, with site occupancy factors of 0.929 (6) and 0.071 (6). The hydroxyl group in each of the mol­ecules shows a strong intra­molecular hydrogen bond with the carbonyl O atom, forming a six-membered ring and forcing the formyl group and pyrazole ring to be coplanarshowing C—C—C—O torsion angles of ?0.3(5)o and 0.°. Weak inter­molecular C—H⋯O and C—H⋯F inter­actions contribute to the stabilization of the crystal packing.

Related literature

For the pharmaceutical activity of pyrazole derivatives, see: Belmar et al. (2001[ Belmar, J., Alderete, J., Zuñiga, C., Jimenez, C., Jimenez, V., Núñez, H., Grandy, R. & Yori, A. (2001). Bol. Soc. Chil. Quim. 46, 459-470.]). For related structures, see: Gallardo et al. (2009[ Gallardo, H., Girotto, E., Bortoluzzi, A. J. & Terra, G. G. (2009). Acta Cryst. E65, o2040-o2041.]); Belmar et al. (2006a[ Belmar, J., Jiménez, C., Ortiz, L., Garland, M. T. & Baggio, R. (2006a). Acta Cryst. C62, o76-o78.],b[ Belmar, J., Jiménez, C., Ruiz-Pérez, C., Delgado, F. S. & Baggio, R. (2006b). Acta Cryst. C62, o599-o601.]); Pérez et al. (2005[ Pérez, F. R., Belmar, J., Jiménez, C., Moreno, Y., Hermosilla, P. & Baggio, R. (2005). Acta Cryst. C61, m318-m320.]). For the melting point, see: Bieringer & Holzer (2006[ Bieringer, S. & Holzer, W. (2006). Heterocycles, 68, 1825-1836.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9F3N2O2

  • Mr = 270.21

  • Triclinic, [P \overline 1]

  • a = 7.4779 (19) Å

  • b = 11.9390 (18) Å

  • c = 13.8587 (14) Å

  • α = 78.591 (11)°

  • β = 80.090 (17)°

  • γ = 78.791 (18)°

  • V = 1178.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.40 × 0.33 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 4766 measured reflections

  • 4567 independent reflections

  • 2268 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 200 reflections

  • intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.165

  • S = 1.04

  • 4567 reflections

  • 373 parameters

  • 81 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O13 1.18 1.60 2.548 (3) 132
O5′—H5′⋯O13′ 1.07 1.65 2.560 (4) 139
C14—H14B⋯F1′i 0.96 2.55 3.394 (5) 146
C7—H7⋯O13ii 0.93 2.64 3.446 (4) 145
C7′—H7′⋯O13′iii 0.93 2.57 3.406 (4) 149
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[ Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1996[ Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[ Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[ Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The pyrazolones are derivatives of pyrazole having an additional carbonyl/hydroxy group. Some derivatives of pyrazolone show analgesic and anti-inflamatory properties (Belmar et al., 2001). In this article, the crystal structure of the title compound (I), which is a derivative of pyrazole is presented.

The asymmetric unit of the title compound contains two independent molecules (Fig. 1). The molecules are chemically identical, but show different spacial conformation. This can be evidenced by the different dihedral angle between the mean plane of the phenyl and pyrazole rings of 11.62 (13)° and 18.17 (11)°. In the pyrazole rings of the two molecules the single bond distances are shorter and the double bond distances are longer that expected values indicating that the pyrazole rings are delocalized π-systems. A cyclic six-membered intramolecular hydrogen bond between hydroxyl and acyl groups force the acyl groups and the pyrazole rings to be coplanar, in both molecules. Several weak intermolecular C—H···O and C—H···F hydrogen bonds are involved in the stabilization of the crystal packing. The crystal structures of a few compounds closely related to (I) have been reported (Gallardo et al., 2009; Belmar et al., 2006a,b); Pérez et al., 2005).

Related literature top

For the pharmaceutical activity of pyrazole derivatives, see: Belmar et al. (2001). For related structures, see: Gallardo et al. (2009); Belmar et al. (2006a, 2006b); Pérez et al. (2005). For the melting point, see: Bieringer & Holzer (2006).

Experimental top

In a three necked flask of 50 ml equipped with condenser, were transferred 2-phenyl-5-(trifluoromethyl)pyrazol-3(2H)-one (1.5 g, 6.57 mmol), 1,4-dioxane (dried) (25 ml) and Ca(OH)2 (0.67 g, 13.1 mmol). The reaction mixture was heated to 373 K with stirring for 15 min, then cooled to room temperature and added slowly ac. acetyl chloride (0.56 g, 7.2 mmol) and allowed to reflux for 24 h. After the reaction was completed, the product was poured into 40 ml of HCl solution (3 mol l-1) and ice and stirred for 30 min, resulting in precipitate which was filtered. The compound was purified through a silica gel chromatographic column (eluent: hexane/AcOEt 3%) which yielded a yellow solid (0.525 g) of the title compound. In the purification process, 0.752 g of 2-phenyl-5-(trifluoromethyl)pyrazol-3(2H)-one was also recovered.

Refinement top

H atoms were placed at their idealized positions with distances of 0.93 and 0.96 Å and Ueq fixed at 1.2 and 1.5 times Uiso of the preceding atom for C—HAr and CH3, respectively. The H atoms of the hydroxyl groups were found from Fourier difference map and fixed at those positions with Ueq fixed at 1.2 times Uiso of the parent atom. Trifluoromethyl group of one molecule exhibited rotational disorder with two alternative positions for F atoms. The refined site occupancies for disordered atoms are 0.929 (6) and 0.071 (6).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the two molecules of the title compound with labeling scheme; displacement ellipsoids are shown at the 40% probability level and atoms F1", F2" and F3" representing the smaller fraction of the disordered trifluoromethyl group have been excluded.
1-(5-Hydroxy-1-phenyl-3-trifluoromethyl-1H-pyrazol-1-yl)ethanone top
Crystal data top
C12H9F3N2O2Z = 4
Mr = 270.21F(000) = 552
Triclinic, P1Dx = 1.523 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.4779 (19) ÅCell parameters from 25 reflections
b = 11.9390 (18) Åθ = 5.4–18.6°
c = 13.8587 (14) ŵ = 0.14 mm1
α = 78.591 (11)°T = 293 K
β = 80.090 (17)°Prismatic, yellow
γ = 78.791 (18)°0.40 × 0.33 × 0.13 mm
V = 1178.2 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.025
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.5°
Graphite monochromatorh = 99
ω/2θ scansk = 1414
4766 measured reflectionsl = 170
4567 independent reflections3 standard reflections every 200 reflections
2268 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.4943P]
where P = (Fo2 + 2Fc2)/3
4567 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.20 e Å3
81 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H9F3N2O2γ = 78.791 (18)°
Mr = 270.21V = 1178.2 (4) Å3
Triclinic, P1Z = 4
a = 7.4779 (19) ÅMo Kα radiation
b = 11.9390 (18) ŵ = 0.14 mm1
c = 13.8587 (14) ÅT = 293 K
α = 78.591 (11)°0.40 × 0.33 × 0.13 mm
β = 80.090 (17)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.025
4766 measured reflections3 standard reflections every 200 reflections
4567 independent reflections intensity decay: 1%
2268 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.05581 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
4567 reflectionsΔρmin = 0.21 e Å3
373 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4429 (3)0.5800 (2)0.73982 (18)0.0517 (7)
N20.4653 (4)0.6690 (2)0.66084 (18)0.0585 (7)
C30.4755 (5)0.7585 (3)0.7002 (2)0.0557 (8)
C40.4619 (4)0.7333 (3)0.8049 (2)0.0524 (8)
C50.4399 (4)0.6175 (3)0.8262 (2)0.0536 (8)
O50.4173 (3)0.55236 (19)0.91394 (16)0.0695 (7)
H50.48040.60270.96100.083*
C60.4214 (4)0.4699 (3)0.7213 (2)0.0508 (8)
C70.4301 (5)0.3738 (3)0.7950 (3)0.0668 (10)
H70.44940.37920.85830.080*
C80.4099 (5)0.2695 (3)0.7735 (3)0.0749 (11)
H80.41400.20460.82330.090*
C90.3840 (5)0.2594 (3)0.6807 (3)0.0738 (11)
H90.37250.18810.66700.089*
C100.3752 (5)0.3559 (3)0.6079 (3)0.0718 (10)
H100.35670.34990.54460.086*
C110.3934 (5)0.4620 (3)0.6275 (2)0.0633 (9)
H110.38690.52710.57790.076*
C120.4960 (7)0.8687 (3)0.6304 (3)0.0751 (11)
F10.5010 (8)0.8597 (3)0.5363 (2)0.1229 (17)0.929 (6)
F1''0.362 (5)0.899 (4)0.585 (3)0.119 (13)0.071 (6)
F20.3541 (5)0.9518 (2)0.6488 (3)0.1112 (14)0.929 (6)
F2''0.508 (7)0.955 (3)0.667 (3)0.106 (11)0.071 (6)
F30.6442 (6)0.9097 (3)0.6361 (3)0.1119 (14)0.929 (6)
F3''0.637 (6)0.850 (3)0.573 (3)0.096 (12)0.071 (6)
C130.4653 (5)0.7924 (3)0.8855 (3)0.0643 (9)
O130.4473 (4)0.7366 (2)0.97198 (18)0.0839 (8)
C140.4909 (6)0.9153 (3)0.8704 (3)0.0849 (12)
H14A0.47080.94070.93350.127*
H14B0.40460.96250.82900.127*
H14C0.61400.92210.83880.127*
N1'0.9141 (4)0.4419 (2)0.7688 (2)0.0561 (7)
N2'0.9250 (4)0.3460 (2)0.8425 (2)0.0612 (7)
C3'0.9172 (4)0.2592 (3)0.7996 (3)0.0587 (9)
C4'0.9010 (4)0.2929 (3)0.6972 (2)0.0578 (9)
C5'0.8996 (4)0.4117 (3)0.6816 (2)0.0569 (8)
O5'0.8858 (3)0.4856 (2)0.59906 (17)0.0747 (7)
H5'0.85420.43760.54870.090*
C6'0.9283 (4)0.5517 (3)0.7911 (2)0.0536 (8)
C7'0.9738 (5)0.6410 (3)0.7169 (3)0.0655 (9)
H7'0.99170.63170.65060.079*
C8'0.9925 (5)0.7435 (3)0.7409 (3)0.0737 (11)
H8'1.02300.80380.69080.088*
C9'0.9668 (5)0.7580 (3)0.8383 (3)0.0778 (11)
H9'0.98130.82760.85420.093*
C10'0.9198 (5)0.6702 (3)0.9119 (3)0.0768 (11)
H10'0.90130.68050.97790.092*
C11'0.8993 (5)0.5662 (3)0.8896 (3)0.0652 (9)
H11'0.86660.50670.93990.078*
C12'0.9344 (6)0.1406 (3)0.8617 (3)0.0736 (10)
F1'1.0741 (4)0.06809 (19)0.8220 (2)0.1054 (8)
F2'0.9629 (4)0.14090 (19)0.95283 (18)0.1084 (9)
F3'0.7860 (3)0.09262 (18)0.86974 (18)0.0964 (8)
C13'0.8886 (5)0.2391 (3)0.6145 (3)0.0726 (10)
O13'0.8789 (4)0.3019 (3)0.5317 (2)0.0953 (9)
C14'0.8891 (7)0.1121 (3)0.6241 (3)0.0989 (14)
H14D0.86210.09610.56350.148*
H14E0.79750.08860.67800.148*
H14F1.00810.07010.63710.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0614 (17)0.0456 (15)0.0463 (16)0.0126 (12)0.0084 (13)0.0007 (12)
N20.077 (2)0.0473 (16)0.0473 (16)0.0152 (13)0.0068 (13)0.0045 (13)
C30.068 (2)0.0430 (18)0.054 (2)0.0103 (16)0.0102 (17)0.0010 (16)
C40.055 (2)0.0486 (18)0.053 (2)0.0092 (15)0.0099 (15)0.0037 (15)
C50.055 (2)0.056 (2)0.0487 (19)0.0117 (16)0.0067 (15)0.0035 (16)
O50.0961 (19)0.0660 (15)0.0460 (13)0.0251 (13)0.0112 (12)0.0044 (11)
C60.050 (2)0.0445 (18)0.056 (2)0.0085 (14)0.0029 (15)0.0060 (15)
C70.077 (3)0.055 (2)0.066 (2)0.0159 (18)0.0112 (19)0.0008 (18)
C80.084 (3)0.050 (2)0.086 (3)0.0157 (19)0.011 (2)0.002 (2)
C90.073 (3)0.052 (2)0.098 (3)0.0164 (18)0.002 (2)0.019 (2)
C100.086 (3)0.064 (2)0.070 (2)0.022 (2)0.006 (2)0.018 (2)
C110.079 (3)0.054 (2)0.057 (2)0.0170 (18)0.0042 (18)0.0073 (17)
C120.107 (4)0.053 (2)0.064 (3)0.017 (2)0.013 (3)0.002 (2)
F10.244 (5)0.0707 (18)0.0569 (19)0.053 (2)0.025 (2)0.0120 (14)
F1''0.18 (2)0.10 (2)0.07 (2)0.04 (2)0.05 (2)0.033 (19)
F20.137 (3)0.0565 (17)0.121 (3)0.0069 (18)0.022 (2)0.0097 (16)
F2''0.15 (3)0.059 (18)0.12 (2)0.049 (19)0.05 (2)0.007 (16)
F30.118 (3)0.087 (2)0.135 (3)0.059 (2)0.030 (2)0.023 (2)
F3''0.14 (2)0.060 (18)0.08 (2)0.040 (17)0.042 (19)0.052 (16)
C130.064 (2)0.062 (2)0.069 (2)0.0067 (17)0.0114 (18)0.0165 (19)
O130.118 (2)0.0789 (18)0.0542 (16)0.0138 (15)0.0083 (15)0.0153 (14)
C140.107 (3)0.064 (2)0.093 (3)0.014 (2)0.018 (2)0.032 (2)
N1'0.0623 (18)0.0467 (16)0.0565 (17)0.0101 (13)0.0075 (14)0.0023 (13)
N2'0.0710 (19)0.0489 (17)0.0611 (18)0.0104 (14)0.0097 (14)0.0021 (14)
C3'0.057 (2)0.049 (2)0.070 (2)0.0112 (16)0.0084 (17)0.0059 (17)
C4'0.057 (2)0.057 (2)0.061 (2)0.0148 (16)0.0053 (17)0.0095 (17)
C5'0.053 (2)0.061 (2)0.054 (2)0.0096 (16)0.0055 (16)0.0046 (17)
O5'0.0982 (19)0.0699 (16)0.0563 (15)0.0246 (14)0.0168 (13)0.0045 (13)
C6'0.0479 (19)0.0483 (19)0.062 (2)0.0051 (15)0.0083 (16)0.0067 (16)
C7'0.070 (2)0.054 (2)0.067 (2)0.0113 (17)0.0032 (18)0.0036 (18)
C8'0.077 (3)0.050 (2)0.088 (3)0.0139 (18)0.008 (2)0.002 (2)
C9'0.080 (3)0.057 (2)0.102 (3)0.0088 (19)0.022 (2)0.020 (2)
C10'0.089 (3)0.065 (3)0.080 (3)0.008 (2)0.021 (2)0.019 (2)
C11'0.072 (2)0.058 (2)0.064 (2)0.0108 (18)0.0118 (18)0.0035 (18)
C12'0.086 (3)0.056 (2)0.080 (3)0.015 (2)0.017 (2)0.008 (2)
F1'0.1063 (19)0.0639 (14)0.130 (2)0.0090 (13)0.0078 (16)0.0090 (14)
F2'0.175 (3)0.0663 (14)0.0878 (18)0.0275 (15)0.0512 (17)0.0124 (13)
F3'0.1083 (19)0.0687 (14)0.1132 (18)0.0376 (13)0.0114 (14)0.0012 (13)
C13'0.073 (3)0.075 (3)0.075 (3)0.024 (2)0.006 (2)0.016 (2)
O13'0.131 (3)0.098 (2)0.0654 (18)0.0395 (18)0.0116 (17)0.0173 (16)
C14'0.125 (4)0.083 (3)0.104 (3)0.031 (3)0.018 (3)0.036 (3)
Geometric parameters (Å, º) top
N1—C51.353 (4)C14—H14C0.9600
N1—N21.378 (3)N1'—C5'1.354 (4)
N1—C61.432 (4)N1'—N2'1.374 (3)
N2—C31.312 (4)N1'—C6'1.432 (4)
C3—C41.413 (4)N2'—C3'1.308 (4)
C3—C121.488 (5)C3'—C4'1.416 (5)
C4—C51.392 (4)C3'—C12'1.499 (5)
C4—C131.440 (5)C4'—C5'1.390 (4)
C5—O51.311 (4)C4'—C13'1.445 (5)
O5—H51.1757C5'—O5'1.306 (4)
C6—C111.375 (4)O5'—H5'1.0662
C6—C71.376 (4)C6'—C7'1.377 (4)
C7—C81.377 (5)C6'—C11'1.385 (4)
C7—H70.9300C7'—C8'1.368 (5)
C8—C91.364 (5)C7'—H7'0.9300
C8—H80.9300C8'—C9'1.371 (5)
C9—C101.373 (5)C8'—H8'0.9300
C9—H90.9300C9'—C10'1.364 (5)
C10—C111.383 (4)C9'—H9'0.9300
C10—H100.9300C10'—C11'1.380 (5)
C11—H110.9300C10'—H10'0.9300
C12—F3''1.22 (3)C11'—H11'0.9300
C12—F1''1.24 (3)C12'—F2'1.317 (4)
C12—F2''1.26 (3)C12'—F3'1.324 (4)
C12—F31.315 (5)C12'—F1'1.335 (4)
C12—F11.323 (5)C13'—O13'1.246 (4)
C12—F21.331 (5)C13'—C14'1.494 (5)
C13—O131.249 (4)C14'—H14D0.9600
C13—C141.486 (5)C14'—H14E0.9600
C14—H14A0.9600C14'—H14F0.9600
C14—H14B0.9600
C5—N1—N2109.9 (2)C13—C14—H14C109.5
C5—N1—C6130.8 (3)H14A—C14—H14C109.5
N2—N1—C6119.3 (2)H14B—C14—H14C109.5
C3—N2—N1105.6 (2)C5'—N1'—N2'110.4 (3)
N2—C3—C4112.9 (3)C5'—N1'—C6'130.3 (3)
N2—C3—C12116.8 (3)N2'—N1'—C6'119.2 (3)
C4—C3—C12130.3 (3)C3'—N2'—N1'105.4 (3)
C5—C4—C3102.8 (3)N2'—C3'—C4'113.0 (3)
C5—C4—C13119.1 (3)N2'—C3'—C12'117.5 (3)
C3—C4—C13138.1 (3)C4'—C3'—C12'129.4 (3)
O5—C5—N1123.7 (3)C5'—C4'—C3'102.8 (3)
O5—C5—C4127.5 (3)C5'—C4'—C13'119.1 (3)
N1—C5—C4108.8 (3)C3'—C4'—C13'138.1 (3)
C5—O5—H5100.5O5'—C5'—N1'123.6 (3)
C11—C6—C7120.5 (3)O5'—C5'—C4'127.9 (3)
C11—C6—N1118.4 (3)N1'—C5'—C4'108.4 (3)
C7—C6—N1121.1 (3)C5'—O5'—H5'104.8
C6—C7—C8119.0 (3)C7'—C6'—C11'120.1 (3)
C6—C7—H7120.5C7'—C6'—N1'121.2 (3)
C8—C7—H7120.5C11'—C6'—N1'118.7 (3)
C9—C8—C7121.4 (4)C8'—C7'—C6'119.8 (3)
C9—C8—H8119.3C8'—C7'—H7'120.1
C7—C8—H8119.3C6'—C7'—H7'120.1
C8—C9—C10119.0 (3)C7'—C8'—C9'120.6 (3)
C8—C9—H9120.5C7'—C8'—H8'119.7
C10—C9—H9120.5C9'—C8'—H8'119.7
C9—C10—C11120.8 (4)C10'—C9'—C8'119.8 (4)
C9—C10—H10119.6C10'—C9'—H9'120.1
C11—C10—H10119.6C8'—C9'—H9'120.1
C6—C11—C10119.2 (3)C9'—C10'—C11'120.7 (4)
C6—C11—H11120.4C9'—C10'—H10'119.6
C10—C11—H11120.4C11'—C10'—H10'119.6
F3''—C12—F1''110.4 (15)C10'—C11'—C6'119.1 (3)
F3''—C12—F2''106.8 (15)C10'—C11'—H11'120.5
F1''—C12—F2''105.9 (17)C6'—C11'—H11'120.5
F3—C12—F1107.1 (4)F2'—C12'—F3'106.7 (3)
F3—C12—F2106.0 (4)F2'—C12'—F1'107.2 (3)
F1—C12—F2105.5 (4)F3'—C12'—F1'105.9 (3)
F3''—C12—C3107.1 (14)F2'—C12'—C3'112.6 (3)
F1''—C12—C3109.2 (19)F3'—C12'—C3'112.7 (3)
F2''—C12—C3117.4 (19)F1'—C12'—C3'111.3 (3)
F3—C12—C3113.5 (4)O13'—C13'—C4'118.0 (3)
F1—C12—C3113.1 (3)O13'—C13'—C14'119.2 (4)
F2—C12—C3111.1 (3)C4'—C13'—C14'122.9 (4)
O13—C13—C4117.9 (3)C13'—C14'—H14D109.5
O13—C13—C14118.9 (3)C13'—C14'—H14E109.5
C4—C13—C14123.1 (3)H14D—C14'—H14E109.5
C13—C14—H14A109.5C13'—C14'—H14F109.5
C13—C14—H14B109.5H14D—C14'—H14F109.5
H14A—C14—H14B109.5H14E—C14'—H14F109.5
C5—N1—N2—C30.0 (3)C3—C4—C13—O13179.8 (4)
C6—N1—N2—C3178.1 (3)C5—C4—C13—C14179.1 (3)
N1—N2—C3—C40.4 (4)C3—C4—C13—C140.8 (6)
N1—N2—C3—C12178.7 (3)C5'—N1'—N2'—C3'0.1 (3)
N2—C3—C4—C50.6 (4)C6'—N1'—N2'—C3'176.9 (3)
C12—C3—C4—C5178.3 (4)N1'—N2'—C3'—C4'0.0 (4)
N2—C3—C4—C13179.3 (4)N1'—N2'—C3'—C12'177.4 (3)
C12—C3—C4—C131.9 (7)N2'—C3'—C4'—C5'0.0 (4)
N2—N1—C5—O5178.9 (3)C12'—C3'—C4'—C5'177.1 (3)
C6—N1—C5—O51.1 (5)N2'—C3'—C4'—C13'179.4 (4)
N2—N1—C5—C40.4 (4)C12'—C3'—C4'—C13'2.3 (7)
C6—N1—C5—C4178.2 (3)N2'—N1'—C5'—O5'179.5 (3)
C3—C4—C5—O5178.6 (3)C6'—N1'—C5'—O5'3.9 (5)
C13—C4—C5—O51.4 (5)N2'—N1'—C5'—C4'0.1 (4)
C3—C4—C5—N10.6 (3)C6'—N1'—C5'—C4'176.5 (3)
C13—C4—C5—N1179.3 (3)C3'—C4'—C5'—O5'179.5 (3)
C5—N1—C6—C11167.1 (3)C13'—C4'—C5'—O5'0.9 (5)
N2—N1—C6—C1110.6 (4)C3'—C4'—C5'—N1'0.1 (4)
C5—N1—C6—C713.6 (5)C13'—C4'—C5'—N1'179.5 (3)
N2—N1—C6—C7168.8 (3)C5'—N1'—C6'—C7'16.1 (5)
C11—C6—C7—C80.2 (5)N2'—N1'—C6'—C7'160.2 (3)
N1—C6—C7—C8179.6 (3)C5'—N1'—C6'—C11'165.3 (3)
C6—C7—C8—C90.9 (6)N2'—N1'—C6'—C11'18.4 (4)
C7—C8—C9—C101.0 (6)C11'—C6'—C7'—C8'0.8 (5)
C8—C9—C10—C110.5 (6)N1'—C6'—C7'—C8'177.7 (3)
C7—C6—C11—C100.3 (5)C6'—C7'—C8'—C9'0.1 (6)
N1—C6—C11—C10179.0 (3)C7'—C8'—C9'—C10'0.8 (6)
C9—C10—C11—C60.2 (5)C8'—C9'—C10'—C11'0.6 (6)
N2—C3—C12—F3''59 (3)C9'—C10'—C11'—C6'0.4 (6)
C4—C3—C12—F3''122 (3)C7'—C6'—C11'—C10'1.1 (5)
N2—C3—C12—F1''60 (3)N1'—C6'—C11'—C10'177.5 (3)
C4—C3—C12—F1''119 (3)N2'—C3'—C12'—F2'2.5 (5)
N2—C3—C12—F2''179 (3)C4'—C3'—C12'—F2'174.5 (4)
C4—C3—C12—F2''2 (3)N2'—C3'—C12'—F3'118.3 (4)
N2—C3—C12—F3122.2 (5)C4'—C3'—C12'—F3'64.8 (5)
C4—C3—C12—F359.0 (6)N2'—C3'—C12'—F1'122.9 (4)
N2—C3—C12—F10.0 (6)C4'—C3'—C12'—F1'54.0 (5)
C4—C3—C12—F1178.9 (4)C5'—C4'—C13'—O13'0.7 (5)
N2—C3—C12—F2118.4 (4)C3'—C4'—C13'—O13'178.6 (4)
C4—C3—C12—F260.4 (6)C5'—C4'—C13'—C14'180.0 (4)
C5—C4—C13—O130.3 (5)C3'—C4'—C13'—C14'0.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O131.181.602.548 (3)132
O5—H5···O131.071.652.560 (4)139
C14—H14B···F1i0.962.553.394 (5)146
C7—H7···O13ii0.932.643.446 (4)145
C7—H7···O13iii0.932.573.406 (4)149
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H9F3N2O2
Mr270.21
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4779 (19), 11.9390 (18), 13.8587 (14)
α, β, γ (°)78.591 (11), 80.090 (17), 78.791 (18)
V3)1178.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.40 × 0.33 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4766, 4567, 2268
Rint0.025
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.165, 1.04
No. of reflections4567
No. of parameters373
No. of restraints81
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O131.181.602.548 (3)132
O5'—H5'···O13'1.071.652.560 (4)139
C14—H14B···F1'i0.962.553.394 (5)146
C7—H7···O13ii0.932.643.446 (4)145
C7'—H7'···O13'iii0.932.573.406 (4)149
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálize for financial assistance.

References

First citation Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citation Belmar, J., Alderete, J., Zuñiga, C., Jimenez, C., Jimenez, V., Núñez, H., Grandy, R. & Yori, A. (2001). Bol. Soc. Chil. Quim. 46, 459–470.  CAS Google Scholar
First citation Belmar, J., Jiménez, C., Ortiz, L., Garland, M. T. & Baggio, R. (2006a). Acta Cryst. C62, o76–o78.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citation Belmar, J., Jiménez, C., Ruiz-Pérez, C., Delgado, F. S. & Baggio, R. (2006b). Acta Cryst. C62, o599–o601.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citation Bieringer, S. & Holzer, W. (2006). Heterocycles, 68, 1825–1836.  CAS Google Scholar
First citation Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citation Gallardo, H., Girotto, E., Bortoluzzi, A. J. & Terra, G. G. (2009). Acta Cryst. E65, o2040–o2041.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Pérez, F. R., Belmar, J., Jiménez, C., Moreno, Y., Hermosilla, P. & Baggio, R. (2005). Acta Cryst. C61, m318–m320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citation Spek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o75-o76
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds