organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethane-1,2-diaminium 4,5-di­chloro­phthalate

aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 4 December 2009; accepted 17 December 2009; online 24 December 2009)

In the structure of the title compound, C2H10N22+·C8H2Cl2O42−, the dications and dianions form hydrogen-bonded ribbon substructures which enclose conjoint cyclic R21(7), R12(7) and R42(8) associations and extend down the c-axis direction. These ribbons inter-associate down b, giving a two-dimensional sheet structure. In the dianions, one of the carboxyl­ate groups is essentially coplanar with the benzene ring, while the other is normal to it [C—C—C—O torsion angles = 177.67 (12) and 81.94 (17)°, respectively].

Related literature

For structures of 4,5-dichloro­phthalates, see: Mattes & Dorau (1986[Mattes, R. & Dorau, A. (1986). Z. Naturforsch. Teil B, 41, 808-814.]); Bozkurt et al. (2006[Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258-o4260.]); Smith & Wermuth (2010a[Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. E66, o133.],b[Smith, G. & Wermuth, U. D. (2010b). J. Chem. Crystallogr. In the press.]); Smith et al. (2009[Smith, G., Wermuth, U. D. & White, J. M. (2009). Acta Cryst. C65, o103-o107.]). For the structure of a dianionic 4,5-dichloro­phthalate, see: Büyükgüngör & Odabaşoğlu (2007[Büyükgüngör, O. & Odabaşoğlu, M. (2007). Acta Cryst. E63, o4376-o4377.]). For ring associations, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·C8H2Cl2O42−

  • Mr = 295.12

  • Monoclinic, P 21 /c

  • a = 12.892 (1) Å

  • b = 8.3881 (5) Å

  • c = 11.8873 (8) Å

  • β = 104.761 (7)°

  • V = 1243.06 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 200 K

  • 0.35 × 0.30 × 0.28 mm

Data collection
  • Oxford Diffraction Gemini-S CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.980

  • 15108 measured reflections

  • 2442 independent reflections

  • 2174 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.071

  • S = 1.09

  • 2442 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11A⋯O21i 0.990 (17) 1.756 (17) 2.7452 (16) 177.3 (18)
N1A—H12A⋯O22ii 0.91 (2) 1.88 (2) 2.7709 (16) 168.3 (16)
N1A—H13A⋯O12iii 0.91 (2) 1.90 (2) 2.7876 (17) 163.8 (17)
N2A—H21A⋯O12iii 0.907 (19) 1.974 (18) 2.8306 (16) 157.0 (16)
N2A—H21A⋯O22iii 0.907 (19) 2.502 (19) 3.0370 (17) 118.2 (13)
N2A—H22A⋯O11iv 0.921 (18) 1.824 (19) 2.7221 (17) 164.2 (17)
N2A—H23A⋯O22 0.922 (18) 1.922 (18) 2.7619 (16) 150.5 (18)
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The structures of proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the aliphatic nitrogen Lewis bases are not common. The 1:1 ammonium and the tetra(n-butyl)ammonium salts (Mattes & Dorau, 1986), the tetramethylammonium salt (Bozkurt et al., 2006) and the salts with the aliphatic amines isopropylamine (Smith & Wermuth, 2010a), diisopropylamine and hexamethylenediamine (a monohydrate) (Smith & Wermuth, 2010b) constitute the only reported examples. With one exception, the ammonium salt (a monohydrate) (Mattes & Dorau, 1986), one-dimensional hydrogen-bonded chain structures are found. In these, the DCPA anions are essentially planar with a short intramolecular carboxylic acid OH···Ocarboxyl hydrogen bond. These 'planar' anions are also found in the majority of the hydrogen DCPA salts of the aromatic Lewis bases (Smith et al., 2009). The structures of dianionic 4,5-dichlorophthalate salts with any Lewis base are also uncommon, the only known example being the bis(4-ethylanilinium) salt (Büyükgüngör & Odabaşoğlu, 2007). As expected in the structure of the salt reported here, C2H10N22+ C8H3Cl2O42- (I), the DCPA dianions are nonplanar.

The title compound (I) was the product obtained from the 1:1 stoichiometric reaction of DCPA with ethylenediamine in methanol but suitable crystals were obtained only after recrystallization from water. In (I) (Fig. 1), the ethylenediaminium dications and the DCPA dianions form head-to-tail N+H···Ocarboxyl hydrogen-bonding interactions (Table 1), forming crosslinked duplex chains which extend along the c cell direction (Fig. 2). These ribbon structures enclose conjoint R21(7), R12(7) and R42(8) associations (Etter et al., 1990). These ribbons associate down the b axial direction, giving a two-dimensional network structure (Fig. 3).

Within the DCPA dianions one of the carboxylate groups is essentially coplanar with the benzene ring [torsion angle C2–C1–C11–O11, 177.67 (12)°] while the other is normal to the plane [torsion angle C1–C2–C21–O22, 81.94 (17)°]. The coplanar carboxyl group is stabilized by a short intramolecular aromatic ring CH···Ocarboxyl interaction [2.7594 (18) Å].

Related literature top

For structures of 4,5-dichlorophthalates, see: Mattes & Dorau (1986); Bozkurt et al. (2006); Smith & Wermuth (2010a,b); Smith et al. (2009). For the structure of a dianionic 4,5-dichlorophthalate, see: Büyükgüngör & Odabaşoğlu (2007). For ring associations, see: Etter et al. (1990).

Experimental top

The title compound (I) was synthesized by heating together 1 mmol quantities of ethylenediamine and 4,5-dichlorophthalic acid in 50 ml of methanol for 10 min under reflux. After concentration to ca. 30 ml, total room-temperature evaporation of the hot-filtered solution gave a white non-crystalline solid which was redissolved in water, finally providing colourless flat prisms (m.p. 529 K).

Refinement top

Hydrogen atoms of the aminium groups were located from a difference Fourier map and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C–Haromatic = 0.93 Å; C–Haliphatic = 0.97 Å] and treated as riding models with Uiso(H) = 1.2Ueq (C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom numbering scheme for the ethylenediaminium cation and the 4,5-dichlorophthalate dianion in (I). Non-H atoms are shown as 50% probability displacement ellipsoids. The inter-species hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The one-dimensional hydrogen-bonded ribbon substructures of (I) extending along the c axial direction in the unit cell. Hydrogen bonds are shown as dashed lines and non-interactive H atoms are omitted. For symmetry codes see Table 1.
[Figure 3] Fig. 3. The inter-ribbon hydrogen-bonding in the two-dimensional structure of (I) extending down b axis in the unit cell.
Ethane-1,2-diaminium 4,5-dichlorophthalate top
Crystal data top
C2H10N22+·C8H2Cl2O42F(000) = 608
Mr = 295.12Dx = 1.577 Mg m3
Monoclinic, P21/cMelting point: 529 K
Hall symbol: -P 2ycMo Kα radiation, λ = 0.71073 Å
a = 12.892 (1) ÅCell parameters from 7149 reflections
b = 8.3881 (5) Åθ = 3.2–28.8°
c = 11.8873 (8) ŵ = 0.53 mm1
β = 104.761 (7)°T = 200 K
V = 1243.06 (15) Å3Block, colourless
Z = 40.35 × 0.30 × 0.28 mm
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
2442 independent reflections
Radiation source: Enhance (Mo) X-ray source2174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.955, Tmax = 0.980k = 1010
15108 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.2917P]
where P = (Fo2 + 2Fc2)/3
2442 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C2H10N22+·C8H2Cl2O42V = 1243.06 (15) Å3
Mr = 295.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.892 (1) ŵ = 0.53 mm1
b = 8.3881 (5) ÅT = 200 K
c = 11.8873 (8) Å0.35 × 0.30 × 0.28 mm
β = 104.761 (7)°
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
2442 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2174 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.980Rint = 0.025
15108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.28 e Å3
2442 reflectionsΔρmin = 0.24 e Å3
187 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl41.04287 (3)0.27191 (5)0.51216 (3)0.0296 (1)
Cl51.08544 (3)0.02709 (6)0.72577 (4)0.0387 (2)
O110.70606 (8)0.03906 (13)0.79920 (9)0.0278 (3)
O120.59071 (7)0.12464 (13)0.68133 (9)0.0241 (3)
O210.58818 (8)0.28845 (12)0.44570 (8)0.0219 (3)
O220.63839 (8)0.45072 (12)0.59914 (8)0.0212 (3)
C10.77314 (10)0.12670 (16)0.67229 (11)0.0161 (4)
C20.75625 (11)0.24125 (16)0.58269 (11)0.0157 (3)
C30.83974 (11)0.28193 (16)0.53312 (12)0.0179 (4)
C40.94056 (11)0.21453 (17)0.57457 (12)0.0199 (4)
C50.95892 (11)0.10573 (18)0.66647 (13)0.0218 (4)
C60.87486 (11)0.06009 (17)0.71298 (12)0.0209 (4)
C110.68289 (10)0.06677 (16)0.72250 (11)0.0164 (4)
C210.65154 (11)0.33073 (16)0.53918 (11)0.0160 (4)
N1A0.60404 (10)1.02002 (15)0.31902 (11)0.0207 (4)
N2A0.58594 (10)0.68181 (14)0.42855 (11)0.0180 (3)
C1A0.69095 (11)0.91156 (17)0.38430 (13)0.0209 (4)
C2A0.65833 (11)0.81624 (17)0.47846 (12)0.0212 (4)
H30.827800.354500.472000.0220*
H60.886600.015800.771900.0250*
H11A0.6007 (14)1.117 (2)0.3654 (15)0.034 (5)*
H12A0.6168 (15)1.044 (2)0.2495 (18)0.040 (5)*
H13A0.5379 (16)0.975 (2)0.3039 (16)0.033 (5)*
H14A0.753800.974700.419700.0250*
H15A0.710400.838400.329900.0250*
H21A0.5195 (15)0.718 (2)0.3925 (15)0.029 (5)*
H22A0.6153 (15)0.623 (2)0.3789 (16)0.036 (5)*
H23A0.5786 (15)0.610 (2)0.4847 (17)0.038 (5)*
H24A0.722100.774600.532500.0250*
H25A0.622200.886000.521400.0250*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0202 (2)0.0375 (2)0.0362 (2)0.0003 (2)0.0163 (2)0.0087 (2)
Cl50.0177 (2)0.0531 (3)0.0476 (3)0.0126 (2)0.0126 (2)0.0243 (2)
O110.0252 (5)0.0276 (6)0.0354 (6)0.0057 (4)0.0163 (5)0.0159 (5)
O120.0151 (5)0.0308 (6)0.0275 (5)0.0017 (4)0.0073 (4)0.0096 (4)
O210.0203 (5)0.0256 (6)0.0190 (5)0.0050 (4)0.0038 (4)0.0004 (4)
O220.0263 (5)0.0179 (5)0.0222 (5)0.0040 (4)0.0113 (4)0.0004 (4)
C10.0164 (6)0.0151 (6)0.0183 (7)0.0008 (5)0.0070 (5)0.0009 (5)
C20.0169 (6)0.0146 (6)0.0162 (6)0.0008 (5)0.0054 (5)0.0021 (5)
C30.0199 (7)0.0177 (7)0.0173 (7)0.0013 (5)0.0067 (5)0.0017 (5)
C40.0178 (7)0.0212 (7)0.0235 (7)0.0028 (5)0.0106 (6)0.0009 (6)
C50.0151 (7)0.0243 (8)0.0267 (7)0.0040 (6)0.0067 (6)0.0035 (6)
C60.0202 (7)0.0211 (7)0.0220 (7)0.0021 (6)0.0067 (6)0.0066 (6)
C110.0178 (7)0.0149 (6)0.0180 (7)0.0013 (5)0.0073 (5)0.0012 (5)
C210.0180 (7)0.0156 (7)0.0172 (7)0.0008 (5)0.0098 (5)0.0040 (5)
N1A0.0227 (7)0.0195 (6)0.0224 (6)0.0010 (5)0.0105 (5)0.0022 (5)
N2A0.0183 (6)0.0159 (6)0.0220 (6)0.0010 (5)0.0092 (5)0.0003 (5)
C1A0.0181 (7)0.0183 (7)0.0283 (7)0.0013 (5)0.0095 (6)0.0008 (6)
C2A0.0220 (7)0.0207 (7)0.0202 (7)0.0012 (6)0.0041 (6)0.0020 (6)
Geometric parameters (Å, º) top
Cl4—C41.7379 (15)C1—C111.5220 (19)
Cl5—C51.7340 (15)C1—C61.394 (2)
O11—C111.2529 (17)C2—C211.516 (2)
O12—C111.2614 (16)C2—C31.395 (2)
O21—C211.2511 (16)C3—C41.388 (2)
O22—C211.2694 (17)C4—C51.397 (2)
N1A—C1A1.497 (2)C5—C61.390 (2)
N2A—C2A1.4874 (19)C3—H30.9300
N1A—H13A0.91 (2)C6—H60.9300
N1A—H12A0.91 (2)C1A—C2A1.520 (2)
N1A—H11A0.990 (17)C1A—H14A0.9700
N2A—H22A0.921 (18)C1A—H15A0.9700
N2A—H21A0.907 (19)C2A—H24A0.9700
N2A—H23A0.922 (18)C2A—H25A0.9700
C1—C21.4096 (18)
H12A—N1A—H13A107.0 (17)C4—C5—C6119.81 (13)
H11A—N1A—H13A106.3 (16)C1—C6—C5120.77 (13)
C1A—N1A—H12A108.8 (12)O11—C11—C1117.07 (12)
C1A—N1A—H13A113.0 (11)O12—C11—C1117.36 (11)
C1A—N1A—H11A110.1 (10)O11—C11—O12125.55 (13)
H11A—N1A—H12A111.7 (15)O21—C21—O22124.97 (13)
C2A—N2A—H22A110.1 (12)O21—C21—C2119.07 (12)
C2A—N2A—H23A112.1 (12)O22—C21—C2115.84 (11)
C2A—N2A—H21A110.8 (11)C2—C3—H3120.00
H21A—N2A—H23A107.6 (17)C4—C3—H3120.00
H22A—N2A—H23A104.4 (16)C1—C6—H6120.00
H21A—N2A—H22A111.7 (16)C5—C6—H6120.00
C2—C1—C6119.08 (13)N1A—C1A—C2A112.98 (12)
C2—C1—C11122.35 (12)N2A—C2A—C1A111.62 (11)
C6—C1—C11118.50 (12)N1A—C1A—H14A109.00
C3—C2—C12116.79 (12)N1A—C1A—H15A109.00
C1—C2—C3119.92 (13)C2A—C1A—H14A109.00
C1—C2—C12123.24 (12)C2A—C1A—H15A109.00
C2—C3—C4120.28 (13)H14A—C1A—H15A108.00
C3—C4—C5120.05 (13)N2A—C2A—H24A109.00
Cl4—C4—C5121.27 (11)N2A—C2A—H25A109.00
Cl4—C4—C3118.67 (11)C1A—C2A—H24A109.00
Cl5—C5—C4121.40 (11)C1A—C2A—H25A109.00
Cl5—C5—C6118.78 (11)H24A—C2A—H25A108.00
C6—C1—C2—C32.4 (2)C1—C2—C21—O2281.94 (17)
C6—C1—C2—C12174.79 (12)C3—C2—C21—O2180.75 (17)
C11—C1—C2—C3174.55 (12)C3—C2—C21—O2295.33 (15)
C11—C1—C2—C128.3 (2)C2—C3—C4—Cl4178.67 (11)
C2—C1—C6—C50.2 (2)C2—C3—C4—C50.2 (2)
C11—C1—C6—C5177.24 (13)Cl4—C4—C5—Cl51.97 (18)
C2—C1—C11—O11177.67 (12)Cl4—C4—C5—C6178.80 (11)
C2—C1—C11—O120.51 (19)C3—C4—C5—Cl5176.52 (11)
C6—C1—C11—O110.70 (18)C3—C4—C5—C62.7 (2)
C6—C1—C11—O12177.48 (12)Cl5—C5—C6—C1176.53 (11)
C1—C2—C3—C42.4 (2)C4—C5—C6—C12.7 (2)
C12—C2—C3—C4174.95 (12)N1A—C1A—C2A—N2A76.45 (15)
C1—C2—C21—O21101.99 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11A···O21i0.990 (17)1.756 (17)2.7452 (16)177.3 (18)
N1A—H12A···O22ii0.91 (2)1.88 (2)2.7709 (16)168.3 (16)
N1A—H13A···O12iii0.91 (2)1.90 (2)2.7876 (17)163.8 (17)
N2A—H21A···O12iii0.907 (19)1.974 (18)2.8306 (16)157.0 (16)
N2A—H21A···O22iii0.907 (19)2.502 (19)3.0370 (17)118.2 (13)
N2A—H22A···O11iv0.921 (18)1.824 (19)2.7221 (17)164.2 (17)
N2A—H23A···O220.922 (18)1.922 (18)2.7619 (16)150.5 (18)
C6—H6···O110.932.442.7594 (18)100
C1A—H15A···O11iv0.972.543.3052 (18)136
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC2H10N22+·C8H2Cl2O42
Mr295.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.892 (1), 8.3881 (5), 11.8873 (8)
β (°) 104.761 (7)
V3)1243.06 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.35 × 0.30 × 0.28
Data collection
DiffractometerOxford Diffraction Gemini-S CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
15108, 2442, 2174
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.09
No. of reflections2442
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11A···O21i0.990 (17)1.756 (17)2.7452 (16)177.3 (18)
N1A—H12A···O22ii0.91 (2)1.88 (2)2.7709 (16)168.3 (16)
N1A—H13A···O12iii0.91 (2)1.90 (2)2.7876 (17)163.8 (17)
N2A—H21A···O12iii0.907 (19)1.974 (18)2.8306 (16)157.0 (16)
N2A—H21A···O22iii0.907 (19)2.502 (19)3.0370 (17)118.2 (13)
N2A—H22A···O11iv0.921 (18)1.824 (19)2.7221 (17)164.2 (17)
N2A—H23A···O220.922 (18)1.922 (18)2.7619 (16)150.5 (18)
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the School of Physical and Chemical Sciences, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBüyükgüngör, O. & Odabaşoğlu, M. (2007). Acta Cryst. E63, o4376–o4377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMattes, R. & Dorau, A. (1986). Z. Naturforsch. Teil B, 41, 808–814.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010a). Acta Cryst. E66, o133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010b). J. Chem. Crystallogr. In the press.  Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2009). Acta Cryst. C65, o103–o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds