metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­(2,2′-bi­pyridine-κ2N,N′)heptadeca-μ-oxido-tetraoxidodicopper(II)divanadate(IV)hexavanadate(V)]

aCollege of Chemical Engineering, North East Dianli University, Jilin 132012, People's Republic of China, and bJilin Institute of Chemical Technology, Jilin 132012, People's Republic of China
*Correspondence e-mail: yhhhhyhhy@163.com

(Received 20 November 2009; accepted 3 December 2009; online 9 December 2009)

In the title complex, [Cu2V8O21(2,2′-bpy)2]n (bpy = bipyridine, C10H8N2), the asymmetric unit contains four independent V atoms briged by 11 O atoms, one of which lies on an inversion center, and a [Cu(2,2′-bpy)]2+ unit. Three V atoms in the polyoxoanion exhibit distorted tetra­hedral coordination geometries while the fourth V atom adopts a trigonal-bipyramidal geometry. The Cu atom adopts a square-pyramidal geometry being coordinated by two nitro­gen donors of a 2,2′-bpy ligand, and three bridging O atoms which are linked with V atoms. The V8 polyoxoanion is connected to [Cu(2,2′-bpy)]2+ cations, resulting in a two-dimensional layer structure extending parallel to (010). C—H⋯O hydrogen bonding consolidates the structure.

Related literature

For hybrid organic-inorganic vanadium oxides, see: Zapf et al. (1997[Zapf, P. J., Haushalter, R. C. & Zubieta, J. (1997). Chem. Commun. pp. 321-323.]); Liu et al. (2001[Liu, C.-M., Gao, S., Hu, H.-M. & Wang, Z.-M. (2001). Chem. Commun. pp. 1636-1638.], 2002[Liu, C.-M., Hou, Y. L., Zhang, J. & Gao, S. (2002). Inorg. Chem. 41, 140-144.]); Yuan et al. (2002[Yuan, M., Li, Y. G., Wang, E. B., Lu, Y., Hu, C. W., Hu, N. H. & Jia, H. Q. (2002). J. Chem. Soc., Dalton Trans. pp. 2916-2920.]). For the organic substituents, see: Girginova et al. (2005[Girginova, P. I., Paz, F. A. A., Nogueira, H. I. S., Silva, N. J. O., Amaral, V. S., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 737, 221-225.]); Paz & Klinowski (2003[Paz, F. A. A. & Klinowski, J. (2003). Chem. Commun. pp. 1484-1486.]); Shi et al. (2005[Shi, F.-N., Paz, F. A. A., Rocha, J., Klinowski, J. & Trindade, T. (2005). Inorg. Chim. Acta, 358, 927-931.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2V8O21(C10H8N2)2]

  • Mr = 591.48

  • Triclinic, [P \overline 1]

  • a = 8.0721 (16) Å

  • b = 9.764 (2) Å

  • c = 11.607 (2) Å

  • α = 85.58 (3)°

  • β = 72.79 (3)°

  • γ = 72.28 (3)°

  • V = 832.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.48 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.504, Tmax = 0.573

  • 7138 measured reflections

  • 3261 independent reflections

  • 2916 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 1.06

  • 3261 reflections

  • 282 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4 0.94 (3) 2.53 (3) 3.068 (4) 117 (2)
C2—H2⋯O6i 0.91 (3) 2.57 (3) 3.132 (4) 121 (2)
C4—H4⋯O10ii 0.89 (3) 2.53 (3) 3.330 (4) 150 (3)
C7—H5⋯O9ii 0.91 (3) 2.59 (3) 3.306 (4) 136 (3)
C9—H7⋯O6iii 0.89 (3) 2.36 (3) 3.216 (4) 160 (3)
C10—H8⋯O3 0.96 (3) 2.36 (3) 2.937 (4) 118 (2)
Symmetry codes: (i) -x, -y+2, -z+2; (ii) x+1, y-1, z; (iii) -x+1, -y+2, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL97.

Supporting information


Comment top

The introduction of hydrothermal technique and the use of organic groups which were performed not only as template agents, but also as ligands directly coordinated to the inorganic units, have led to the production of various organic-inorganic hybrid vanadium oxides with discrete clusters, one-dimensional, two-dimensional and three-dimensional structures (Zapf et al., 1997; Liu et al., 2001; Liu et al., 2002; Yuan et al.,2002). Typically, the organic substituents have been presented as charge-compensating cations and structural filling agents. Examples of such compounds include the one-dimensional and the two-dimensional phases (Paz et al., 2003; Girginova et al., 2005, Shi et al., 2005). Following interest in the hydrothermal approach to the synthesis of this family of hybrid compounds, we have synthesized a novel organic-inorganic hybrid vanadium oxide complexed with [Cu(2,2'-bpy)]2+ cation (bpy = bipyridine), [{Cu(2,2'-bpy)}2V8O21], (I). In this article, the crystal structure of the title compound is presented.

The crystals of the title compound (Fig. 1) consist of an unusual two-dimensional layer-like structure grafted with [Cu(2,2'-bpy)]2+ complex. The asymmetric unit of (I) contsians four crystallographically independent V atoms briged by 11 oxygen atoms, one of which (O5) lies on an inversion center and a [Cu(2,2'-bpy)]2+ complex. The atoms V1, V3 and V4 exhibit distorted tetrahedral coordination geometry coordinated with four bridging oxygen atoms. V1 and V4 share oxygen atoms with one {CuN2O3} square pyramid unit, one {VO5} square pyramid unit and two {VO4} tetrahedra, while V3 shares oxygen atoms with one {CuN2O3} square pyramid unit, two {VO5} square pyramids and one {VO4} tetrahedron. The atom V2 shows a trigonal bipyramidal coordination geometry with O9 and O11 atoms in axial and O6, O8 and O10 atoms at equatorial positions. With the exception of O6, the remaining four oxygen atoms are linked with two symmetry related V3 atoms and another two are linked with V1 and V4. The Cu atom adopts a square pyramidal geometry being coordinated by two nitrogen donors of a 2,2'-bpy ligand, and three bridging oxygen atoms which are linked with V1, V3, and V4, respectively. As shown in Fig. 2, two {VO4} tetrahedra shared a corner to give rise to a V2O7 moiety, which further produce a {V8O21}n layer. Interestingly, each {CuN2O3} square pyramid attaches to three {VO4} tetrahedra of the vanadate layer via corner-sharing interaction. Therefore, the {[Cu(2,2'-bpy)]2V8O21}n layer consists of 4-, 5- and 6- membered rings. The adjacent layers are stably packed together and exhibit an interesting three-dimensional supramolecular architecture.

Related literature top

For hybrid organic-inorganic vanadium oxides, see: Zapf et al. (1997); Liu et al. (2001, 2002); Yuan et al. (2002). For the organic substituents, see: Girginova et al. (2005); Paz & Klinowski (2003); Shi et al. (2005).

Experimental top

The title compound was hydrothermally synthesized under autogenous pressure. A mixture of V2O5(0.66 g,3.6 mmol), As2O3(0.48 g,2.4 mmol), CuSO4.5H2O(0.75 g, 3 mmol), 2,2'-bipy (0.18 g, 1.2 mmol), 4,4'-bipy (0.24 g, 1.2 mmol) and 18 ml water was stirred for 120 min in air; it was adjusted to pH = 6.5 with 2M KOH, and was heated in a 25-ml stainless steel reactor with a Teflon-liner at 453 K for 3 days, and then cooled to room temperature. The resulting product consisting of brown block crystals was isolated by filtration, washed with distilled water, and dried at ambient temperature (51% yield based on V).

Refinement top

The H atoms were located from difference Fourier maps and were allowed to refine with isotropic displacement factors.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with thermal ellipsoids at 50% probability. [symmetry codes: (i) 1 - x, 2 - y,1 - z; (ii) - x, 2 - y, 1 - z; (iii) -1 + x, y, z; (iv) - x, 2 - y, 2 - z.]
[Figure 2] Fig. 2. A polyhedral representation of two-dimensional layer-like structure of the title compound. All of the hydrogen atoms are omitted forclarity. [symmetry codes: (i) 1 - x, 2 - y, 1 - z; (ii) - x, 2 - y, 1 - z; (iii) -1 + x, y, z; (iv) - x, 2 - y, 2 - z; (v) 1 + x, y, z.]
Poly[bis(2,2'-bipyridine- κ2N,N')heptadeca-µ-oxido- tetraoxidodicopper(II)divanadate(IV)hexavanadate(V)] top
Crystal data top
[Cu2V8O21(C10H8N2)2]Z = 2
Mr = 591.48F(000) = 574
Triclinic, P1Dx = 2.360 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0721 (16) ÅCell parameters from 3536 reflections
b = 9.764 (2) Åθ = 2.8–26.1°
c = 11.607 (2) ŵ = 3.48 mm1
α = 85.58 (3)°T = 293 K
β = 72.79 (3)°Block, brown
γ = 72.28 (3)°0.20 × 0.18 × 0.16 mm
V = 832.4 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3261 independent reflections
Radiation source: fine-focus sealed tube2916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10 pixels mm-1θmax = 26.1°, θmin = 2.2°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.504, Tmax = 0.573l = 1414
7138 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0235P)2 + 0.7292P]
where P = (Fo2 + 2Fc2)/3
3261 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu2V8O21(C10H8N2)2]γ = 72.28 (3)°
Mr = 591.48V = 832.4 (3) Å3
Triclinic, P1Z = 2
a = 8.0721 (16) ÅMo Kα radiation
b = 9.764 (2) ŵ = 3.48 mm1
c = 11.607 (2) ÅT = 293 K
α = 85.58 (3)°0.20 × 0.18 × 0.16 mm
β = 72.79 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3261 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2916 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 0.573Rint = 0.018
7138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.39 e Å3
3261 reflectionsΔρmin = 0.37 e Å3
282 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2395 (4)0.5437 (3)0.9302 (3)0.0289 (7)
C20.2805 (5)0.4323 (3)1.0073 (3)0.0320 (7)
C30.4432 (5)0.3260 (3)0.9710 (3)0.0317 (7)
C40.5612 (4)0.3335 (3)0.8579 (3)0.0274 (6)
C50.5109 (4)0.4469 (3)0.7846 (2)0.0198 (6)
C60.6235 (4)0.4644 (3)0.6616 (2)0.0201 (6)
C70.7827 (4)0.3634 (3)0.6024 (3)0.0284 (7)
C80.8728 (4)0.3894 (3)0.4858 (3)0.0322 (7)
C90.8050 (4)0.5152 (3)0.4314 (3)0.0306 (7)
C100.6460 (4)0.6144 (3)0.4955 (3)0.0265 (6)
Cu10.31722 (4)0.71169 (3)0.70685 (3)0.01922 (9)
H10.128 (4)0.617 (3)0.952 (3)0.029 (8)*
H20.200 (4)0.430 (3)1.081 (3)0.029 (8)*
H30.472 (4)0.254 (4)1.021 (3)0.033 (9)*
H40.668 (4)0.267 (3)0.832 (3)0.029 (8)*
H50.823 (4)0.284 (4)0.644 (3)0.036 (9)*
H60.987 (4)0.315 (3)0.445 (3)0.029 (8)*
H70.865 (4)0.532 (3)0.356 (3)0.027 (8)*
H80.591 (4)0.703 (3)0.461 (3)0.026 (8)*
N10.3521 (3)0.5516 (2)0.8213 (2)0.0210 (5)
N20.5557 (3)0.5887 (2)0.6079 (2)0.0205 (5)
O10.4258 (3)0.8537 (2)0.79009 (18)0.0333 (5)
O20.3334 (3)1.0721 (2)0.41281 (17)0.0276 (4)
O30.3006 (3)0.8439 (2)0.57234 (18)0.0270 (4)
O40.0648 (3)0.8000 (2)0.79171 (18)0.0296 (5)
O50.00001.00000.50000.0330 (7)
O60.0361 (3)1.3383 (2)0.81792 (17)0.0274 (5)
O70.3076 (3)0.9544 (2)0.82587 (18)0.0308 (5)
O80.3910 (2)1.1332 (2)0.75539 (17)0.0262 (4)
O90.1379 (3)1.1176 (2)0.65337 (16)0.0244 (4)
O100.0633 (3)1.0792 (2)0.87494 (17)0.0247 (4)
O110.1608 (3)0.8630 (2)1.02173 (17)0.0284 (5)
V10.54061 (6)0.96749 (5)0.74290 (4)0.01637 (11)
V20.12848 (6)1.16967 (5)0.81859 (4)0.01575 (10)
V30.11097 (6)0.92167 (5)0.87896 (4)0.01417 (10)
V40.19437 (6)1.00633 (5)0.53774 (4)0.01430 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (16)0.0257 (16)0.0275 (16)0.0045 (14)0.0062 (13)0.0000 (13)
C20.0417 (19)0.0330 (17)0.0197 (16)0.0140 (15)0.0046 (14)0.0047 (13)
C30.0436 (19)0.0250 (16)0.0297 (17)0.0111 (14)0.0167 (15)0.0108 (13)
C40.0263 (16)0.0228 (15)0.0316 (17)0.0029 (13)0.0113 (13)0.0033 (12)
C50.0228 (14)0.0174 (13)0.0222 (14)0.0052 (11)0.0113 (11)0.0006 (11)
C60.0199 (14)0.0171 (13)0.0243 (14)0.0036 (11)0.0095 (11)0.0003 (11)
C70.0241 (15)0.0252 (16)0.0335 (17)0.0007 (13)0.0115 (13)0.0008 (13)
C80.0220 (15)0.0311 (17)0.0360 (18)0.0008 (13)0.0030 (14)0.0057 (14)
C90.0281 (16)0.0340 (17)0.0266 (17)0.0104 (14)0.0017 (13)0.0011 (13)
C100.0281 (16)0.0274 (16)0.0238 (15)0.0085 (13)0.0079 (13)0.0045 (12)
Cu10.01834 (17)0.01617 (17)0.02058 (18)0.00094 (13)0.00635 (13)0.00129 (13)
N10.0232 (12)0.0174 (11)0.0210 (12)0.0046 (9)0.0061 (10)0.0021 (9)
N20.0209 (12)0.0172 (11)0.0233 (12)0.0040 (9)0.0080 (10)0.0016 (9)
O10.0460 (13)0.0461 (13)0.0204 (10)0.0322 (11)0.0096 (10)0.0041 (9)
O20.0322 (11)0.0334 (11)0.0166 (10)0.0143 (9)0.0020 (8)0.0021 (8)
O30.0280 (11)0.0242 (10)0.0260 (11)0.0007 (9)0.0119 (9)0.0042 (8)
O40.0204 (10)0.0293 (11)0.0314 (12)0.0006 (9)0.0038 (9)0.0022 (9)
O50.0244 (15)0.0468 (19)0.0342 (17)0.0099 (14)0.0179 (13)0.0021 (14)
O60.0340 (11)0.0217 (10)0.0213 (10)0.0047 (9)0.0038 (9)0.0000 (8)
O70.0211 (10)0.0457 (13)0.0304 (12)0.0080 (9)0.0159 (9)0.0024 (10)
O80.0198 (10)0.0335 (11)0.0233 (10)0.0052 (9)0.0064 (8)0.0014 (9)
O90.0282 (11)0.0295 (11)0.0163 (10)0.0069 (9)0.0084 (8)0.0033 (8)
O100.0246 (10)0.0259 (10)0.0267 (11)0.0124 (9)0.0075 (8)0.0029 (8)
O110.0348 (12)0.0411 (12)0.0181 (10)0.0201 (10)0.0132 (9)0.0078 (9)
V10.0148 (2)0.0247 (2)0.0129 (2)0.00865 (19)0.00619 (17)0.00187 (17)
V20.0192 (2)0.0173 (2)0.0117 (2)0.00599 (18)0.00523 (17)0.00065 (17)
V30.0121 (2)0.0199 (2)0.0120 (2)0.00499 (17)0.00582 (16)0.00196 (17)
V40.0136 (2)0.0184 (2)0.0109 (2)0.00274 (17)0.00571 (17)0.00037 (16)
Geometric parameters (Å, º) top
C1—N11.333 (4)Cu1—N21.991 (2)
C1—C21.378 (4)Cu1—O12.252 (2)
C1—H10.94 (3)O1—V11.621 (2)
C2—C31.375 (5)O2—V41.763 (2)
C2—H20.91 (3)O2—V1i1.797 (2)
C3—C41.387 (4)O3—V41.6398 (19)
C3—H30.90 (3)O4—V31.661 (2)
C4—C51.379 (4)O5—V4ii1.7684 (6)
C4—H40.89 (3)O5—V41.7684 (6)
C5—N11.348 (3)O6—V21.588 (2)
C5—C61.477 (4)O7—V1iii1.7405 (19)
C6—N21.357 (3)O7—V31.8003 (19)
C6—C71.381 (4)O8—V11.686 (2)
C7—C81.379 (4)O8—V21.953 (2)
C7—H50.91 (3)O9—V41.6586 (19)
C8—C91.372 (4)O9—V21.9957 (19)
C8—H60.99 (3)O10—V31.6894 (19)
C9—C101.389 (4)O10—V21.936 (2)
C9—H70.89 (3)O11—V31.6840 (19)
C10—N21.340 (4)O11—V2iv1.9363 (19)
C10—H80.96 (3)V1—O7v1.7405 (19)
Cu1—O41.934 (2)V1—O2i1.797 (2)
Cu1—O31.957 (2)V2—O11iv1.9363 (19)
Cu1—N11.980 (2)
N1—C1—C2122.2 (3)C5—N1—Cu1114.58 (18)
N1—C1—H1116.7 (19)C10—N2—C6119.3 (2)
C2—C1—H1121.0 (19)C10—N2—Cu1126.54 (19)
C3—C2—C1118.9 (3)C6—N2—Cu1114.11 (18)
C3—C2—H2121 (2)V1—O1—Cu1136.75 (11)
C1—C2—H2120 (2)V4—O2—V1i142.02 (12)
C2—C3—C4119.2 (3)V4—O3—Cu1143.18 (12)
C2—C3—H3119 (2)V3—O4—Cu1156.12 (13)
C4—C3—H3121 (2)V4ii—O5—V4180.0
C5—C4—C3118.9 (3)V1iii—O7—V3166.30 (13)
C5—C4—H4120 (2)V1—O8—V2123.33 (11)
C3—C4—H4121 (2)V4—O9—V2154.58 (12)
N1—C5—C4121.5 (3)V3—O10—V2143.70 (12)
N1—C5—C6114.8 (2)V3—O11—V2iv153.85 (12)
C4—C5—C6123.7 (3)O1—V1—O8107.63 (11)
N2—C6—C7121.4 (3)O1—V1—O7v110.71 (11)
N2—C6—C5114.4 (2)O8—V1—O7v111.38 (10)
C7—C6—C5124.2 (3)O1—V1—O2i108.79 (10)
C8—C7—C6119.0 (3)O8—V1—O2i109.54 (10)
C8—C7—H5124 (2)O7v—V1—O2i108.75 (10)
C6—C7—H5117 (2)O6—V2—O11iv103.25 (10)
C9—C8—C7119.8 (3)O6—V2—O10107.76 (10)
C9—C8—H6122.7 (18)O11iv—V2—O1086.50 (9)
C7—C8—H6117.5 (18)O6—V2—O8107.90 (10)
C8—C9—C10119.0 (3)O11iv—V2—O887.79 (9)
C8—C9—H7119 (2)O10—V2—O8144.26 (9)
C10—C9—H7122 (2)O6—V2—O999.91 (10)
N2—C10—C9121.5 (3)O11iv—V2—O9156.82 (9)
N2—C10—H8116.0 (18)O10—V2—O985.62 (9)
C9—C10—H8122.4 (18)O8—V2—O985.96 (9)
O4—Cu1—O391.37 (9)O4—V3—O11110.09 (11)
O4—Cu1—N194.77 (10)O4—V3—O10110.01 (10)
O3—Cu1—N1170.15 (9)O11—V3—O10110.08 (10)
O4—Cu1—N2167.12 (9)O4—V3—O7110.49 (10)
O3—Cu1—N290.36 (9)O11—V3—O7108.55 (10)
N1—Cu1—N281.96 (10)O10—V3—O7107.58 (10)
O4—Cu1—O195.62 (9)O3—V4—O9109.67 (10)
O3—Cu1—O190.80 (8)O3—V4—O2111.30 (10)
N1—Cu1—O196.24 (9)O9—V4—O2107.76 (10)
N2—Cu1—O197.12 (9)O3—V4—O5108.67 (8)
C1—N1—C5119.1 (2)O9—V4—O5111.12 (7)
C1—N1—Cu1126.2 (2)O2—V4—O5108.34 (7)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x1, y, z; (iv) x, y+2, z+2; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O40.94 (3)2.53 (3)3.068 (4)117 (2)
C2—H2···O6iv0.91 (3)2.57 (3)3.132 (4)121 (2)
C4—H4···O10vi0.89 (3)2.53 (3)3.330 (4)150 (3)
C7—H5···O9vi0.91 (3)2.59 (3)3.306 (4)136 (3)
C9—H7···O6i0.89 (3)2.36 (3)3.216 (4)160 (3)
C10—H8···O30.96 (3)2.36 (3)2.937 (4)118 (2)
Symmetry codes: (i) x+1, y+2, z+1; (iv) x, y+2, z+2; (vi) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu2V8O21(C10H8N2)2]
Mr591.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0721 (16), 9.764 (2), 11.607 (2)
α, β, γ (°)85.58 (3), 72.79 (3), 72.28 (3)
V3)832.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.48
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.504, 0.573
No. of measured, independent and
observed [I > 2σ(I)] reflections
7138, 3261, 2916
Rint0.018
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.06
No. of reflections3261
No. of parameters282
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.37

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL (Sheldrick, 2008), ORTEP-3 (Burnett & Johnson, 1996), SHELXTL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O40.94 (3)2.53 (3)3.068 (4)117 (2)
C2—H2···O6i0.91 (3)2.57 (3)3.132 (4)121 (2)
C4—H4···O10ii0.89 (3)2.53 (3)3.330 (4)150 (3)
C7—H5···O9ii0.91 (3)2.59 (3)3.306 (4)136 (3)
C9—H7···O6iii0.89 (3)2.36 (3)3.216 (4)160 (3)
C10—H8···O30.96 (3)2.36 (3)2.937 (4)118 (2)
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y1, z; (iii) x+1, y+2, z+1.
 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationGirginova, P. I., Paz, F. A. A., Nogueira, H. I. S., Silva, N. J. O., Amaral, V. S., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 737, 221–225.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, C.-M., Gao, S., Hu, H.-M. & Wang, Z.-M. (2001). Chem. Commun. pp. 1636–1638.  Web of Science CSD CrossRef Google Scholar
First citationLiu, C.-M., Hou, Y. L., Zhang, J. & Gao, S. (2002). Inorg. Chem. 41, 140–144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2003). Chem. Commun. pp. 1484–1486.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F.-N., Paz, F. A. A., Rocha, J., Klinowski, J. & Trindade, T. (2005). Inorg. Chim. Acta, 358, 927–931.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, M., Li, Y. G., Wang, E. B., Lu, Y., Hu, C. W., Hu, N. H. & Jia, H. Q. (2002). J. Chem. Soc., Dalton Trans. pp. 2916–2920.  Google Scholar
First citationZapf, P. J., Haushalter, R. C. & Zubieta, J. (1997). Chem. Commun. pp. 321–323.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds