metal-organic compounds
Poly[bis(2,2′-bipyridine-κ2N,N′)heptadeca-μ-oxido-tetraoxidodicopper(II)divanadate(IV)hexavanadate(V)]
aCollege of Chemical Engineering, North East Dianli University, Jilin 132012, People's Republic of China, and bJilin Institute of Chemical Technology, Jilin 132012, People's Republic of China
*Correspondence e-mail: yhhhhyhhy@163.com
In the title complex, [Cu2V8O21(2,2′-bpy)2]n (bpy = bipyridine, C10H8N2), the contains four independent V atoms briged by 11 O atoms, one of which lies on an inversion center, and a [Cu(2,2′-bpy)]2+ unit. Three V atoms in the polyoxoanion exhibit distorted tetrahedral coordination geometries while the fourth V atom adopts a trigonal-bipyramidal geometry. The Cu atom adopts a square-pyramidal geometry being coordinated by two nitrogen donors of a 2,2′-bpy ligand, and three bridging O atoms which are linked with V atoms. The V8 polyoxoanion is connected to [Cu(2,2′-bpy)]2+ cations, resulting in a two-dimensional layer structure extending parallel to (010). C—H⋯O hydrogen bonding consolidates the structure.
Related literature
For hybrid organic-inorganic vanadium oxides, see: Zapf et al. (1997); Liu et al. (2001, 2002); Yuan et al. (2002). For the organic substituents, see: Girginova et al. (2005); Paz & Klinowski (2003); Shi et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL97.
Supporting information
10.1107/S1600536809052118/pv2241sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809052118/pv2241Isup2.hkl
The title compound was hydrothermally synthesized under autogenous pressure. A mixture of V2O5(0.66 g,3.6 mmol), As2O3(0.48 g,2.4 mmol), CuSO4.5H2O(0.75 g, 3 mmol), 2,2'-bipy (0.18 g, 1.2 mmol), 4,4'-bipy (0.24 g, 1.2 mmol) and 18 ml water was stirred for 120 min in air; it was adjusted to pH = 6.5 with 2M KOH, and was heated in a 25-ml stainless steel reactor with a Teflon-liner at 453 K for 3 days, and then cooled to room temperature. The resulting product consisting of brown block crystals was isolated by filtration, washed with distilled water, and dried at ambient temperature (51% yield based on V).
The H atoms were located from difference Fourier maps and were allowed to refine with isotropic displacement factors.
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).Fig. 1. ORTEP drawing of the title compound with thermal ellipsoids at 50% probability. [symmetry codes: (i) 1 - x, 2 - y,1 - z; (ii) - x, 2 - y, 1 - z; (iii) -1 + x, y, z; (iv) - x, 2 - y, 2 - z.] | |
Fig. 2. A polyhedral representation of two-dimensional layer-like structure of the title compound. All of the hydrogen atoms are omitted forclarity. [symmetry codes: (i) 1 - x, 2 - y, 1 - z; (ii) - x, 2 - y, 1 - z; (iii) -1 + x, y, z; (iv) - x, 2 - y, 2 - z; (v) 1 + x, y, z.] |
[Cu2V8O21(C10H8N2)2] | Z = 2 |
Mr = 591.48 | F(000) = 574 |
Triclinic, P1 | Dx = 2.360 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0721 (16) Å | Cell parameters from 3536 reflections |
b = 9.764 (2) Å | θ = 2.8–26.1° |
c = 11.607 (2) Å | µ = 3.48 mm−1 |
α = 85.58 (3)° | T = 293 K |
β = 72.79 (3)° | Block, brown |
γ = 72.28 (3)° | 0.20 × 0.18 × 0.16 mm |
V = 832.4 (3) Å3 |
Rigaku R-AXIS RAPID diffractometer | 3261 independent reflections |
Radiation source: fine-focus sealed tube | 2916 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 10 pixels mm-1 | θmax = 26.1°, θmin = 2.2° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −12→12 |
Tmin = 0.504, Tmax = 0.573 | l = −14→14 |
7138 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0235P)2 + 0.7292P] where P = (Fo2 + 2Fc2)/3 |
3261 reflections | (Δ/σ)max = 0.001 |
282 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Cu2V8O21(C10H8N2)2] | γ = 72.28 (3)° |
Mr = 591.48 | V = 832.4 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.0721 (16) Å | Mo Kα radiation |
b = 9.764 (2) Å | µ = 3.48 mm−1 |
c = 11.607 (2) Å | T = 293 K |
α = 85.58 (3)° | 0.20 × 0.18 × 0.16 mm |
β = 72.79 (3)° |
Rigaku R-AXIS RAPID diffractometer | 3261 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2916 reflections with I > 2σ(I) |
Tmin = 0.504, Tmax = 0.573 | Rint = 0.018 |
7138 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.39 e Å−3 |
3261 reflections | Δρmin = −0.37 e Å−3 |
282 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2395 (4) | 0.5437 (3) | 0.9302 (3) | 0.0289 (7) | |
C2 | 0.2805 (5) | 0.4323 (3) | 1.0073 (3) | 0.0320 (7) | |
C3 | 0.4432 (5) | 0.3260 (3) | 0.9710 (3) | 0.0317 (7) | |
C4 | 0.5612 (4) | 0.3335 (3) | 0.8579 (3) | 0.0274 (6) | |
C5 | 0.5109 (4) | 0.4469 (3) | 0.7846 (2) | 0.0198 (6) | |
C6 | 0.6235 (4) | 0.4644 (3) | 0.6616 (2) | 0.0201 (6) | |
C7 | 0.7827 (4) | 0.3634 (3) | 0.6024 (3) | 0.0284 (7) | |
C8 | 0.8728 (4) | 0.3894 (3) | 0.4858 (3) | 0.0322 (7) | |
C9 | 0.8050 (4) | 0.5152 (3) | 0.4314 (3) | 0.0306 (7) | |
C10 | 0.6460 (4) | 0.6144 (3) | 0.4955 (3) | 0.0265 (6) | |
Cu1 | 0.31722 (4) | 0.71169 (3) | 0.70685 (3) | 0.01922 (9) | |
H1 | 0.128 (4) | 0.617 (3) | 0.952 (3) | 0.029 (8)* | |
H2 | 0.200 (4) | 0.430 (3) | 1.081 (3) | 0.029 (8)* | |
H3 | 0.472 (4) | 0.254 (4) | 1.021 (3) | 0.033 (9)* | |
H4 | 0.668 (4) | 0.267 (3) | 0.832 (3) | 0.029 (8)* | |
H5 | 0.823 (4) | 0.284 (4) | 0.644 (3) | 0.036 (9)* | |
H6 | 0.987 (4) | 0.315 (3) | 0.445 (3) | 0.029 (8)* | |
H7 | 0.865 (4) | 0.532 (3) | 0.356 (3) | 0.027 (8)* | |
H8 | 0.591 (4) | 0.703 (3) | 0.461 (3) | 0.026 (8)* | |
N1 | 0.3521 (3) | 0.5516 (2) | 0.8213 (2) | 0.0210 (5) | |
N2 | 0.5557 (3) | 0.5887 (2) | 0.6079 (2) | 0.0205 (5) | |
O1 | 0.4258 (3) | 0.8537 (2) | 0.79009 (18) | 0.0333 (5) | |
O2 | 0.3334 (3) | 1.0721 (2) | 0.41281 (17) | 0.0276 (4) | |
O3 | 0.3006 (3) | 0.8439 (2) | 0.57234 (18) | 0.0270 (4) | |
O4 | 0.0648 (3) | 0.8000 (2) | 0.79171 (18) | 0.0296 (5) | |
O5 | 0.0000 | 1.0000 | 0.5000 | 0.0330 (7) | |
O6 | 0.0361 (3) | 1.3383 (2) | 0.81792 (17) | 0.0274 (5) | |
O7 | −0.3076 (3) | 0.9544 (2) | 0.82587 (18) | 0.0308 (5) | |
O8 | 0.3910 (2) | 1.1332 (2) | 0.75539 (17) | 0.0262 (4) | |
O9 | 0.1379 (3) | 1.1176 (2) | 0.65337 (16) | 0.0244 (4) | |
O10 | −0.0633 (3) | 1.0792 (2) | 0.87494 (17) | 0.0247 (4) | |
O11 | −0.1608 (3) | 0.8630 (2) | 1.02173 (17) | 0.0284 (5) | |
V1 | 0.54061 (6) | 0.96749 (5) | 0.74290 (4) | 0.01637 (11) | |
V2 | 0.12848 (6) | 1.16967 (5) | 0.81859 (4) | 0.01575 (10) | |
V3 | −0.11097 (6) | 0.92167 (5) | 0.87896 (4) | 0.01417 (10) | |
V4 | 0.19437 (6) | 1.00633 (5) | 0.53774 (4) | 0.01430 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0296 (16) | 0.0257 (16) | 0.0275 (16) | −0.0045 (14) | −0.0062 (13) | 0.0000 (13) |
C2 | 0.0417 (19) | 0.0330 (17) | 0.0197 (16) | −0.0140 (15) | −0.0046 (14) | 0.0047 (13) |
C3 | 0.0436 (19) | 0.0250 (16) | 0.0297 (17) | −0.0111 (14) | −0.0167 (15) | 0.0108 (13) |
C4 | 0.0263 (16) | 0.0228 (15) | 0.0316 (17) | −0.0029 (13) | −0.0113 (13) | 0.0033 (12) |
C5 | 0.0228 (14) | 0.0174 (13) | 0.0222 (14) | −0.0052 (11) | −0.0113 (11) | −0.0006 (11) |
C6 | 0.0199 (14) | 0.0171 (13) | 0.0243 (14) | −0.0036 (11) | −0.0095 (11) | −0.0003 (11) |
C7 | 0.0241 (15) | 0.0252 (16) | 0.0335 (17) | −0.0007 (13) | −0.0115 (13) | 0.0008 (13) |
C8 | 0.0220 (15) | 0.0311 (17) | 0.0360 (18) | −0.0008 (13) | −0.0030 (14) | −0.0057 (14) |
C9 | 0.0281 (16) | 0.0340 (17) | 0.0266 (17) | −0.0104 (14) | −0.0017 (13) | −0.0011 (13) |
C10 | 0.0281 (16) | 0.0274 (16) | 0.0238 (15) | −0.0085 (13) | −0.0079 (13) | 0.0045 (12) |
Cu1 | 0.01834 (17) | 0.01617 (17) | 0.02058 (18) | −0.00094 (13) | −0.00635 (13) | 0.00129 (13) |
N1 | 0.0232 (12) | 0.0174 (11) | 0.0210 (12) | −0.0046 (9) | −0.0061 (10) | 0.0021 (9) |
N2 | 0.0209 (12) | 0.0172 (11) | 0.0233 (12) | −0.0040 (9) | −0.0080 (10) | 0.0016 (9) |
O1 | 0.0460 (13) | 0.0461 (13) | 0.0204 (10) | −0.0322 (11) | −0.0096 (10) | 0.0041 (9) |
O2 | 0.0322 (11) | 0.0334 (11) | 0.0166 (10) | −0.0143 (9) | −0.0020 (8) | 0.0021 (8) |
O3 | 0.0280 (11) | 0.0242 (10) | 0.0260 (11) | −0.0007 (9) | −0.0119 (9) | 0.0042 (8) |
O4 | 0.0204 (10) | 0.0293 (11) | 0.0314 (12) | 0.0006 (9) | −0.0038 (9) | −0.0022 (9) |
O5 | 0.0244 (15) | 0.0468 (19) | 0.0342 (17) | −0.0099 (14) | −0.0179 (13) | −0.0021 (14) |
O6 | 0.0340 (11) | 0.0217 (10) | 0.0213 (10) | −0.0047 (9) | −0.0038 (9) | 0.0000 (8) |
O7 | 0.0211 (10) | 0.0457 (13) | 0.0304 (12) | −0.0080 (9) | −0.0159 (9) | −0.0024 (10) |
O8 | 0.0198 (10) | 0.0335 (11) | 0.0233 (10) | −0.0052 (9) | −0.0064 (8) | 0.0014 (9) |
O9 | 0.0282 (11) | 0.0295 (11) | 0.0163 (10) | −0.0069 (9) | −0.0084 (8) | −0.0033 (8) |
O10 | 0.0246 (10) | 0.0259 (10) | 0.0267 (11) | −0.0124 (9) | −0.0075 (8) | 0.0029 (8) |
O11 | 0.0348 (12) | 0.0411 (12) | 0.0181 (10) | −0.0201 (10) | −0.0132 (9) | 0.0078 (9) |
V1 | 0.0148 (2) | 0.0247 (2) | 0.0129 (2) | −0.00865 (19) | −0.00619 (17) | 0.00187 (17) |
V2 | 0.0192 (2) | 0.0173 (2) | 0.0117 (2) | −0.00599 (18) | −0.00523 (17) | 0.00065 (17) |
V3 | 0.0121 (2) | 0.0199 (2) | 0.0120 (2) | −0.00499 (17) | −0.00582 (16) | 0.00196 (17) |
V4 | 0.0136 (2) | 0.0184 (2) | 0.0109 (2) | −0.00274 (17) | −0.00571 (17) | 0.00037 (16) |
C1—N1 | 1.333 (4) | Cu1—N2 | 1.991 (2) |
C1—C2 | 1.378 (4) | Cu1—O1 | 2.252 (2) |
C1—H1 | 0.94 (3) | O1—V1 | 1.621 (2) |
C2—C3 | 1.375 (5) | O2—V4 | 1.763 (2) |
C2—H2 | 0.91 (3) | O2—V1i | 1.797 (2) |
C3—C4 | 1.387 (4) | O3—V4 | 1.6398 (19) |
C3—H3 | 0.90 (3) | O4—V3 | 1.661 (2) |
C4—C5 | 1.379 (4) | O5—V4ii | 1.7684 (6) |
C4—H4 | 0.89 (3) | O5—V4 | 1.7684 (6) |
C5—N1 | 1.348 (3) | O6—V2 | 1.588 (2) |
C5—C6 | 1.477 (4) | O7—V1iii | 1.7405 (19) |
C6—N2 | 1.357 (3) | O7—V3 | 1.8003 (19) |
C6—C7 | 1.381 (4) | O8—V1 | 1.686 (2) |
C7—C8 | 1.379 (4) | O8—V2 | 1.953 (2) |
C7—H5 | 0.91 (3) | O9—V4 | 1.6586 (19) |
C8—C9 | 1.372 (4) | O9—V2 | 1.9957 (19) |
C8—H6 | 0.99 (3) | O10—V3 | 1.6894 (19) |
C9—C10 | 1.389 (4) | O10—V2 | 1.936 (2) |
C9—H7 | 0.89 (3) | O11—V3 | 1.6840 (19) |
C10—N2 | 1.340 (4) | O11—V2iv | 1.9363 (19) |
C10—H8 | 0.96 (3) | V1—O7v | 1.7405 (19) |
Cu1—O4 | 1.934 (2) | V1—O2i | 1.797 (2) |
Cu1—O3 | 1.957 (2) | V2—O11iv | 1.9363 (19) |
Cu1—N1 | 1.980 (2) | ||
N1—C1—C2 | 122.2 (3) | C5—N1—Cu1 | 114.58 (18) |
N1—C1—H1 | 116.7 (19) | C10—N2—C6 | 119.3 (2) |
C2—C1—H1 | 121.0 (19) | C10—N2—Cu1 | 126.54 (19) |
C3—C2—C1 | 118.9 (3) | C6—N2—Cu1 | 114.11 (18) |
C3—C2—H2 | 121 (2) | V1—O1—Cu1 | 136.75 (11) |
C1—C2—H2 | 120 (2) | V4—O2—V1i | 142.02 (12) |
C2—C3—C4 | 119.2 (3) | V4—O3—Cu1 | 143.18 (12) |
C2—C3—H3 | 119 (2) | V3—O4—Cu1 | 156.12 (13) |
C4—C3—H3 | 121 (2) | V4ii—O5—V4 | 180.0 |
C5—C4—C3 | 118.9 (3) | V1iii—O7—V3 | 166.30 (13) |
C5—C4—H4 | 120 (2) | V1—O8—V2 | 123.33 (11) |
C3—C4—H4 | 121 (2) | V4—O9—V2 | 154.58 (12) |
N1—C5—C4 | 121.5 (3) | V3—O10—V2 | 143.70 (12) |
N1—C5—C6 | 114.8 (2) | V3—O11—V2iv | 153.85 (12) |
C4—C5—C6 | 123.7 (3) | O1—V1—O8 | 107.63 (11) |
N2—C6—C7 | 121.4 (3) | O1—V1—O7v | 110.71 (11) |
N2—C6—C5 | 114.4 (2) | O8—V1—O7v | 111.38 (10) |
C7—C6—C5 | 124.2 (3) | O1—V1—O2i | 108.79 (10) |
C8—C7—C6 | 119.0 (3) | O8—V1—O2i | 109.54 (10) |
C8—C7—H5 | 124 (2) | O7v—V1—O2i | 108.75 (10) |
C6—C7—H5 | 117 (2) | O6—V2—O11iv | 103.25 (10) |
C9—C8—C7 | 119.8 (3) | O6—V2—O10 | 107.76 (10) |
C9—C8—H6 | 122.7 (18) | O11iv—V2—O10 | 86.50 (9) |
C7—C8—H6 | 117.5 (18) | O6—V2—O8 | 107.90 (10) |
C8—C9—C10 | 119.0 (3) | O11iv—V2—O8 | 87.79 (9) |
C8—C9—H7 | 119 (2) | O10—V2—O8 | 144.26 (9) |
C10—C9—H7 | 122 (2) | O6—V2—O9 | 99.91 (10) |
N2—C10—C9 | 121.5 (3) | O11iv—V2—O9 | 156.82 (9) |
N2—C10—H8 | 116.0 (18) | O10—V2—O9 | 85.62 (9) |
C9—C10—H8 | 122.4 (18) | O8—V2—O9 | 85.96 (9) |
O4—Cu1—O3 | 91.37 (9) | O4—V3—O11 | 110.09 (11) |
O4—Cu1—N1 | 94.77 (10) | O4—V3—O10 | 110.01 (10) |
O3—Cu1—N1 | 170.15 (9) | O11—V3—O10 | 110.08 (10) |
O4—Cu1—N2 | 167.12 (9) | O4—V3—O7 | 110.49 (10) |
O3—Cu1—N2 | 90.36 (9) | O11—V3—O7 | 108.55 (10) |
N1—Cu1—N2 | 81.96 (10) | O10—V3—O7 | 107.58 (10) |
O4—Cu1—O1 | 95.62 (9) | O3—V4—O9 | 109.67 (10) |
O3—Cu1—O1 | 90.80 (8) | O3—V4—O2 | 111.30 (10) |
N1—Cu1—O1 | 96.24 (9) | O9—V4—O2 | 107.76 (10) |
N2—Cu1—O1 | 97.12 (9) | O3—V4—O5 | 108.67 (8) |
C1—N1—C5 | 119.1 (2) | O9—V4—O5 | 111.12 (7) |
C1—N1—Cu1 | 126.2 (2) | O2—V4—O5 | 108.34 (7) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+1; (iii) x−1, y, z; (iv) −x, −y+2, −z+2; (v) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O4 | 0.94 (3) | 2.53 (3) | 3.068 (4) | 117 (2) |
C2—H2···O6iv | 0.91 (3) | 2.57 (3) | 3.132 (4) | 121 (2) |
C4—H4···O10vi | 0.89 (3) | 2.53 (3) | 3.330 (4) | 150 (3) |
C7—H5···O9vi | 0.91 (3) | 2.59 (3) | 3.306 (4) | 136 (3) |
C9—H7···O6i | 0.89 (3) | 2.36 (3) | 3.216 (4) | 160 (3) |
C10—H8···O3 | 0.96 (3) | 2.36 (3) | 2.937 (4) | 118 (2) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (iv) −x, −y+2, −z+2; (vi) x+1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2V8O21(C10H8N2)2] |
Mr | 591.48 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.0721 (16), 9.764 (2), 11.607 (2) |
α, β, γ (°) | 85.58 (3), 72.79 (3), 72.28 (3) |
V (Å3) | 832.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.48 |
Crystal size (mm) | 0.20 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.504, 0.573 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7138, 3261, 2916 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.619 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.056, 1.06 |
No. of reflections | 3261 |
No. of parameters | 282 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.37 |
Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL (Sheldrick, 2008), ORTEP-3 (Burnett & Johnson, 1996), SHELXTL97 (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O4 | 0.94 (3) | 2.53 (3) | 3.068 (4) | 117 (2) |
C2—H2···O6i | 0.91 (3) | 2.57 (3) | 3.132 (4) | 121 (2) |
C4—H4···O10ii | 0.89 (3) | 2.53 (3) | 3.330 (4) | 150 (3) |
C7—H5···O9ii | 0.91 (3) | 2.59 (3) | 3.306 (4) | 136 (3) |
C9—H7···O6iii | 0.89 (3) | 2.36 (3) | 3.216 (4) | 160 (3) |
C10—H8···O3 | 0.96 (3) | 2.36 (3) | 2.937 (4) | 118 (2) |
Symmetry codes: (i) −x, −y+2, −z+2; (ii) x+1, y−1, z; (iii) −x+1, −y+2, −z+1. |
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Girginova, P. I., Paz, F. A. A., Nogueira, H. I. S., Silva, N. J. O., Amaral, V. S., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 737, 221–225. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Liu, C.-M., Gao, S., Hu, H.-M. & Wang, Z.-M. (2001). Chem. Commun. pp. 1636–1638. Web of Science CSD CrossRef Google Scholar
Liu, C.-M., Hou, Y. L., Zhang, J. & Gao, S. (2002). Inorg. Chem. 41, 140–144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Paz, F. A. A. & Klinowski, J. (2003). Chem. Commun. pp. 1484–1486. Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, F.-N., Paz, F. A. A., Rocha, J., Klinowski, J. & Trindade, T. (2005). Inorg. Chim. Acta, 358, 927–931. Web of Science CSD CrossRef CAS Google Scholar
Yuan, M., Li, Y. G., Wang, E. B., Lu, Y., Hu, C. W., Hu, N. H. & Jia, H. Q. (2002). J. Chem. Soc., Dalton Trans. pp. 2916–2920. Google Scholar
Zapf, P. J., Haushalter, R. C. & Zubieta, J. (1997). Chem. Commun. pp. 321–323. CSD CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The introduction of hydrothermal technique and the use of organic groups which were performed not only as template agents, but also as ligands directly coordinated to the inorganic units, have led to the production of various organic-inorganic hybrid vanadium oxides with discrete clusters, one-dimensional, two-dimensional and three-dimensional structures (Zapf et al., 1997; Liu et al., 2001; Liu et al., 2002; Yuan et al.,2002). Typically, the organic substituents have been presented as charge-compensating cations and structural filling agents. Examples of such compounds include the one-dimensional and the two-dimensional phases (Paz et al., 2003; Girginova et al., 2005, Shi et al., 2005). Following interest in the hydrothermal approach to the synthesis of this family of hybrid compounds, we have synthesized a novel organic-inorganic hybrid vanadium oxide complexed with [Cu(2,2'-bpy)]2+ cation (bpy = bipyridine), [{Cu(2,2'-bpy)}2V8O21], (I). In this article, the crystal structure of the title compound is presented.
The crystals of the title compound (Fig. 1) consist of an unusual two-dimensional layer-like structure grafted with [Cu(2,2'-bpy)]2+ complex. The asymmetric unit of (I) contsians four crystallographically independent V atoms briged by 11 oxygen atoms, one of which (O5) lies on an inversion center and a [Cu(2,2'-bpy)]2+ complex. The atoms V1, V3 and V4 exhibit distorted tetrahedral coordination geometry coordinated with four bridging oxygen atoms. V1 and V4 share oxygen atoms with one {CuN2O3} square pyramid unit, one {VO5} square pyramid unit and two {VO4} tetrahedra, while V3 shares oxygen atoms with one {CuN2O3} square pyramid unit, two {VO5} square pyramids and one {VO4} tetrahedron. The atom V2 shows a trigonal bipyramidal coordination geometry with O9 and O11 atoms in axial and O6, O8 and O10 atoms at equatorial positions. With the exception of O6, the remaining four oxygen atoms are linked with two symmetry related V3 atoms and another two are linked with V1 and V4. The Cu atom adopts a square pyramidal geometry being coordinated by two nitrogen donors of a 2,2'-bpy ligand, and three bridging oxygen atoms which are linked with V1, V3, and V4, respectively. As shown in Fig. 2, two {VO4} tetrahedra shared a corner to give rise to a V2O7 moiety, which further produce a {V8O21}n layer. Interestingly, each {CuN2O3} square pyramid attaches to three {VO4} tetrahedra of the vanadate layer via corner-sharing interaction. Therefore, the {[Cu(2,2'-bpy)]2V8O21}n layer consists of 4-, 5- and 6- membered rings. The adjacent layers are stably packed together and exhibit an interesting three-dimensional supramolecular architecture.