metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m59-m60

catena-Poly[zinc(II)-μ3-{hydrogen [1-hydr­­oxy-2-(3-pyridinio)ethane-1,1-di­yl]di­phospho­nato}]

aDepartment of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: xhhuang@fzu.edu.cn

(Received 4 November 2009; accepted 8 December 2009; online 12 December 2009)

In the polymeric title compound, [Zn(C7H9NO7P2)]n, the zinc(II) centre displays a tetra­hedral coordination geometry provided by four O atoms from three different phospho­nate groups. The crystal structure consists of ladder chains parallel to the b axis built up from vertex-sharing of ZnO4 and PO3C tetra­hedra. The chains are linked by strong intra- and inter­chain O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular assembly.

Related literature

For the chemistry and applications of phospho­nate metal derivatives, see: Clearfield (1998[Clearfield, A. (1998). Prog. Inorg. Chem. 47, 371-510.]); Cheetham et al. (1999[Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]); Maeda (2004[Maeda, K. (2004). Microporous Mesoporous Mater. 73, 47-55.]); Gossman et al. (2003[Gossman, W. L., Wilson, S. R. & Oldfield, E. (2003). Acta Cryst. C59, m33-m36.]); Redman-Furey et al. (2005[Redman-Furey, N. L., Dicks, M., Bigalow-Kern, A. S., Cambron, R. T., Lubey, G., Lester, C. & Vaughn, D. (2005). J. Pharm. Sci. 94, 893-911.]); Mao et al. (2006[Mao, J., Mukherjee, S., Zhang, Y., Cao, R., Sanders, J. M., Song, Y., Zhang, Y., Meints, G. A., Gao, Y. G., Mukkamala, D., Hudock, M. P. & Oldfield, E. (2006). J. Am. Chem. Soc. 128, 14485-14497.]); Stahl et al. (2006[Stahl, K., Oddershede, J., Preikschat, H., Fischer, E. & Bennekou, J. S. (2006). Acta Cryst. C62, m112-m115.]); Zhu et al. (2000[Zhu, J., Bu, X., Feng, P. & Stucky, G. D. (2000). J. Am. Chem. Soc. 122, 11563-11564.]); Burkholder et al. (2003[Burkholder, E., Golub, V., O'Connor, C. J. & Zubieta, J. (2003). Inorg. Chem. 42, 6729-6740.]); Bauer et al. (2007[Bauer, S., Marrot, J., Devic, T., Férey, G. & Stock, N. (2007). Inorg. Chem. 46, 9998-10002.]); Du et al. (2007[Du, Z. Y., Li, X. L., Liu, Q. Y. & Mao, J. G. (2007). Cryst. Growth Des. 7, 1501-1507.]). For examples of structure types exhibited by phospho­nate metal derivatives, see: Fu et al. (2006[Fu, R. B., Huang, X. H., Hu, S. M., Xiang, S. C. & Wu, X. T. (2006). Inorg. Chem. 45, 5254-5256.]); Yang et al. (2007[Yang, Y. F., Ma, Y. S., Bao, S. S. & Zheng, L. M. (2007). Dalton Trans. pp. 4222-4226.]). For related structures, see: Zhang & Zheng (2008[Zhang, Z. C. & Zheng, L. M. (2008). Inorg. Chem. Commun. pp. 1243-1245.]); Zhang, Gao & Zheng (2007[Zhang, Z. C., Gao, S. & Zheng, L. M. (2007). Dalton Trans. pp. 4681-4684.]); Zhang, Bao & Zheng (2007[Zhang, Z. C., Bao, S. S. & Zheng, L. M. (2007). Chin. J. Inorg. Chem. pp. 1851-1856.]); Hu et al. (2008[Hu, J. Y., Zhao, J. A., Hou, H. W. & Fan, Y. T. (2008). Inorg. Chem. Commun. pp. 1110-1112.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H9NO7P2)]

  • Mr = 346.46

  • Monoclinic, P 21 /n

  • a = 13.609 (3) Å

  • b = 5.4809 (11) Å

  • c = 14.818 (3) Å

  • β = 101.21 (3)°

  • V = 1084.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.59 mm−1

  • T = 293 K

  • 0.20 × 0.12 × 0.08 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.626, Tmax = 0.820

  • 8250 measured reflections

  • 2519 independent reflections

  • 2473 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.061

  • S = 1.04

  • 2519 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O5i 1.8791 (16)
Zn1—O2 1.9121 (15)
Zn1—O4ii 1.9243 (15)
Zn1—O1ii 1.9888 (15)
P1—O2 1.4907 (15)
P1—O1 1.5182 (15)
P1—O3 1.5594 (16)
P1—C1 1.843 (2)
P2—O6 1.4953 (15)
P2—O5 1.5115 (16)
P2—O4 1.5236 (15)
P2—C1 1.851 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1iii 0.82 1.85 2.637 (2) 161
N1—H1⋯O6iv 0.86 1.68 2.533 (2) 170
O7—H7⋯O4ii 0.82 1.97 2.758 (2) 163
Symmetry codes: (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

The chemistry of metal phosphonates has gained increasing attention because of its potential applications in catalysis, ion exchange, and magnetic materials (Clearfield, 1998; Cheetham et al., 1999; Maeda, 2004). Many efforts have been devoted to the preparation of metal phosphonate materials with new structure types, especially the open-framework and microporous structures (Clearfield, 1998; Fu et al. 2006; Yang et al., 2007). Among these, a promising approach is to modify the organic moieties of the phosphonate ligand RPO32- by other functional groups, such as amino, carboxylate, macrocycle or a second phosphonate group (Zhu et al., 2000; Burkholder et al., 2003; Bauer et al., 2007; Du et al., 2007). Phosphonates based on 1-hydroxyl-1,1-biphosphonic acid, H2O3PC(OH)(R)PO3H2, such as pamidronate, risedronate, zoledronate and alendronate, are of great research interest because of their applications in therapeutics and as mineral scale inhibitors (Gossman et al., 2003; Redman-Furey et al., 2005; Mao et al., 2006; Stahl et al., 2006). One challenge for studying such materials is that they usually exhibit poor crystallinity, which makes their structural analysis a difficult task. In the case of risedronate acid, (1-hydroxy-2-(3-pyridyl)ethylidene-1,1-diphosphonic acid, abbreviated as H4hedp), only five metal complexes have hitherto been structurally characterized, namely, Co3(Hhedp)(H2O)4.H2O (Zhang et al., 2008), Co(H2hedp)(H2O) (Zhang, Gao & Zheng, 2007), Gd(H2hedp)(H3hedp).2H2O (Zhang, Bao & Zheng, 2007), Cd(H2hedp)(H2O) and Cd2Cl(Hhedp)(H2O) (Hu et al., 2008). The hedp ligands of these complexs display a variety of coordination modes. We report herein the synthesis and structural studies of a new metal risedronate complex, Zn(H2hedp).

The crystal structure of the title complex is built up from one-dimensional covalent zinc phosphonate chains. The asymmetric unit consists of one independent zinc(II) cation and one unique H2hedp2- ligand in general position. A detail of the chain structure is illustrated in Fig. 1, showing the coordination geometry of the Zn ion. Every hydrogen phosphonate group of the H2hedp2- ligand has two bound oxygen atoms coordinating to the Zn atom and one unbound oxygen atom. The P—Obound bond lengths fall in the range from 1.4907 (15) to 1.5236 (15) Å. The P1—O3 bond length of 1.5594 (16) Å is consistent with the protonation of this unbound oxygen, while the P2—O6 of 1.4953 (15) Å indicates a P=O double bond. The hydroxyl group attached to the C1 atom linking the two phosphorus atoms is uncoordinated, which involves an intramolecular hydrogen bonding interaction with the O4 atom as hydrogen acceptor (Table 2). As shown in Fig. 1, the H2hedp2- ligand adopts a (κ1-κ1)-(κ2)-µ3 bridging mode, i.e. the H2hedp2- ligand coordinates one Zn site in a bidentate fashion forming a Zn1iii—O1—P1—C1—P2—O4 six-member chelate ring (symmetry code: (iii) x, 1 + y, z), and two crystallographically equivalent Zn ions in monodentate fashion. The Zn1 atom is tetrahedrally coordinated by four hydrogen phosphonate oxygen atoms from three H2hedp2- ligands, with the Zn—O bond lengths in the region of 1.8790 (16)–1.9894 (15) Å, and the O—Zn—O bond angles of 99.06 (6)–117.67 (7)°, respectively (Table 1). Two ZnO4 tetrahedra are connected by two P2O3C tetrahedra resulting in a Zn2P2 four-membered ring. These rings are further linked by four PO3C tetrahedra through Zn—O bonds, forming a novel one dimensional ladder chain paralleling to the b axis. As the best of our knowledge, no examples of this ladder structure had been reported up to date. The chains are cross-linked by strong hydrogen bonds with four adjacent chains to form a three-dimensional supramolecular assembly (Fig. 2). Two interchain hydrogen bonding interactions are observed involving the two unbound hydrogen phosphonate oxygen atoms. The pendant O6 atom as a hydrogen acceptor, is responsible of the first inter-chain H-bond with the protonated pyridyl N atom as donators with the O···N distance of 2.533 (2) Å. The second inter-chain H-bond is constructed from the protonated O3 and O1 atom as hydrogen donators and acceptors, respectively, with O···O distances of 2.637 (2) Å.

Related literature top

For the chemistry and applications of phosphonate metal derivatives, see: Clearfield (1998); Cheetham et al. (1999); Maeda (2004); Gossman et al. (2003); Redman-Furey et al. (2005); Mao et al. (2006); Stahl et al. (2006); Zhu et al. (2000); Burkholder et al. (2003); Bauer et al. (2007); Du et al. (2007). For examples of structure types exhibited by phosphonate metal derivatives, see: Fu et al. (2006); Yang et al. (2007). For related structures, see: Zhang et al. (2008); Zhang, Gao & Zheng (2007); Zhang, Bao & Zheng (2007); Hu et al. (2008).

Experimental top

NaH3hedp.2.5H2O (0.1405 g, 0.4 mmol) and ZnO (0.0162 g, 0.2 mmol) were dissolved in 6 ml water. The mixture was placed in a 15-ml Teflon-lined stainless steel vessel and heated at 433 K for 72 h. After slowly cooled to room temperature during 24 h, colourless block crystals of the title complex were collected by filtration, washed with distilled water, and dried in air (yield: 45% on the basis of Zn source).

Refinement top

H atoms bonded to O atoms were located from a difference Fourier map while H atoms attached to C atoms were placed in calculated positions. All H atoms were refined using a riding model approximation, with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and wuth Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with the atomic numbering scheme of the asymmetric unit and some symmetry-related atoms (50% probability displacement ellipsoids). All H atoms bonded to C atoms are omitted for clarity. Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) x, -1 + y, z; (iii) x, 1 + y, z.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. All atoms are shown as isotropic spheres of arbitrary size. H atoms bonded to C atoms are omitted for clarity. The H-bonding interactions are shown as dashed lines.
catena-Poly[zinc(II)-µ3-{hydrogen [1-hydroxy-2-(3-pyridinio)ethane-1,1-diyl]diphosphonato}] top
Crystal data top
[Zn(C7H9NO7P2)]F(000) = 696
Mr = 346.46Dx = 2.123 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3898 reflections
a = 13.609 (3) Åθ = 3.1–27.7°
b = 5.4809 (11) ŵ = 2.59 mm1
c = 14.818 (3) ÅT = 293 K
β = 101.21 (3)°Block, colorless
V = 1084.2 (4) Å30.20 × 0.12 × 0.08 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2519 independent reflections
Radiation source: fine-focus sealed tube2473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.7°, θmin = 3.7°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 1998)
h = 1717
Tmin = 0.626, Tmax = 0.820k = 77
8250 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: mixed
wR(F2) = 0.061H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0218P)2 + 1.6938P]
where P = (Fo2 + 2Fc2)/3
2519 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Zn(C7H9NO7P2)]V = 1084.2 (4) Å3
Mr = 346.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.609 (3) ŵ = 2.59 mm1
b = 5.4809 (11) ÅT = 293 K
c = 14.818 (3) Å0.20 × 0.12 × 0.08 mm
β = 101.21 (3)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
2519 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 1998)
2473 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.820Rint = 0.025
8250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
2519 reflectionsΔρmin = 0.32 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.412237 (17)0.25347 (4)0.425508 (16)0.01698 (8)
P10.29107 (4)0.76285 (9)0.37901 (3)0.01399 (11)
P20.36304 (4)0.92659 (9)0.57727 (3)0.01507 (11)
O10.32521 (11)1.0088 (3)0.34936 (9)0.0191 (3)
O20.36616 (12)0.5657 (3)0.37738 (10)0.0234 (3)
O30.18869 (11)0.6951 (3)0.31670 (10)0.0253 (3)
H30.19830.63980.26770.038*
O40.37845 (11)1.1832 (3)0.54302 (10)0.0201 (3)
O50.44985 (11)0.7562 (3)0.57500 (12)0.0259 (3)
O60.33324 (11)0.9324 (3)0.66920 (9)0.0234 (3)
O70.23742 (11)0.5508 (3)0.52251 (10)0.0211 (3)
H70.28700.46420.52520.032*
N10.10323 (14)1.1013 (4)0.71483 (12)0.0263 (4)
H10.11731.21690.75450.032*
C10.25880 (14)0.7897 (4)0.49374 (13)0.0149 (4)
C20.16165 (15)0.9394 (4)0.48646 (13)0.0190 (4)
H2A0.17531.10760.47270.023*
H2B0.11210.87690.43570.023*
C30.11892 (14)0.9324 (4)0.57271 (13)0.0179 (4)
C40.06000 (17)0.7409 (4)0.59111 (16)0.0243 (5)
H4A0.04520.61480.54870.029*
C50.02268 (19)0.7328 (4)0.67077 (17)0.0295 (5)
H5A0.01820.60460.68190.035*
C60.04682 (18)0.9168 (5)0.73327 (16)0.0301 (5)
H6A0.02390.91310.78840.036*
C70.13858 (16)1.1135 (4)0.63744 (14)0.0219 (4)
H7A0.17721.24680.62710.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01774 (13)0.01540 (13)0.01787 (13)0.00121 (9)0.00364 (9)0.00309 (9)
P10.0176 (2)0.0121 (2)0.0126 (2)0.00126 (18)0.00362 (18)0.00007 (17)
P20.0160 (2)0.0159 (2)0.0129 (2)0.00092 (19)0.00195 (17)0.00233 (18)
O10.0284 (8)0.0145 (7)0.0134 (6)0.0008 (6)0.0019 (5)0.0020 (5)
O20.0305 (8)0.0180 (7)0.0246 (7)0.0093 (6)0.0122 (6)0.0046 (6)
O30.0231 (8)0.0350 (9)0.0175 (7)0.0036 (7)0.0033 (6)0.0101 (6)
O40.0286 (8)0.0158 (7)0.0158 (7)0.0013 (6)0.0044 (6)0.0013 (6)
O50.0165 (7)0.0231 (8)0.0373 (9)0.0042 (6)0.0033 (6)0.0036 (7)
O60.0264 (8)0.0304 (8)0.0135 (6)0.0012 (7)0.0040 (6)0.0025 (6)
O70.0232 (7)0.0145 (7)0.0280 (8)0.0001 (6)0.0108 (6)0.0037 (6)
N10.0304 (10)0.0289 (10)0.0197 (9)0.0020 (8)0.0050 (7)0.0083 (8)
C10.0169 (9)0.0137 (9)0.0144 (9)0.0009 (7)0.0040 (7)0.0007 (7)
C20.0181 (9)0.0222 (10)0.0166 (9)0.0047 (8)0.0030 (7)0.0022 (8)
C30.0157 (9)0.0216 (10)0.0158 (9)0.0043 (8)0.0017 (7)0.0026 (8)
C40.0226 (10)0.0243 (11)0.0253 (11)0.0011 (8)0.0033 (8)0.0077 (9)
C50.0290 (12)0.0286 (12)0.0331 (12)0.0038 (9)0.0116 (10)0.0025 (10)
C60.0342 (12)0.0360 (13)0.0222 (10)0.0064 (10)0.0106 (9)0.0013 (10)
C70.0207 (10)0.0222 (10)0.0234 (10)0.0011 (8)0.0059 (8)0.0040 (9)
Geometric parameters (Å, º) top
Zn1—O5i1.8791 (16)O7—H70.8201
Zn1—O21.9121 (15)N1—C71.329 (3)
Zn1—O4ii1.9243 (15)N1—C61.330 (3)
Zn1—O1ii1.9888 (15)N1—H10.8600
P1—O21.4907 (15)C1—C21.542 (3)
P1—O11.5182 (15)C2—C31.504 (3)
P1—O31.5594 (16)C2—H2A0.9700
P1—C11.843 (2)C2—H2B0.9700
P2—O61.4953 (15)C3—C71.370 (3)
P2—O51.5115 (16)C3—C41.380 (3)
P2—O41.5236 (15)C4—C51.373 (3)
P2—C11.851 (2)C4—H4A0.9300
O1—Zn1iii1.9888 (15)C5—C61.366 (3)
O3—H30.8200C5—H5A0.9300
O4—Zn1iii1.9243 (15)C6—H6A0.9300
O5—Zn1i1.8791 (16)C7—H7A0.9300
O7—C11.424 (2)
O5i—Zn1—O2106.21 (7)O7—C1—C2106.72 (16)
O5i—Zn1—O4ii114.36 (7)O7—C1—P1107.57 (13)
O2—Zn1—O4ii113.44 (6)C2—C1—P1109.45 (13)
O5i—Zn1—O1ii117.63 (7)O7—C1—P2110.31 (13)
O2—Zn1—O1ii106.02 (7)C2—C1—P2111.50 (14)
O4ii—Zn1—O1ii99.08 (6)P1—C1—P2111.12 (10)
O2—P1—O1112.93 (9)C3—C2—C1113.26 (16)
O2—P1—O3110.75 (9)C3—C2—H2A108.9
O1—P1—O3109.18 (9)C1—C2—H2A108.9
O2—P1—C1111.10 (9)C3—C2—H2B108.9
O1—P1—C1109.71 (9)C1—C2—H2B108.9
O3—P1—C1102.68 (9)H2A—C2—H2B107.7
O6—P2—O5112.64 (10)C7—C3—C4117.04 (19)
O6—P2—O4111.29 (9)C7—C3—C2121.41 (19)
O5—P2—O4113.84 (9)C4—C3—C2121.53 (19)
O6—P2—C1108.04 (9)C5—C4—C3121.4 (2)
O5—P2—C1103.62 (9)C5—C4—H4A119.3
O4—P2—C1106.78 (9)C3—C4—H4A119.3
P1—O1—Zn1iii128.06 (8)C6—C5—C4118.6 (2)
P1—O2—Zn1144.97 (10)C6—C5—H5A120.7
P1—O3—H3109.5C4—C5—H5A120.7
P2—O4—Zn1iii123.97 (9)N1—C6—C5119.7 (2)
P2—O5—Zn1i143.43 (10)N1—C6—H6A120.2
C1—O7—H7109.4C5—C6—H6A120.2
C7—N1—C6122.4 (2)N1—C7—C3120.9 (2)
C7—N1—H1118.8N1—C7—H7A119.6
C6—N1—H1118.8C3—C7—H7A119.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1iv0.821.852.637 (2)161
N1—H1···O6v0.861.682.533 (2)170
O7—H7···O4ii0.821.972.758 (2)163
Symmetry codes: (ii) x, y1, z; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C7H9NO7P2)]
Mr346.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.609 (3), 5.4809 (11), 14.818 (3)
β (°) 101.21 (3)
V3)1084.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.59
Crystal size (mm)0.20 × 0.12 × 0.08
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku, 1998)
Tmin, Tmax0.626, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
8250, 2519, 2473
Rint0.025
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.04
No. of reflections2519
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.32

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O5i1.8791 (16)P1—O31.5594 (16)
Zn1—O21.9121 (15)P1—C11.843 (2)
Zn1—O4ii1.9243 (15)P2—O61.4953 (15)
Zn1—O1ii1.9888 (15)P2—O51.5115 (16)
P1—O21.4907 (15)P2—O41.5236 (15)
P1—O11.5182 (15)P2—C11.851 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1iii0.821.852.637 (2)161.1
N1—H1···O6iv0.861.682.533 (2)169.6
O7—H7···O4ii0.821.972.758 (2)162.5
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Innovation Fund for Young Scientist of Fujian Province (2008 F3059) and Fuzhou University (XRC0645, 2007-XQ-09).

References

First citationBauer, S., Marrot, J., Devic, T., Férey, G. & Stock, N. (2007). Inorg. Chem. 46, 9998–10002.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurkholder, E., Golub, V., O'Connor, C. J. & Zubieta, J. (2003). Inorg. Chem. 42, 6729–6740.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationClearfield, A. (1998). Prog. Inorg. Chem. 47, 371–510.  CrossRef CAS Google Scholar
First citationDu, Z. Y., Li, X. L., Liu, Q. Y. & Mao, J. G. (2007). Cryst. Growth Des. 7, 1501–1507.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, R. B., Huang, X. H., Hu, S. M., Xiang, S. C. & Wu, X. T. (2006). Inorg. Chem. 45, 5254–5256.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGossman, W. L., Wilson, S. R. & Oldfield, E. (2003). Acta Cryst. C59, m33–m36.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHu, J. Y., Zhao, J. A., Hou, H. W. & Fan, Y. T. (2008). Inorg. Chem. Commun. pp. 1110–1112.  Web of Science CSD CrossRef Google Scholar
First citationMaeda, K. (2004). Microporous Mesoporous Mater. 73, 47–55.  Web of Science CrossRef CAS Google Scholar
First citationMao, J., Mukherjee, S., Zhang, Y., Cao, R., Sanders, J. M., Song, Y., Zhang, Y., Meints, G. A., Gao, Y. G., Mukkamala, D., Hudock, M. P. & Oldfield, E. (2006). J. Am. Chem. Soc. 128, 14485–14497.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRedman-Furey, N. L., Dicks, M., Bigalow-Kern, A. S., Cambron, R. T., Lubey, G., Lester, C. & Vaughn, D. (2005). J. Pharm. Sci. 94, 893–911.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStahl, K., Oddershede, J., Preikschat, H., Fischer, E. & Bennekou, J. S. (2006). Acta Cryst. C62, m112–m115.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y. F., Ma, Y. S., Bao, S. S. & Zheng, L. M. (2007). Dalton Trans. pp. 4222–4226.  Web of Science CSD CrossRef Google Scholar
First citationZhang, Z. C., Bao, S. S. & Zheng, L. M. (2007). Chin. J. Inorg. Chem. pp. 1851–1856.  Google Scholar
First citationZhang, Z. C., Gao, S. & Zheng, L. M. (2007). Dalton Trans. pp. 4681–4684.  Web of Science CSD CrossRef Google Scholar
First citationZhang, Z. C. & Zheng, L. M. (2008). Inorg. Chem. Commun. pp. 1243–1245.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, J., Bu, X., Feng, P. & Stucky, G. D. (2000). J. Am. Chem. Soc. 122, 11563–11564.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m59-m60
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds