metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[tris­­(ethane-1,2-di­amine)nickel(II)] octa­cyanidomolybdate(IV) penta­hydrate

aMolecular Materials Research Center, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing 210094, People's Republic of China
*Correspondence e-mail: zhangchinjust@yahoo.com

(Received 25 November 2009; accepted 3 December 2009; online 9 December 2009)

In the title compound, [Ni(C2H8N2)3]2[Mo(CN)8]·5H2O, the NiII ion is coordinated by six N atoms from three ethane-1,2-diamine ligands in a distorted octa­hedral geometry, while the MoIV atom is coordianted by eight cyanide ligands. The Ni—N bond distances range from 2.1061 (18) to 2.1425 (18) Å. The Mo—C and C—N distances in the [Mo(CN)8] unit range from 2.154 (2) to 2.174 (2) Å and 1.149 (3) to 1.156 (3) Å, respectively. The complex ions and water mol­ecules are linked by weak N—H⋯N/O and O—H⋯N/O hydrogen bonds into a three-demensional structure.

Related literature

For octacyanidometalates as mol­ecular building units for transition metal complex assemblies, see: Przychodzeń et al. (2006[Przychodzeń, P., Korzenial, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234-2260.]); Withers et al. (2005[Withers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352-358.]). For a related structure, see: Liu et al. (2008[Liu, W.-Y., Zhou, H., Guo, J.-X. & Yuan, A.-H. (2008). Acta Cryst. E64, m1152-m1153.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H8N2)3]2[Mo(CN)8]·5H2O

  • Mr = 872.18

  • Monoclinic, P 21 /c

  • a = 13.384 (3) Å

  • b = 16.465 (3) Å

  • c = 21.094 (6) Å

  • β = 124.45 (2)°

  • V = 3833.2 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 153 K

  • 0.40 × 0.23 × 0.18 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.770, Tmax = 1.000

  • 36947 measured reflections

  • 6993 independent reflections

  • 6541 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.059

  • S = 1.16

  • 6993 reflections

  • 469 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13B⋯N8i 0.92 2.32 3.138 (3) 148
N11—H11A⋯N5ii 0.92 2.26 3.149 (3) 163
N11—H11B⋯N8i 0.92 2.51 3.285 (3) 142
N12—H12B⋯O1ii 0.92 2.35 3.230 (3) 161
N14—H14A⋯N5i 0.92 2.35 3.231 (3) 160
N14—H14B⋯N4ii 0.92 2.40 3.178 (3) 143
N15—H15A⋯N7iii 0.92 2.38 3.189 (3) 146
N15—H15B⋯N4iv 0.92 2.34 3.223 (3) 162
N19—H19B⋯N4iv 0.92 2.40 3.226 (3) 149
N18—H18B⋯N1iii 0.92 2.48 3.364 (3) 161
N16—H16B⋯N1iii 0.83 (3) 2.34 (3) 3.141 (3) 162 (2)
N20—H20A⋯O5v 0.92 2.26 3.152 (3) 164
O3—H3B⋯N8vi 0.76 (3) 2.32 (3) 3.066 (3) 167 (3)
O4—H4A⋯O2vii 0.81 (3) 1.99 (3) 2.779 (3) 164 (3)
O4—H4B⋯O2viii 0.80 (3) 2.15 (3) 2.927 (3) 166 (3)
O5—H5A⋯N6ix 0.84 (3) 1.93 (3) 2.767 (3) 177 (3)
O5—H5B⋯N7ii 0.77 (3) 2.04 (3) 2.795 (3) 170 (3)
N13—H13A⋯N6 0.92 2.44 3.214 (3) 142
N12—H12A⋯N1 0.92 2.23 3.135 (3) 166
N19—H19A⋯N2 0.92 2.39 3.207 (3) 149
N17—H17A⋯N2 0.92 2.42 3.183 (3) 141
N17—H17B⋯N3 0.92 2.50 3.401 (3) 166
N16—H16A⋯O1 0.84 (3) 2.35 (3) 3.183 (3) 173 (2)
N20—H20B⋯O2 0.92 2.57 3.353 (3) 143
O2—H2A⋯N3 0.76 (3) 2.04 (3) 2.788 (3) 169 (3)
O2—H2B⋯O5 0.80 (3) 1.89 (3) 2.671 (2) 167 (3)
O1—H1A⋯O3 0.73 (3) 2.05 (3) 2.767 (3) 166 (3)
O1—H1B⋯N2 0.86 (3) 2.07 (3) 2.906 (3) 161 (3)
O3—H3A⋯O4 0.81 (3) 2.01 (3) 2.788 (3) 161 (3)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z; (vii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008)[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]; cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Octacyanometalates are well known as molecular building units for transition metal complex-assemblies (Przychodzeń et al., 2006; Withers et al., 2005). The title compound, (I), [Ni(C2H8N2)3]2[Mo(CN)8].5H2O, has been prepared in my laboratory which is different from it's analogue [Ni(C2H8N2)3]2[Mo(CN)8].2H2O (Liu et al., 2008). The crystal structure of (I) has been presented in this article.

As illustrated in Fig. 1, Ni2+ has a octahedral geometry, coordinated by six nitrogen atoms from three ethane-1,2-diamine ligands. The Mo metal center is coordinated by eight cyanide ligands, forming a dodecahedron configuration. The Ni—N bond distances range from 2.1061 (18) to 2.1425 (18) Å. The distances Mo—C and C—N in the [Mo(CN)8] unit range from 2.154 (2) to 2.174 (2) and 1.149 (3) to 1.156 (3) Å, respectively.

The complex ions and water molecules are linked by weak N—H···N/O and O—H···N/O hydrogen bonds into a three-demensional structure (Fig. 2).

Related literature top

For octacyanometalates as molecular building units for transition metal complex assemblies, see: Przychodzeń et al. (2006); Withers et al. (2005). For a related structure, see: Liu et al. (2008).

Experimental top

A solution of K4[Mo(CN)8].2H2O (0.1 mmol) in water (1 ml) was added into a solution of Ni(NO3)2.6H2O (0.4 mmol) and ethylenediamine (0.8 mmol) in water. After vigorous stirring and filtration, 2 ml deionized water and 4 ml (CH3)2CHOH were successively laid on the surface of above filtrate. Blue block crystals were obtained after five days.

Refinement top

The H atoms bonded to N16 and all the H atoms of water molecules were located in a difference Fourier map and their positional parameters refined with Uiso = 1.2Ueq, and with the N—H distances are 0.83 (3) Å and 0.84 (3) Å, while the O—H distances range from 0.73 (3) Å to 0.86 (3) Å. Other H atoms were positioned geometrically and refined with riding model, with Uiso = 1.2Ueq for H atoms, the N—H bond is 0.92 Å and C—H bond is 0.99 Å in ethane-1,2-diamine.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of a portion of the title compound, with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The unit cell packing diagram.
Bis[tris(ethane-1,2-diamine)nickel(II)] octacyanidomolybdate(IV) pentahydrate top
Crystal data top
[Ni(C2H8N2)3]2[Mo(CN)8]·5H2OF(000) = 1824
Mr = 872.18Dx = 1.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13627 reflections
a = 13.384 (3) Åθ = 3.1–25.4°
b = 16.465 (3) ŵ = 1.35 mm1
c = 21.094 (6) ÅT = 153 K
β = 124.45 (2)°Block, blue
V = 3833.2 (18) Å30.40 × 0.23 × 0.18 mm
Z = 4
Data collection top
Rigaku Mercury2 CCD
diffractometer
6993 independent reflections
Radiation source: fine-focus sealed tube6541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 14.6306 pixels mm-1θmax = 25.4°, θmin = 3.1°
dtprofit.ref scansh = 1416
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.770, Tmax = 1.000l = 2425
36947 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0206P)2 + 2.378P]
where P = (Fo2 + 2Fc2)/3
6993 reflections(Δ/σ)max = 0.001
469 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni(C2H8N2)3]2[Mo(CN)8]·5H2OV = 3833.2 (18) Å3
Mr = 872.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.384 (3) ŵ = 1.35 mm1
b = 16.465 (3) ÅT = 153 K
c = 21.094 (6) Å0.40 × 0.23 × 0.18 mm
β = 124.45 (2)°
Data collection top
Rigaku Mercury2 CCD
diffractometer
6993 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6541 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.030
36947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.50 e Å3
6993 reflectionsΔρmin = 0.47 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.10866 (2)0.093711 (16)0.382610 (15)0.01256 (7)
N90.17129 (17)0.18144 (11)0.46994 (10)0.0186 (4)
H9A0.11310.19100.47940.022*
H9B0.24010.16290.51460.022*
N130.02691 (16)0.02061 (11)0.28218 (10)0.0171 (4)
H13A0.03460.04540.24610.020*
H13B0.06530.02890.29400.020*
N110.14481 (16)0.00649 (11)0.45622 (10)0.0178 (4)
H11A0.12550.00680.49040.021*
H11B0.09830.05030.42760.021*
N100.09103 (17)0.19948 (10)0.31784 (10)0.0187 (4)
H10A0.15210.20070.31010.022*
H10B0.01790.19860.27070.022*
N120.29012 (16)0.06858 (11)0.41751 (10)0.0191 (4)
H12A0.29660.07430.37660.023*
H12B0.34360.10380.45580.023*
N140.07363 (16)0.10052 (11)0.34935 (11)0.0198 (4)
H14A0.08710.06290.37600.024*
H14B0.08980.15140.35940.024*
C130.1028 (2)0.00881 (14)0.25067 (13)0.0230 (5)
H13C0.11260.03920.27500.028*
H13D0.14880.00100.19460.028*
C140.1514 (2)0.08341 (14)0.26610 (13)0.0247 (5)
H14C0.15080.13020.23690.030*
H14D0.23590.07390.24970.030*
C120.3166 (2)0.01600 (14)0.44594 (14)0.0253 (5)
H12C0.40470.02660.47460.030*
H12D0.27390.05440.40220.030*
C90.1983 (2)0.25741 (13)0.44501 (13)0.0230 (5)
H9C0.27720.25270.45130.028*
H9D0.20270.30360.47660.028*
C110.2739 (2)0.02749 (15)0.49823 (13)0.0262 (5)
H11C0.28620.08470.51570.031*
H11D0.32160.00770.54410.031*
C100.0983 (2)0.27144 (14)0.36156 (13)0.0228 (5)
H10C0.02030.27990.35570.027*
H10D0.11600.32040.34220.027*
Ni20.62629 (2)0.412996 (16)0.323530 (15)0.01399 (7)
N150.81820 (15)0.41301 (10)0.40039 (10)0.0166 (4)
H15A0.84230.45300.43680.020*
H15B0.84420.36380.42530.020*
N190.61894 (16)0.28343 (11)0.31654 (10)0.0189 (4)
H19A0.57040.26730.26600.023*
H19B0.69540.26270.33750.023*
N170.43848 (16)0.42928 (11)0.23603 (11)0.0214 (4)
H17A0.41610.39820.19370.026*
H17B0.39240.41400.25380.026*
N180.61559 (15)0.54090 (10)0.33354 (10)0.0177 (4)
H18A0.65120.55470.38430.021*
H18B0.65620.56730.31610.021*
N160.66946 (17)0.42220 (13)0.24089 (11)0.0190 (4)
H16A0.621 (2)0.3965 (15)0.2004 (15)0.023*
H16B0.669 (2)0.4709 (16)0.2299 (14)0.023*
N200.59687 (17)0.38966 (12)0.41047 (11)0.0235 (4)
H20A0.64790.42120.45290.028*
H20B0.51830.40230.39290.028*
C150.87242 (19)0.42762 (14)0.35667 (12)0.0193 (5)
H15C0.95470.40370.38440.023*
H15D0.87930.48670.35140.023*
C170.4204 (2)0.51621 (14)0.21559 (14)0.0267 (5)
H17C0.33290.52950.18580.032*
H17D0.45070.52880.18340.032*
C180.4876 (2)0.56545 (14)0.28779 (14)0.0265 (5)
H18C0.48070.62390.27500.032*
H18D0.45230.55660.31770.032*
C200.6204 (2)0.30258 (15)0.43130 (14)0.0272 (5)
H20C0.58200.28620.45790.033*
H20D0.70870.29300.46650.033*
C160.7927 (2)0.38919 (14)0.27786 (13)0.0214 (5)
H16C0.82440.40190.24650.026*
H16D0.79160.32940.28270.026*
C190.5692 (2)0.25294 (14)0.35914 (14)0.0253 (5)
H19C0.59110.19510.37260.030*
H19D0.47970.25730.32670.030*
Mo10.111354 (15)0.247118 (10)0.133637 (10)0.00983 (6)
N50.13021 (16)0.43815 (11)0.09021 (10)0.0181 (4)
N40.11016 (17)0.27440 (11)0.05063 (11)0.0209 (4)
N30.28667 (17)0.33753 (11)0.30220 (11)0.0216 (4)
N20.37242 (16)0.25891 (11)0.14992 (10)0.0184 (4)
N10.27223 (17)0.10556 (11)0.26561 (11)0.0209 (4)
N80.08227 (17)0.34005 (11)0.16017 (11)0.0221 (4)
N70.11681 (17)0.09390 (11)0.03435 (11)0.0209 (4)
N60.08414 (18)0.11512 (12)0.12231 (11)0.0252 (4)
C10.21581 (19)0.15483 (12)0.22018 (12)0.0142 (4)
C20.28126 (19)0.25428 (12)0.14361 (11)0.0132 (4)
C30.22444 (18)0.30556 (12)0.24402 (12)0.0141 (4)
C40.03505 (19)0.26598 (12)0.01393 (13)0.0147 (4)
C50.12387 (18)0.37181 (13)0.10493 (11)0.0130 (4)
C60.01764 (19)0.16153 (13)0.12495 (12)0.0163 (5)
C70.11469 (18)0.14779 (13)0.06841 (12)0.0145 (4)
C80.01401 (19)0.30899 (12)0.15114 (12)0.0154 (5)
O20.37621 (16)0.42633 (12)0.43668 (10)0.0305 (4)
H2A0.349 (3)0.3983 (17)0.4024 (17)0.037*
H2B0.323 (3)0.4372 (17)0.4418 (16)0.037*
O10.47759 (16)0.34100 (11)0.07886 (11)0.0301 (4)
H1A0.531 (3)0.3204 (18)0.0844 (17)0.036*
H1B0.453 (2)0.3068 (17)0.0983 (16)0.036*
O30.68688 (18)0.25632 (13)0.12495 (14)0.0444 (6)
H3A0.675 (3)0.209 (2)0.1129 (19)0.053*
H3B0.742 (3)0.273 (2)0.1277 (19)0.053*
O40.59365 (19)0.09990 (13)0.07796 (12)0.0411 (5)
H4A0.530 (3)0.1019 (19)0.0361 (19)0.049*
H4B0.614 (3)0.0535 (19)0.0811 (18)0.049*
O50.21973 (16)0.48333 (11)0.46628 (10)0.0264 (4)
H5A0.178 (2)0.5220 (17)0.4379 (16)0.032*
H5B0.184 (2)0.4617 (17)0.4796 (16)0.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01319 (14)0.01301 (14)0.01182 (14)0.00044 (10)0.00729 (12)0.00008 (10)
N90.0217 (10)0.0201 (10)0.0164 (10)0.0020 (8)0.0122 (9)0.0015 (8)
N130.0204 (10)0.0156 (9)0.0153 (9)0.0000 (7)0.0102 (8)0.0005 (7)
N110.0210 (10)0.0171 (10)0.0159 (10)0.0031 (7)0.0108 (8)0.0017 (7)
N100.0224 (10)0.0185 (10)0.0164 (10)0.0004 (8)0.0117 (9)0.0012 (8)
N120.0180 (10)0.0211 (10)0.0183 (10)0.0017 (8)0.0103 (8)0.0006 (8)
N140.0188 (10)0.0174 (10)0.0241 (10)0.0008 (8)0.0127 (9)0.0005 (8)
C130.0214 (12)0.0262 (13)0.0150 (11)0.0077 (10)0.0065 (10)0.0025 (10)
C140.0144 (11)0.0316 (14)0.0217 (12)0.0009 (10)0.0064 (10)0.0030 (10)
C120.0164 (12)0.0248 (13)0.0290 (13)0.0049 (10)0.0094 (11)0.0035 (11)
C90.0308 (13)0.0170 (12)0.0249 (13)0.0051 (10)0.0181 (12)0.0059 (10)
C110.0229 (13)0.0250 (13)0.0220 (13)0.0028 (10)0.0076 (11)0.0084 (10)
C100.0311 (13)0.0163 (12)0.0280 (13)0.0038 (10)0.0209 (12)0.0030 (10)
Ni20.01181 (14)0.01327 (14)0.01495 (15)0.00075 (10)0.00641 (12)0.00024 (11)
N150.0161 (9)0.0149 (9)0.0160 (9)0.0013 (7)0.0074 (8)0.0001 (7)
N190.0154 (9)0.0167 (10)0.0196 (10)0.0007 (7)0.0068 (8)0.0004 (8)
N170.0160 (10)0.0183 (10)0.0227 (10)0.0025 (8)0.0065 (9)0.0017 (8)
N180.0141 (9)0.0171 (10)0.0174 (10)0.0014 (7)0.0061 (8)0.0026 (8)
N160.0199 (10)0.0182 (10)0.0146 (10)0.0044 (8)0.0073 (9)0.0020 (8)
N200.0212 (10)0.0268 (11)0.0253 (11)0.0003 (8)0.0149 (9)0.0014 (9)
C150.0141 (11)0.0212 (12)0.0228 (12)0.0009 (9)0.0105 (10)0.0000 (9)
C170.0204 (12)0.0202 (12)0.0287 (14)0.0023 (10)0.0074 (11)0.0018 (10)
C180.0182 (12)0.0181 (12)0.0319 (14)0.0030 (9)0.0075 (11)0.0004 (10)
C200.0254 (13)0.0310 (14)0.0269 (13)0.0036 (11)0.0159 (12)0.0099 (11)
C160.0201 (12)0.0235 (12)0.0246 (12)0.0013 (9)0.0150 (11)0.0034 (10)
C190.0229 (12)0.0186 (12)0.0319 (14)0.0002 (9)0.0140 (11)0.0077 (10)
Mo10.01006 (9)0.00914 (9)0.00991 (9)0.00012 (6)0.00542 (8)0.00013 (7)
N50.0196 (10)0.0171 (10)0.0177 (10)0.0000 (8)0.0106 (9)0.0000 (8)
N40.0184 (10)0.0190 (10)0.0172 (11)0.0046 (8)0.0052 (9)0.0012 (8)
N30.0190 (10)0.0229 (10)0.0206 (11)0.0011 (8)0.0098 (9)0.0039 (9)
N20.0156 (10)0.0194 (10)0.0200 (10)0.0009 (7)0.0099 (9)0.0012 (8)
N10.0275 (11)0.0179 (10)0.0178 (10)0.0049 (8)0.0131 (9)0.0025 (8)
N80.0221 (10)0.0187 (10)0.0301 (11)0.0020 (8)0.0175 (10)0.0004 (8)
N70.0199 (10)0.0202 (10)0.0180 (10)0.0019 (8)0.0080 (9)0.0012 (8)
N60.0288 (11)0.0201 (11)0.0305 (12)0.0045 (9)0.0190 (10)0.0000 (9)
C10.0169 (11)0.0139 (11)0.0147 (11)0.0013 (9)0.0108 (10)0.0035 (9)
C20.0166 (11)0.0101 (10)0.0110 (10)0.0006 (8)0.0066 (9)0.0011 (8)
C30.0141 (11)0.0127 (11)0.0176 (12)0.0026 (8)0.0103 (10)0.0020 (9)
C40.0158 (11)0.0107 (10)0.0196 (12)0.0029 (8)0.0112 (10)0.0011 (9)
C50.0091 (10)0.0179 (12)0.0101 (10)0.0001 (8)0.0044 (9)0.0023 (9)
C60.0181 (11)0.0148 (11)0.0158 (11)0.0019 (9)0.0094 (10)0.0002 (9)
C70.0113 (10)0.0162 (11)0.0130 (11)0.0022 (8)0.0051 (9)0.0022 (9)
C80.0168 (11)0.0103 (10)0.0165 (11)0.0030 (8)0.0080 (10)0.0009 (8)
O20.0196 (9)0.0414 (11)0.0261 (10)0.0052 (8)0.0103 (8)0.0191 (8)
O10.0243 (10)0.0319 (11)0.0342 (10)0.0006 (8)0.0166 (9)0.0035 (8)
O30.0301 (11)0.0394 (12)0.0691 (15)0.0067 (9)0.0313 (12)0.0098 (11)
O40.0329 (11)0.0402 (12)0.0326 (11)0.0027 (9)0.0079 (9)0.0032 (10)
O50.0286 (10)0.0261 (10)0.0318 (10)0.0075 (7)0.0214 (9)0.0102 (8)
Geometric parameters (Å, º) top
Ni1—N92.1061 (18)N17—H17A0.9200
Ni1—N132.1240 (18)N17—H17B0.9200
Ni1—N112.1253 (18)N18—C181.470 (3)
Ni1—N142.1261 (19)N18—H18A0.9200
Ni1—N122.1422 (19)N18—H18B0.9200
Ni1—N102.1425 (18)N16—C161.473 (3)
N9—C91.479 (3)N16—H16A0.84 (3)
N9—H9A0.9200N16—H16B0.83 (3)
N9—H9B0.9200N20—C201.480 (3)
N13—C131.479 (3)N20—H20A0.9200
N13—H13A0.9200N20—H20B0.9200
N13—H13B0.9200C15—C161.515 (3)
N11—C111.469 (3)C15—H15C0.9900
N11—H11A0.9200C15—H15D0.9900
N11—H11B0.9200C17—C181.495 (3)
N10—C101.470 (3)C17—H17C0.9900
N10—H10A0.9200C17—H17D0.9900
N10—H10B0.9200C18—H18C0.9900
N12—C121.478 (3)C18—H18D0.9900
N12—H12A0.9200C20—C191.508 (3)
N12—H12B0.9200C20—H20C0.9900
N14—C141.476 (3)C20—H20D0.9900
N14—H14A0.9200C16—H16C0.9900
N14—H14B0.9200C16—H16D0.9900
C13—C141.510 (3)C19—H19C0.9900
C13—H13C0.9900C19—H19D0.9900
C13—H13D0.9900Mo1—C72.154 (2)
C14—H14C0.9900Mo1—C62.155 (2)
C14—H14D0.9900Mo1—C32.157 (2)
C12—C111.514 (3)Mo1—C22.165 (2)
C12—H12C0.9900Mo1—C82.166 (2)
C12—H12D0.9900Mo1—C12.170 (2)
C9—C101.509 (3)Mo1—C42.171 (2)
C9—H9C0.9900Mo1—C52.174 (2)
C9—H9D0.9900N5—C51.152 (3)
C11—H11C0.9900N4—C41.156 (3)
C11—H11D0.9900N3—C31.149 (3)
C10—H10C0.9900N2—C21.152 (3)
C10—H10D0.9900N1—C11.152 (3)
Ni2—N202.1174 (19)N8—C81.153 (3)
Ni2—N152.1248 (19)N7—C71.152 (3)
Ni2—N182.1293 (18)N6—C61.150 (3)
Ni2—N162.130 (2)O2—H2A0.76 (3)
Ni2—N172.1326 (19)O2—H2B0.80 (3)
Ni2—N192.1368 (18)O1—H1A0.73 (3)
N15—C151.481 (3)O1—H1B0.86 (3)
N15—H15A0.9200O3—H3A0.81 (3)
N15—H15B0.9200O3—H3B0.76 (3)
N19—C191.476 (3)O4—H4A0.81 (3)
N19—H19A0.9200O4—H4B0.80 (3)
N19—H19B0.9200O5—H5A0.84 (3)
N17—C171.475 (3)O5—H5B0.77 (3)
N9—Ni1—N13170.62 (7)C19—N19—Ni2108.45 (13)
N9—Ni1—N1194.58 (7)C19—N19—H19A110.0
N13—Ni1—N1193.71 (7)Ni2—N19—H19A110.0
N9—Ni1—N1493.85 (7)C19—N19—H19B110.0
N13—Ni1—N1481.56 (7)Ni2—N19—H19B110.0
N11—Ni1—N1491.52 (7)H19A—N19—H19B108.4
N9—Ni1—N1291.09 (7)C17—N17—Ni2107.06 (13)
N13—Ni1—N1294.44 (7)C17—N17—H17A110.3
N11—Ni1—N1281.59 (7)Ni2—N17—H17A110.3
N14—Ni1—N12171.83 (7)C17—N17—H17B110.3
N9—Ni1—N1081.14 (7)Ni2—N17—H17B110.3
N13—Ni1—N1090.91 (7)H17A—N17—H17B108.6
N11—Ni1—N10173.87 (7)C18—N18—Ni2109.01 (13)
N14—Ni1—N1093.14 (7)C18—N18—H18A109.9
N12—Ni1—N1094.05 (7)Ni2—N18—H18A109.9
C9—N9—Ni1108.99 (13)C18—N18—H18B109.9
C9—N9—H9A109.9Ni2—N18—H18B109.9
Ni1—N9—H9A109.9H18A—N18—H18B108.3
C9—N9—H9B109.9C16—N16—Ni2106.35 (14)
Ni1—N9—H9B109.9C16—N16—H16A109.9 (17)
H9A—N9—H9B108.3Ni2—N16—H16A112.8 (17)
C13—N13—Ni1109.53 (13)C16—N16—H16B109.2 (17)
C13—N13—H13A109.8Ni2—N16—H16B109.7 (17)
Ni1—N13—H13A109.8H16A—N16—H16B109 (2)
C13—N13—H13B109.8C20—N20—Ni2108.66 (14)
Ni1—N13—H13B109.8C20—N20—H20A110.0
H13A—N13—H13B108.2Ni2—N20—H20A110.0
C11—N11—Ni1109.11 (13)C20—N20—H20B110.0
C11—N11—H11A109.9Ni2—N20—H20B110.0
Ni1—N11—H11A109.9H20A—N20—H20B108.3
C11—N11—H11B109.9N15—C15—C16109.06 (17)
Ni1—N11—H11B109.9N15—C15—H15C109.9
H11A—N11—H11B108.3C16—C15—H15C109.9
C10—N10—Ni1108.10 (13)N15—C15—H15D109.9
C10—N10—H10A110.1C16—C15—H15D109.9
Ni1—N10—H10A110.1H15C—C15—H15D108.3
C10—N10—H10B110.1N17—C17—C18108.89 (19)
Ni1—N10—H10B110.1N17—C17—H17C109.9
H10A—N10—H10B108.4C18—C17—H17C109.9
C12—N12—Ni1106.64 (13)N17—C17—H17D109.9
C12—N12—H12A110.4C18—C17—H17D109.9
Ni1—N12—H12A110.4H17C—C17—H17D108.3
C12—N12—H12B110.4N18—C18—C17109.01 (19)
Ni1—N12—H12B110.4N18—C18—H18C109.9
H12A—N12—H12B108.6C17—C18—H18C109.9
C14—N14—Ni1106.74 (13)N18—C18—H18D109.9
C14—N14—H14A110.4C17—C18—H18D109.9
Ni1—N14—H14A110.4H18C—C18—H18D108.3
C14—N14—H14B110.4N20—C20—C19109.06 (19)
Ni1—N14—H14B110.4N20—C20—H20C109.9
H14A—N14—H14B108.6C19—C20—H20C109.9
N13—C13—C14109.63 (18)N20—C20—H20D109.9
N13—C13—H13C109.7C19—C20—H20D109.9
C14—C13—H13C109.7H20C—C20—H20D108.3
N13—C13—H13D109.7N16—C16—C15108.02 (18)
C14—C13—H13D109.7N16—C16—H16C110.1
H13C—C13—H13D108.2C15—C16—H16C110.1
N14—C14—C13108.17 (18)N16—C16—H16D110.1
N14—C14—H14C110.1C15—C16—H16D110.1
C13—C14—H14C110.1H16C—C16—H16D108.4
N14—C14—H14D110.1N19—C19—C20109.02 (18)
C13—C14—H14D110.1N19—C19—H19C109.9
H14C—C14—H14D108.4C20—C19—H19C109.9
N12—C12—C11108.12 (18)N19—C19—H19D109.9
N12—C12—H12C110.1C20—C19—H19D109.9
C11—C12—H12C110.1H19C—C19—H19D108.3
N12—C12—H12D110.1C7—Mo1—C675.78 (8)
C11—C12—H12D110.1C7—Mo1—C3140.62 (8)
H12C—C12—H12D108.4C6—Mo1—C3115.01 (8)
N9—C9—C10108.08 (18)C7—Mo1—C272.74 (7)
N9—C9—H9C110.1C6—Mo1—C2142.27 (8)
C10—C9—H9C110.1C3—Mo1—C279.27 (8)
N9—C9—H9D110.1C7—Mo1—C8139.83 (8)
C10—C9—H9D110.1C6—Mo1—C870.20 (8)
H9C—C9—H9D108.4C3—Mo1—C875.18 (8)
N11—C11—C12109.32 (18)C2—Mo1—C8146.12 (7)
N11—C11—H11C109.8C7—Mo1—C176.67 (8)
C12—C11—H11C109.8C6—Mo1—C173.59 (8)
N11—C11—H11D109.8C3—Mo1—C171.31 (8)
C12—C11—H11D109.8C2—Mo1—C179.34 (8)
H11C—C11—H11D108.3C8—Mo1—C1112.25 (8)
N10—C10—C9107.98 (18)C7—Mo1—C472.35 (8)
N10—C10—H10C110.1C6—Mo1—C480.91 (8)
C9—C10—H10C110.1C3—Mo1—C4144.32 (8)
N10—C10—H10D110.1C2—Mo1—C4108.21 (8)
C9—C10—H10D110.1C8—Mo1—C481.63 (8)
H10C—C10—H10D108.4C1—Mo1—C4143.77 (8)
N20—Ni2—N1594.36 (8)C7—Mo1—C5120.43 (8)
N20—Ni2—N1892.16 (7)C6—Mo1—C5141.11 (8)
N15—Ni2—N1892.54 (7)C3—Mo1—C576.22 (8)
N20—Ni2—N16172.50 (8)C2—Mo1—C574.54 (7)
N15—Ni2—N1681.60 (8)C8—Mo1—C578.02 (7)
N18—Ni2—N1694.32 (8)C1—Mo1—C5141.38 (8)
N20—Ni2—N1793.83 (8)C4—Mo1—C572.66 (7)
N15—Ni2—N17169.95 (7)N1—C1—Mo1178.93 (18)
N18—Ni2—N1781.32 (7)N2—C2—Mo1178.90 (19)
N16—Ni2—N1790.88 (8)N3—C3—Mo1178.08 (18)
N20—Ni2—N1981.64 (7)N4—C4—Mo1177.19 (18)
N15—Ni2—N1992.37 (7)N5—C5—Mo1179.32 (18)
N18—Ni2—N19172.37 (7)N6—C6—Mo1178.1 (2)
N16—Ni2—N1992.17 (7)N7—C7—Mo1179.01 (18)
N17—Ni2—N1994.59 (7)N8—C8—Mo1178.22 (17)
C15—N15—Ni2109.36 (13)H2A—O2—H2B106 (3)
C15—N15—H15A109.8H1A—O1—H1B103 (3)
Ni2—N15—H15A109.8H3A—O3—H3B112 (3)
C15—N15—H15B109.8H4A—O4—H4B103 (3)
Ni2—N15—H15B109.8H5A—O5—H5B108 (3)
H15A—N15—H15B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13B···N8i0.922.323.138 (3)148
N11—H11A···N5ii0.922.263.149 (3)163
N11—H11B···N8i0.922.513.285 (3)142
N12—H12B···O1ii0.922.353.230 (3)161
N14—H14A···N5i0.922.353.231 (3)160
N14—H14B···N4ii0.922.403.178 (3)143
N15—H15A···N7iii0.922.383.189 (3)146
N15—H15B···N4iv0.922.343.223 (3)162
N19—H19B···N4iv0.922.403.226 (3)149
N18—H18B···N1iii0.922.483.364 (3)161
N16—H16B···N1iii0.83 (3)2.34 (3)3.141 (3)162 (2)
N20—H20A···O5v0.922.263.152 (3)164
O3—H3B···N8vi0.76 (3)2.32 (3)3.066 (3)167 (3)
O4—H4A···O2vii0.81 (3)1.99 (3)2.779 (3)164 (3)
O4—H4B···O2viii0.80 (3)2.15 (3)2.927 (3)166 (3)
O5—H5A···N6ix0.84 (3)1.93 (3)2.767 (3)177 (3)
O5—H5B···N7ii0.77 (3)2.04 (3)2.795 (3)170 (3)
N13—H13A···N60.922.443.214 (3)142
N12—H12A···N10.922.233.135 (3)166
N19—H19A···N20.922.393.207 (3)149
N17—H17A···N20.922.423.183 (3)141
N17—H17B···N30.922.503.401 (3)166
N16—H16A···O10.84 (3)2.35 (3)3.183 (3)173 (2)
N20—H20B···O20.922.573.353 (3)143
O2—H2A···N30.76 (3)2.04 (3)2.788 (3)169 (3)
O2—H2B···O50.80 (3)1.89 (3)2.671 (2)167 (3)
O1—H1A···O30.73 (3)2.05 (3)2.767 (3)166 (3)
O1—H1B···N20.86 (3)2.07 (3)2.906 (3)161 (3)
O3—H3A···O40.81 (3)2.01 (3)2.788 (3)161 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x, y+1/2, z1/2; (viii) x+1, y1/2, z+1/2; (ix) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H8N2)3]2[Mo(CN)8]·5H2O
Mr872.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)13.384 (3), 16.465 (3), 21.094 (6)
β (°) 124.45 (2)
V3)3833.2 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.40 × 0.23 × 0.18
Data collection
DiffractometerRigaku Mercury2 CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
36947, 6993, 6541
Rint0.030
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.059, 1.16
No. of reflections6993
No. of parameters469
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.47

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13B···N8i0.922.323.138 (3)147.7
N11—H11A···N5ii0.922.263.149 (3)162.5
N11—H11B···N8i0.922.513.285 (3)142.4
N12—H12B···O1ii0.922.353.230 (3)160.5
N14—H14A···N5i0.922.353.231 (3)160.0
N14—H14B···N4ii0.922.403.178 (3)142.5
N15—H15A···N7iii0.922.383.189 (3)146.3
N15—H15B···N4iv0.922.343.223 (3)161.7
N19—H19B···N4iv0.922.403.226 (3)149.3
N18—H18B···N1iii0.922.483.364 (3)161.0
N16—H16B···N1iii0.83 (3)2.34 (3)3.141 (3)162 (2)
N20—H20A···O5v0.922.263.152 (3)164.0
O3—H3B···N8vi0.76 (3)2.32 (3)3.066 (3)167 (3)
O4—H4A···O2vii0.81 (3)1.99 (3)2.779 (3)164 (3)
O4—H4B···O2viii0.80 (3)2.15 (3)2.927 (3)166 (3)
O5—H5A···N6ix0.84 (3)1.93 (3)2.767 (3)177 (3)
O5—H5B···N7ii0.77 (3)2.04 (3)2.795 (3)170 (3)
N13—H13A···N60.922.443.214 (3)141.7
N12—H12A···N10.922.233.135 (3)166.3
N19—H19A···N20.922.393.207 (3)148.5
N17—H17A···N20.922.423.183 (3)140.7
N17—H17B···N30.922.503.401 (3)165.5
N16—H16A···O10.84 (3)2.35 (3)3.183 (3)173 (2)
N20—H20B···O20.922.573.353 (3)143.1
O2—H2A···N30.76 (3)2.04 (3)2.788 (3)169 (3)
O2—H2B···O50.80 (3)1.89 (3)2.671 (2)167 (3)
O1—H1A···O30.73 (3)2.05 (3)2.767 (3)166 (3)
O1—H1B···N20.86 (3)2.07 (3)2.906 (3)161 (3)
O3—H3A···O40.81 (3)2.01 (3)2.788 (3)161 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x, y+1/2, z1/2; (viii) x+1, y1/2, z+1/2; (ix) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Graduate Innovation Foundation of Nanjing University of Science and Technology.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, W.-Y., Zhou, H., Guo, J.-X. & Yuan, A.-H. (2008). Acta Cryst. E64, m1152–m1153.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPrzychodzeń, P., Korzenial, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234–2260.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWithers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352–358.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds