organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-N′-(3-nitro­benzyl­idene)isoxazole-4-carbohydrazide

aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China
*Correspondence e-mail: snowflakej@gmail.com

(Received 25 November 2009; accepted 1 December 2009; online 4 December 2009)

The mol­ecule of the title compound, C12H10N4O4, displays an E configuration about the C=N bond. The dihedral angle between the benzene and isoxazole rings is 1.36 (5)° and the mol­ecular conformation is stabilized by the an intra­molecular C—H⋯N hydrogen bond. In the crystal structure, centrosymmetrically related mol­ecules are connected by pairs of N—H⋯O hydrogen bonds into dimers, which are further linked into a three-dimensional network by inter­molecular C—H⋯O hydrogen bonds and by ππ stacking inter­actions involving adjacent benzene and isoxazole rings, with a centroid–centroid separation of 3.861 (3) Å.

Related literature

For the biological activity and coordination ability of hydrazone compounds, see: Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Reiter et al. (1985[Reiter, J., Somoral, T. & Dvortsak, P. (1985). Heterocycl. Chem. 22, 385-394.]). For the properties of isoxazole derivatives, see: Stevens & Albizati (1984[Stevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett. 25, 4587-4591.]). For examples of crystal structures of hydrazone compounds, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Wei et al. (2009[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688.]); Khaledi et al. (2008[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N4O4

  • Mr = 274.24

  • Monoclinic, P 21 /c

  • a = 4.8668 (8) Å

  • b = 25.202 (4) Å

  • c = 10.257 (2) Å

  • β = 100.721 (12)°

  • V = 1236.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.66 × 0.30 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.971

  • 10436 measured reflections

  • 2828 independent reflections

  • 1943 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.129

  • S = 1.10

  • 2828 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N3 0.93 2.43 2.930 (2) 114
C12—H12⋯O4i 0.93 2.58 3.240 (2) 128
N2—H2⋯O2ii 0.90 (1) 1.95 (1) 2.855 (2) 179 (1)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone compounds have been widely studied because they exhibit extensive biological activities (Khattab, 2005) and coordination ability (Reiter et al., 1985). Isoxazole compounds have also attracted much interest because of their fungicidal activity, plant-growth regulating activity and antibacterial activity (Stevens & Albizati, 1984). In the last few years, a large number of hydrazone derivatives have been reported (e. g. Fun et al., 2008; Wei et al., 2009; Khaledi et al., 2008). In order to study the properties of new compounds containing both the hydrazine and isoxazole groups, the title compound has been synthesized and its crystal structure is reported herein.

The molecule of the title compound (Fig. 1) exhibits an E configuration with respect to the C6N3 double bond, with the C7—C6—N3—N2 torsion angle of 178.8 (2)°. Bond lengths (Allen et al., 1987) and angles in the molecule are within normal ranges. The molecule is approximately planar [maximum displacement 0.1740 (17) Å for atom O4], with a dihedral angle between the benzene and isoxazole rings of 1.36 (5)°. The molecular conformation is enforced by an intramolecular C—H···N hydrogen bond. In the crystal packing, centrosymmetrically related molecules are connected into dimers by N—H···O hydrogen bonds (Table 1). The dimers are further linked into a three-dimensional network (Fig. 2) by intermolecular C—H···O hydrogen bonds and by π···π stacking interactions involving adjacent benzene and isoxazole rings, with centroid-to-centroid separations of 3.861 (3) Å.

Related literature top

For the biological activity and coordination ability of hydrazone compounds, see: Khattab (2005); Reiter et al. (1985). For the properties of isoxazole derivatives, see: Stevens & Albizati (1984). For examples of crystal structures of hydrazone compounds, see: Fun et al. (2008); Wei et al. (2009); Khaledi et al. (2008). For reference bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, C12H10N4O4, was synthesized as follows: 3-nitrobenzaldehyde (2.2 g) and 5-methylisoxazole-4-carbonyl hydrazine (2.0 g, 0.014 mol) were mixed with glacial acetic acid (50 ml). The mixture was heated at 65 for 4 h, then the precipitate was collected by filtration and washed with water, chloroform and ethanol. The product was recrystallized from ethanol, then dried under reduced pressure. The title compound was obtained with a yield of 72.5%. Colourless block-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of a dimethylformamide solution.

Refinement top

The H atom bound to the N2 atom was located in a difference Fourier map and refined freely with the N–H distance restrained to 0.90 Å. All other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso = 1.2 Uiso(C) or 1.5 Uiso(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
5-Methyl-N'-(3-nitrobenzylidene)isoxazole-4-carbohydrazide top
Crystal data top
C12H10N4O4F(000) = 568
Mr = 274.24Dx = 1.474 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2571 reflections
a = 4.8668 (8) Åθ = 2.6–23.7°
b = 25.202 (4) ŵ = 0.11 mm1
c = 10.257 (2) ÅT = 293 K
β = 100.721 (12)°Block, colourless
V = 1236.1 (4) Å30.66 × 0.30 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2828 independent reflections
Radiation source: sealed tube1943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 56
Tmin = 0.951, Tmax = 0.971k = 3230
10436 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.054P)2 + 0.2908P]
where P = (Fo2 + 2Fc2)/3
2828 reflections(Δ/σ)max = 0.012
186 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C12H10N4O4V = 1236.1 (4) Å3
Mr = 274.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8668 (8) ŵ = 0.11 mm1
b = 25.202 (4) ÅT = 293 K
c = 10.257 (2) Å0.66 × 0.30 × 0.14 mm
β = 100.721 (12)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2828 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1943 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.971Rint = 0.034
10436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.32 e Å3
2828 reflectionsΔρmin = 0.24 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2323 (5)0.37462 (8)0.4047 (2)0.0542 (5)
H1A0.41170.36720.42670.081*
H1B0.10730.38710.48230.081*
H1C0.15810.34290.37290.081*
C20.2629 (4)0.41576 (7)0.30054 (17)0.0410 (4)
C30.2693 (4)0.47950 (7)0.15576 (17)0.0457 (5)
H3A0.21790.50970.11420.055*
C40.1173 (4)0.45970 (7)0.27849 (16)0.0378 (4)
C50.1366 (4)0.47775 (7)0.36822 (16)0.0367 (4)
C60.3416 (4)0.59572 (7)0.23565 (16)0.0415 (5)
H60.49940.59970.30170.050*
C70.2862 (4)0.63497 (7)0.12970 (16)0.0377 (4)
C80.0622 (4)0.63082 (7)0.02243 (17)0.0438 (5)
H80.06270.60270.01880.053*
C90.0253 (4)0.66798 (8)0.07759 (18)0.0500 (5)
H90.12370.66460.14850.060*
C100.2072 (4)0.71022 (7)0.07375 (17)0.0471 (5)
H100.18320.73540.14120.057*
C110.4254 (4)0.71402 (7)0.03287 (16)0.0405 (4)
C120.4682 (4)0.67752 (7)0.13459 (16)0.0404 (4)
H120.61680.68140.20540.049*
H20.426 (3)0.5310 (8)0.4040 (16)0.053 (6)*
N10.4859 (4)0.45108 (7)0.10830 (15)0.0544 (5)
N20.2682 (3)0.52281 (6)0.34603 (13)0.0406 (4)
N30.1809 (3)0.55618 (6)0.24086 (13)0.0395 (4)
N40.6224 (4)0.75843 (6)0.03927 (15)0.0503 (4)
O10.4845 (3)0.40961 (5)0.20178 (13)0.0512 (4)
O20.2363 (3)0.45160 (5)0.46820 (11)0.0462 (4)
O30.7959 (4)0.76447 (7)0.14015 (15)0.0811 (6)
O40.6048 (4)0.78753 (6)0.05611 (14)0.0689 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0540 (14)0.0443 (11)0.0618 (12)0.0070 (9)0.0046 (10)0.0082 (9)
C20.0369 (11)0.0402 (9)0.0438 (9)0.0012 (8)0.0017 (8)0.0035 (7)
C30.0446 (12)0.0445 (10)0.0426 (9)0.0046 (8)0.0061 (8)0.0023 (8)
C40.0351 (10)0.0382 (9)0.0377 (8)0.0008 (7)0.0009 (7)0.0005 (7)
C50.0345 (10)0.0374 (9)0.0361 (8)0.0010 (7)0.0013 (7)0.0012 (7)
C60.0413 (12)0.0424 (10)0.0378 (8)0.0047 (8)0.0006 (8)0.0023 (7)
C70.0405 (11)0.0370 (9)0.0351 (8)0.0000 (7)0.0058 (7)0.0003 (7)
C80.0433 (12)0.0427 (10)0.0431 (9)0.0045 (8)0.0018 (8)0.0004 (7)
C90.0503 (13)0.0523 (11)0.0417 (9)0.0012 (9)0.0061 (9)0.0032 (8)
C100.0554 (14)0.0451 (10)0.0389 (9)0.0026 (9)0.0037 (9)0.0055 (8)
C110.0492 (12)0.0344 (9)0.0380 (8)0.0025 (8)0.0087 (8)0.0026 (7)
C120.0452 (11)0.0407 (9)0.0335 (8)0.0032 (8)0.0023 (8)0.0013 (7)
N10.0526 (11)0.0535 (10)0.0494 (9)0.0058 (8)0.0108 (8)0.0045 (7)
N20.0383 (9)0.0419 (8)0.0369 (7)0.0062 (7)0.0052 (7)0.0070 (6)
N30.0408 (9)0.0392 (8)0.0361 (7)0.0012 (7)0.0005 (6)0.0045 (6)
N40.0657 (13)0.0404 (9)0.0448 (8)0.0076 (8)0.0105 (8)0.0011 (7)
O10.0437 (9)0.0487 (7)0.0558 (8)0.0099 (6)0.0047 (6)0.0022 (6)
O20.0435 (8)0.0460 (7)0.0436 (6)0.0060 (6)0.0065 (6)0.0122 (5)
O30.1020 (15)0.0733 (11)0.0575 (9)0.0453 (10)0.0124 (9)0.0048 (8)
O40.0948 (14)0.0547 (9)0.0567 (8)0.0164 (8)0.0131 (8)0.0157 (7)
Geometric parameters (Å, º) top
C1—C21.476 (2)C7—C81.401 (2)
C1—H1A0.9600C8—C91.376 (3)
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600C9—C101.381 (3)
C2—O11.344 (2)C9—H90.9300
C2—C41.356 (3)C10—C111.379 (3)
C3—N11.292 (2)C10—H100.9300
C3—C41.426 (2)C11—C121.377 (2)
C3—H3A0.9300C11—N41.468 (2)
C4—C51.469 (2)C12—H120.9300
C5—O21.2394 (19)N1—O11.417 (2)
C5—N21.344 (2)N2—N31.3714 (19)
C6—N31.274 (2)N2—H20.901 (10)
C6—C71.457 (2)N4—O41.213 (2)
C6—H60.9300N4—O31.217 (2)
C7—C121.386 (2)
C2—C1—H1A109.5C9—C8—C7120.61 (18)
C2—C1—H1B109.5C9—C8—H8119.7
H1A—C1—H1B109.5C7—C8—H8119.7
C2—C1—H1C109.5C8—C9—C10120.63 (17)
H1A—C1—H1C109.5C8—C9—H9119.7
H1B—C1—H1C109.5C10—C9—H9119.7
O1—C2—C4109.83 (15)C11—C10—C9118.12 (16)
O1—C2—C1115.04 (16)C11—C10—H10120.9
C4—C2—C1135.13 (16)C9—C10—H10120.9
N1—C3—C4113.03 (17)C12—C11—C10122.69 (17)
N1—C3—H3A123.5C12—C11—N4118.03 (16)
C4—C3—H3A123.5C10—C11—N4119.27 (15)
C2—C4—C3103.39 (15)C11—C12—C7118.94 (16)
C2—C4—C5123.58 (15)C11—C12—H12120.5
C3—C4—C5133.03 (16)C7—C12—H12120.5
O2—C5—N2117.65 (15)C3—N1—O1104.65 (14)
O2—C5—C4120.52 (16)C5—N2—N3124.32 (14)
N2—C5—C4121.83 (14)C5—N2—H2117.0 (13)
N3—C6—C7122.18 (16)N3—N2—H2118.7 (13)
N3—C6—H6118.9C6—N3—N2114.20 (14)
C7—C6—H6118.9O4—N4—O3122.94 (17)
C12—C7—C8119.00 (15)O4—N4—C11118.53 (16)
C12—C7—C6118.04 (15)O3—N4—C11118.53 (15)
C8—C7—C6122.94 (16)C2—O1—N1109.09 (14)
O1—C2—C4—C30.7 (2)C9—C10—C11—N4179.80 (18)
C1—C2—C4—C3179.0 (2)C10—C11—C12—C70.4 (3)
O1—C2—C4—C5179.85 (17)N4—C11—C12—C7179.30 (17)
C1—C2—C4—C50.5 (4)C8—C7—C12—C110.9 (3)
N1—C3—C4—C20.5 (2)C6—C7—C12—C11177.65 (17)
N1—C3—C4—C5179.9 (2)C4—C3—N1—O10.1 (2)
C2—C4—C5—O22.7 (3)O2—C5—N2—N3179.10 (16)
C3—C4—C5—O2176.56 (19)C4—C5—N2—N30.6 (3)
C2—C4—C5—N2176.99 (18)C7—C6—N3—N2178.84 (16)
C3—C4—C5—N23.7 (3)C5—N2—N3—C6177.51 (18)
N3—C6—C7—C12178.03 (18)C12—C11—N4—O4172.21 (18)
N3—C6—C7—C83.5 (3)C10—C11—N4—O47.5 (3)
C12—C7—C8—C90.9 (3)C12—C11—N4—O37.9 (3)
C6—C7—C8—C9177.58 (19)C10—C11—N4—O3172.4 (2)
C7—C8—C9—C100.4 (3)C4—C2—O1—N10.6 (2)
C8—C9—C10—C110.1 (3)C1—C2—O1—N1179.08 (16)
C9—C10—C11—C120.1 (3)C3—N1—O1—C20.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N30.932.432.930 (2)114
C12—H12···O4i0.932.583.240 (2)128
N2—H2···O2ii0.90 (1)1.95 (1)2.855 (2)179 (1)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H10N4O4
Mr274.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.8668 (8), 25.202 (4), 10.257 (2)
β (°) 100.721 (12)
V3)1236.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.66 × 0.30 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.951, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
10436, 2828, 1943
Rint0.034
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 1.10
No. of reflections2828
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N30.932.432.930 (2)114.0
C12—H12···O4i0.932.583.240 (2)128.4
N2—H2···O2ii0.901 (10)1.952 (14)2.855 (2)179.0 (14)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The author acknowledges financial support by the Zhejiang Provincial Natural Science Foundation of China (No. Y406049).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReiter, J., Somoral, T. & Dvortsak, P. (1985). Heterocycl. Chem. 22, 385–394.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett. 25, 4587–4591.  CrossRef CAS Web of Science Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds