metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2,2′-bi­pyridine-κ2N,N′)cobalt(III) octa­cyanido­tungstate(V)

aMolecular Materials Research Center, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing 210094, People's Republic of China
*Correspondence e-mail: zhangchinjust@yahoo.com

(Received 13 November 2009; accepted 1 December 2009; online 4 December 2009)

In the title compound, [Co(C10H8N2)3][W(CN)8], the Co atom (..2 site symmetry) is coordinated by six N atoms from three 2,2′-bipyridine ligands in an octa­hedral geometry; the Co—N bond distances range from 1.926 (2) to 1.939 (2) Å. The W (..2 site symmetry) metal center is coordinated by eight cyanide ligands, resulting in a dodeca­hedral conformation with W—C distances in the range 1.165 (3)–2.176 (3) Å. The cations and anions are linked into a three-demensional structure by weak C—H⋯N hydrogen bonds.

Related literature

For compounds with similar architectures, see: Przychodzeń et al. (2006[Przychodzeń, P., Korzenial, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234-2260.]); Withers et al. (2005[Withers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352-358.]); Mathonière et al. (2005[Mathonière, C., Podgajny, R., Guionneau, P., Labrugere, C. & Sieklucka, B. (2005). Chem. Mater. 17, 442-449.]). For related structures, see: Liu et al. (2008[Liu, W.-Y., Zhou, H., Guo, J.-X. & Yuan, A.-H. (2008). Acta Cryst. E64, m1152-m1153.]); Chang et al. (2002[Chang, F., Sun, H. L., Kou, H. Z. & Gao, S. (2002). Inorg. Chem. Commun. 5, 660-663.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H8N2)3][W(CN)8]

  • Mr = 919.48

  • Orthorhombic, P c c n

  • a = 11.465 (2) Å

  • b = 15.141 (3) Å

  • c = 20.007 (4) Å

  • V = 3473.0 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.84 mm−1

  • T = 250 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.841, Tmax = 1.000

  • 12594 measured reflections

  • 3554 independent reflections

  • 3023 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.059

  • S = 1.10

  • 3554 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N4i 0.93 2.53 3.371 (4) 151
C10—H10A⋯N1ii 0.93 2.54 3.032 (4) 114
C12—H12A⋯N2ii 0.93 2.51 3.008 (4) 114
C1—H1A⋯N3 0.93 2.50 2.993 (4) 113
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As the direct addition of transition metal salts and [W(CN)8] ions (Przychodzeń et al., 2006; Withers et al., 2005; Mathonière et al., 2005) leads to the immediate precipitation, the title compound was obtained through the interdiffusion method (Liu et al., 2008; Chang et al., 2002). Based on the crystal structure determination, the cations, [Co(C10H8N2)3]2+, and the anions, [W(CN)8]3-, have a molar ratio of 1:1. It means that the Co2+ of Co(ClO4)2 has been oxided into Co3+ during the reaction process.

As illustrated in Fig. 1, Co3+ has an octahedral geometry, coordinated by six nitrogen atoms from three 2,2'-bipyridine ligands. The W metal center is coordinated by eight cyanide ligands, forming a dodecahedron. The Co—N bond distances range from 1.926 (2) Å to 1.939 (2) Å, while the W—C distances in the [W(CN)8] unit range from 1.165 (3) to 2.176 (3) Å and C—N distances lie between 1.137 (4) Å to 1.144 (4) Å. The cations and the anions are linked with each other by weak C—H···N hydrogen bond into a three-demensional structure. (Fig. 2).

Related literature top

For compounds with similar architectures, see: Przychodzeń et al. (2006); Withers et al. (2005); Mathonière et al. (2005). For related structures, see: Liu et al. (2008); Chang et al. (2002).

Experimental top

Co(ClO4)2 . 6H2O (146.4 mg, 0.4 mmol) and (Bu3N)3[W(CN)8] (44.72 mg, 0.1 mmol) were added into 2 ml dimethylformamide with thorough stirring for 5 minutes. After filtration, 2 ml dimethylformamide solvent and a solution of 2,2'-bipyridine (124.96 mg, 0.8 mmol) in 2 ml CH3OH were successively laid on the surface of the above filtrate. Red block crystals were obtained after five days.

Refinement top

H atoms were positioned geometrically and refined with riding model, with Uiso = 1.2Ueq for pyridyl H atoms, the C—H bond is 0.93 Å in 2,2'-bipyridine. The highest peak in the final difference map was located at a distance of 2.12 Å from H2A and was chemically meaningless.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of a portion of the title compound, with atom labels and 30% probability displacement ellipsoids. [Symmerty codes: (i) -x + 1/2,-y + 1/2,z; (ii) -x + 3/2,-y + 1/2,z.]
[Figure 2] Fig. 2. The unit cell packing diagram.
Tris(2,2'-bipyridine-κ2N,N')cobalt(III) octacyanidotungstate(V) top
Crystal data top
[Co(C10H8N2)3][W(CN)8]F(000) = 1803
Mr = 919.48Dx = 1.758 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 10230 reflections
a = 11.465 (2) Åθ = 2.5–31.3°
b = 15.141 (3) ŵ = 3.84 mm1
c = 20.007 (4) ÅT = 250 K
V = 3473.0 (12) Å3Prism, red
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3554 independent reflections
Radiation source: fine-focus sealed tube3023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 28.5714 pixels mm-1θmax = 26.4°, θmin = 2.5°
dtprofit.ref scansh = 1411
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1518
Tmin = 0.841, Tmax = 1.000l = 2515
12594 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0237P)2 + 2.7418P]
where P = (Fo2 + 2Fc2)/3
3554 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Co(C10H8N2)3][W(CN)8]V = 3473.0 (12) Å3
Mr = 919.48Z = 4
Orthorhombic, PccnMo Kα radiation
a = 11.465 (2) ŵ = 3.84 mm1
b = 15.141 (3) ÅT = 250 K
c = 20.007 (4) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3554 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3023 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 1.000Rint = 0.018
12594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.10Δρmax = 1.33 e Å3
3554 reflectionsΔρmin = 0.41 e Å3
245 parameters
Special details top

Experimental. Yield: 62.1 mg in pure form, 42.1% based on Co. Analysis calculated for C38H24CoN14W: C 49.59, H 2.61, N 21.32%; found: C 50.31, H 2.88, N 21.44%. IR: ν, cm-1,2132 s.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.25000.25000.44279 (2)0.02694 (12)
N10.0967 (2)0.19603 (17)0.44129 (11)0.0332 (5)
N20.2836 (2)0.16505 (16)0.37377 (12)0.0329 (5)
N30.2091 (2)0.32944 (16)0.51483 (12)0.0328 (5)
C10.0030 (3)0.2192 (2)0.47655 (17)0.0474 (8)
H1A0.00680.26930.50330.057*
C20.0986 (3)0.1720 (3)0.47478 (18)0.0574 (10)
H2A0.16310.19060.49920.069*
C30.1042 (3)0.0979 (3)0.43700 (18)0.0606 (11)
H3A0.17250.06470.43580.073*
C40.0087 (3)0.0716 (2)0.40038 (18)0.0521 (9)
H4A0.01140.02040.37470.063*
C50.0911 (3)0.1222 (2)0.40228 (14)0.0352 (7)
C60.1962 (2)0.10663 (18)0.36179 (14)0.0321 (6)
C70.2071 (3)0.0426 (2)0.31379 (16)0.0434 (8)
H7A0.14670.00270.30640.052*
C80.3073 (3)0.0376 (2)0.27679 (17)0.0479 (8)
H8A0.31560.00560.24400.058*
C90.3944 (3)0.0961 (2)0.28839 (17)0.0499 (9)
H9A0.46280.09350.26350.060*
C100.3813 (3)0.1595 (2)0.33709 (16)0.0442 (8)
H10A0.44150.19950.34480.053*
C120.1644 (3)0.4112 (2)0.50934 (16)0.0399 (7)
H12A0.15720.43640.46710.048*
C130.1381 (3)0.4211 (2)0.62628 (17)0.0530 (9)
H13A0.11200.45140.66390.064*
C140.1288 (3)0.4588 (2)0.56437 (16)0.0455 (8)
H14A0.09890.51550.55950.055*
C110.1858 (3)0.3387 (2)0.63277 (17)0.0522 (9)
H11A0.19270.31300.67480.063*
C150.2235 (3)0.2939 (2)0.57651 (15)0.0369 (7)
W10.75000.25000.194217 (8)0.02995 (7)
N40.9827 (3)0.3555 (2)0.13727 (15)0.0565 (8)
N50.8322 (3)0.3742 (2)0.32171 (16)0.0571 (8)
N60.5146 (3)0.3489 (2)0.25333 (15)0.0590 (8)
N70.6578 (3)0.3788 (2)0.07078 (15)0.0569 (8)
C160.9012 (3)0.3203 (2)0.15643 (15)0.0398 (7)
C170.8039 (3)0.3325 (2)0.27706 (16)0.0401 (7)
C180.5961 (3)0.3157 (2)0.23298 (15)0.0397 (7)
C190.6896 (3)0.3344 (2)0.11329 (16)0.0396 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0231 (3)0.0306 (3)0.0271 (3)0.0031 (2)0.0000.000
N10.0237 (12)0.0422 (15)0.0337 (13)0.0050 (11)0.0019 (10)0.0019 (11)
N20.0287 (12)0.0375 (14)0.0326 (13)0.0011 (10)0.0032 (10)0.0005 (11)
N30.0290 (12)0.0350 (13)0.0343 (13)0.0030 (10)0.0011 (10)0.0033 (11)
C10.0336 (16)0.063 (2)0.0456 (18)0.0053 (16)0.0092 (15)0.0064 (17)
C20.0346 (18)0.081 (3)0.057 (2)0.0131 (18)0.0170 (16)0.009 (2)
C30.0351 (19)0.080 (3)0.067 (2)0.0240 (19)0.0093 (17)0.004 (2)
C40.0433 (19)0.055 (2)0.058 (2)0.0181 (17)0.0029 (16)0.0068 (18)
C50.0304 (15)0.0398 (17)0.0356 (15)0.0044 (13)0.0006 (12)0.0055 (14)
C60.0301 (15)0.0328 (15)0.0334 (15)0.0011 (12)0.0028 (12)0.0044 (13)
C70.0379 (17)0.0415 (19)0.051 (2)0.0034 (15)0.0036 (14)0.0026 (15)
C80.052 (2)0.0439 (19)0.0476 (19)0.0035 (16)0.0046 (17)0.0108 (16)
C90.0405 (19)0.061 (2)0.0481 (19)0.0016 (17)0.0129 (16)0.0079 (17)
C100.0307 (16)0.053 (2)0.0486 (19)0.0076 (14)0.0094 (14)0.0056 (16)
C120.0357 (16)0.0383 (17)0.0457 (18)0.0006 (14)0.0011 (14)0.0009 (15)
C130.065 (2)0.048 (2)0.047 (2)0.0058 (18)0.0108 (17)0.0167 (17)
C140.0397 (18)0.0386 (18)0.058 (2)0.0019 (15)0.0057 (15)0.0076 (16)
C110.070 (3)0.050 (2)0.0364 (18)0.0059 (19)0.0034 (17)0.0029 (16)
C150.0372 (17)0.0398 (17)0.0336 (15)0.0084 (13)0.0014 (13)0.0033 (14)
W10.02626 (9)0.03213 (11)0.03147 (10)0.00157 (7)0.0000.000
N40.0450 (17)0.065 (2)0.0592 (19)0.0143 (15)0.0015 (15)0.0043 (16)
N50.0503 (19)0.062 (2)0.0592 (19)0.0056 (16)0.0012 (15)0.0185 (16)
N60.0415 (17)0.082 (2)0.0530 (18)0.0177 (16)0.0023 (14)0.0080 (16)
N70.0489 (18)0.069 (2)0.0526 (18)0.0133 (16)0.0029 (14)0.0204 (16)
C160.0356 (17)0.0418 (17)0.0421 (18)0.0027 (14)0.0030 (14)0.0017 (15)
C170.0314 (16)0.0430 (18)0.0459 (18)0.0010 (14)0.0006 (14)0.0029 (16)
C180.0346 (17)0.0471 (19)0.0373 (16)0.0043 (14)0.0005 (13)0.0007 (15)
C190.0312 (16)0.0458 (18)0.0419 (17)0.0057 (14)0.0043 (14)0.0032 (15)
Geometric parameters (Å, º) top
Co1—N21.926 (2)C8—H8A0.9300
Co1—N2i1.926 (2)C9—C101.376 (4)
Co1—N3i1.935 (2)C9—H9A0.9300
Co1—N31.935 (2)C10—H10A0.9300
Co1—N1i1.939 (2)C12—C141.377 (4)
Co1—N11.939 (2)C12—H12A0.9300
N1—C11.332 (4)C13—C141.368 (5)
N1—C51.364 (4)C13—C111.368 (5)
N2—C101.342 (4)C13—H13A0.9300
N2—C61.358 (4)C14—H14A0.9300
N3—C121.345 (4)C11—C151.384 (4)
N3—C151.357 (4)C11—H11A0.9300
C1—C21.367 (5)C15—C15i1.460 (6)
C1—H1A0.9300W1—C172.165 (3)
C2—C31.355 (5)W1—C17ii2.165 (3)
C2—H2A0.9300W1—C18ii2.169 (3)
C3—C41.376 (5)W1—C182.169 (3)
C3—H3A0.9300W1—C162.170 (3)
C4—C51.378 (4)W1—C16ii2.170 (3)
C4—H4A0.9300W1—C19ii2.176 (3)
C5—C61.471 (4)W1—C192.176 (3)
C6—C71.370 (4)N4—C161.142 (4)
C7—C81.369 (5)N5—C171.141 (4)
C7—H7A0.9300N6—C181.137 (4)
C8—C91.355 (5)N7—C191.144 (4)
N2—Co1—N2i88.39 (15)N2—C10—C9121.5 (3)
N2—Co1—N3i94.04 (11)N2—C10—H10A119.3
N2i—Co1—N3i176.06 (10)C9—C10—H10A119.3
N2—Co1—N3176.06 (10)N3—C12—C14121.9 (3)
N2i—Co1—N394.04 (11)N3—C12—H12A119.0
N3i—Co1—N383.70 (15)C14—C12—H12A119.0
N2—Co1—N1i95.11 (10)C14—C13—C11119.8 (3)
N2i—Co1—N1i83.60 (10)C14—C13—H13A120.1
N3i—Co1—N1i93.09 (10)C11—C13—H13A120.1
N3—Co1—N1i88.24 (10)C13—C14—C12118.9 (3)
N2—Co1—N183.60 (10)C13—C14—H14A120.6
N2i—Co1—N195.11 (10)C12—C14—H14A120.6
N3i—Co1—N188.24 (10)C13—C11—C15119.7 (3)
N3—Co1—N193.09 (10)C13—C11—H11A120.2
N1i—Co1—N1178.22 (13)C15—C11—H11A120.2
C1—N1—C5118.7 (3)N3—C15—C11120.5 (3)
C1—N1—Co1127.7 (2)N3—C15—C15i114.32 (17)
C5—N1—Co1113.36 (19)C11—C15—C15i125.2 (2)
C10—N2—C6118.6 (3)C17—W1—C17ii80.10 (17)
C10—N2—Co1126.9 (2)C17—W1—C18ii76.03 (12)
C6—N2—Co1114.46 (19)C17ii—W1—C18ii72.18 (12)
C12—N3—C15119.1 (3)C17—W1—C1872.18 (12)
C12—N3—Co1127.2 (2)C17ii—W1—C1876.03 (12)
C15—N3—Co1113.7 (2)C18ii—W1—C18138.10 (16)
N1—C1—C2122.4 (3)C17—W1—C1675.86 (12)
N1—C1—H1A118.8C17ii—W1—C16141.03 (12)
C2—C1—H1A118.8C18ii—W1—C1672.52 (12)
C3—C2—C1119.2 (3)C18—W1—C16123.33 (12)
C3—C2—H2A120.4C17—W1—C16ii141.03 (12)
C1—C2—H2A120.4C17ii—W1—C16ii75.86 (12)
C2—C3—C4119.9 (3)C18ii—W1—C16ii123.33 (12)
C2—C3—H3A120.0C18—W1—C16ii72.52 (12)
C4—C3—H3A120.0C16—W1—C16ii139.23 (16)
C3—C4—C5119.0 (3)C17—W1—C19ii144.84 (12)
C3—C4—H4A120.5C17ii—W1—C19ii108.76 (12)
C5—C4—H4A120.5C18ii—W1—C19ii74.80 (11)
N1—C5—C4120.7 (3)C18—W1—C19ii142.59 (11)
N1—C5—C6114.1 (2)C16—W1—C19ii76.99 (12)
C4—C5—C6125.1 (3)C16ii—W1—C19ii72.95 (11)
N2—C6—C7121.1 (3)C17—W1—C19108.76 (12)
N2—C6—C5113.7 (3)C17ii—W1—C19144.84 (12)
C7—C6—C5125.1 (3)C18ii—W1—C19142.59 (11)
C8—C7—C6119.6 (3)C18—W1—C1974.80 (11)
C8—C7—H7A120.2C16—W1—C1972.95 (11)
C6—C7—H7A120.2C16ii—W1—C1976.99 (12)
C9—C8—C7119.3 (3)C19ii—W1—C1983.84 (16)
C9—C8—H8A120.3N4—C16—W1178.2 (3)
C7—C8—H8A120.3N5—C17—W1178.3 (3)
C8—C9—C10119.8 (3)N6—C18—W1178.9 (3)
C8—C9—H9A120.1N7—C19—W1179.9 (4)
C10—C9—H9A120.1
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N4iii0.932.533.371 (4)151
C10—H10A···N1i0.932.543.032 (4)114
C12—H12A···N2i0.932.513.008 (4)114
C1—H1A···N30.932.502.993 (4)113
Symmetry codes: (i) x+1/2, y+1/2, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2)3][W(CN)8]
Mr919.48
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)250
a, b, c (Å)11.465 (2), 15.141 (3), 20.007 (4)
V3)3473.0 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.84
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.841, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12594, 3554, 3023
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.059, 1.10
No. of reflections3554
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 0.41

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N4i0.932.533.371 (4)151
C10—H10A···N1ii0.932.543.032 (4)114
C12—H12A···N2ii0.932.513.008 (4)114
C1—H1A···N30.932.502.993 (4)113
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Graduate Innovation Foundation of Nanjing University of Science and Technology.

References

First citationChang, F., Sun, H. L., Kou, H. Z. & Gao, S. (2002). Inorg. Chem. Commun. 5, 660–663.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, W.-Y., Zhou, H., Guo, J.-X. & Yuan, A.-H. (2008). Acta Cryst. E64, m1152–m1153.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMathonière, C., Podgajny, R., Guionneau, P., Labrugere, C. & Sieklucka, B. (2005). Chem. Mater. 17, 442–449.  Google Scholar
First citationPrzychodzeń, P., Korzenial, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234–2260.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWithers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352–358.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds