metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methano­lbis[4,4,5,5-tetra­methyl-2-(5-methyl­imidazol-4-yl)-2-imidazoline-1-oxyl-3-oxide-κ2O,N]cobalt(II) diperchlorate

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453002, People's Republic of China
*Correspondence e-mail: gaozhy201@sohu.com

(Received 25 November 2009; accepted 1 December 2009; online 4 December 2009)

In the mononuclear title complex, [Co(C11H17N4O2)2(CH3OH)2](ClO4)2, the cobalt(II) atom lies on a symmetry centre and is coordinated by two O,N-bidentate ligands and two trans-arranged O atoms of the methanol mol­ecules in a slightly distorted octa­hedral geometry. In the crystal structure, cations and anions are linked by N—H⋯O and O—H⋯O hydrogen bonds into layers parallel to the bc plane.

Related literature

For the use of organic radicals as building blocks for the construction of new materials, see: Marvilliers et al. (1999[Marvilliers, A., Pei, Y., Boquera, J. C., Vostrikova, K. E., Paulsen, C., Riviere, E. & Mallha, T. (1999). Chem. Commun. pp. 1951-1952.]); Yamamoto et al. (2001[Yamamoto, Y., Suzuki, T. & Kaizaki, S. (2001). J. Chem. Soc. Dalton Trans. pp. 1566-1572.]). For related structures, see: Chang et al. (2009[Chang, J. L., Gao, Z. Y. & Jiang, K. (2009). Acta Cryst. E65, m181.]); Zhang et al. (2007[Zhang, J. Y., Liu, C. M., Zhang, D. Q., Gao, S. & Zhu, D. B. (2007). Inorg. Chim. Acta, 360, 3553-3559.]); Omata et al. (2001[Omata, J., Ishida, T., Hashizume, D., Iwasaki, F. & Nogami, T. (2001). Inorg. Chem. 40, 3954-3958.]); Fokin et al. (2004[Fokin, S., Ovcharenko, V., Romanenko, G. & Ikorskii, V. (2004). Inorg. Chem. 43, 969-977.]); Wang et al. (2005[Wang, S. P., Li, D. J., Song, Y., Gao, D. Z., Chen, J., Liu, Z. Q., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2005). Z. Anorg. Allg. Chem. 631, 1702-1705.]). For the synthesis of the title compound, see: Ullman et al. (1970[Ullman, E. F., Call, L. & Osieckei, J. H. J. (1970). J. Org. Chem. 35, 3623-3628.], 1972[Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049-7059.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C11H17N4O2)2(CH4O)2](ClO4)2

  • Mr = 796.49

  • Triclinic, [P \overline 1]

  • a = 8.761 (3) Å

  • b = 9.030 (3) Å

  • c = 11.819 (4) Å

  • α = 88.470 (8)°

  • β = 85.260 (11)°

  • γ = 66.638 (7)°

  • V = 855.4 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 295 K

  • 0.21 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.862, Tmax = 0.959

  • 7639 measured reflections

  • 3880 independent reflections

  • 2629 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.169

  • S = 1.02

  • 3880 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.86 2.18 2.988 (4) 156
O8—H8D⋯O6i 0.85 1.99 2.828 (4) 167
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Engineering of molecular magnets constitutes a major research goal and has spawned interest in organic radicals as building blocks for construction of new materials (Marvilliers et al., 1999; Yamamoto et al., 2001). In this field, nitronyl nitroxides acting as useful paramagnetic building blocks have been extensively used to assemble molecular magnetic materials, because many of them are good stable spin carriers even when coordinated to metal ions. Various substitutions on radical ligands can lead to large change in not only coordination modes but also electronic behaviours, so a large number of investigations on various properties of metal-radicals complexes have been carried out and aroused intense interest and far-ranging studies (Chang et al., 2009; Zhang et al., 2007; Omata et al., 2001; Fokin et al., 2004; Wang et al., 2005). In this article, we report the synthesis and crystal structure of a novel cobalt(II) complex with the nitronyl nitroxide radical.

The crystal structure of the title compound is shown in Figure. 1. The cobalt(II) ion lies on a symmetry centre and is six-coordinate in a slightly distorted octahedral CoN4O2 environment provided by two O,N-bidentate ligands and two trans-arranged oxygen atoms of methanol molecules. The Co1/O1/N3/C4/C1/N1 six-membered chelatating ring assumes a half-boat conformation, with atoms O1 and C1 displaced by 0.402 (3) and 0.195 (3) Å, respectively, from the mean plane of the other atoms. In the crystal structure, cations and anions are linked by N—H···O and O—H···O hydrogen bonds (Table 1) into layers parallel to the bc plane.

Related literature top

For the use of organic radicals as building blocks for the construction of new materials, see: Marvilliers et al. (1999); Yamamoto et al. (2001). For related structures, see: Chang et al. (2009); Zhang et al. (2007); Omata et al. (2001); Fokin et al. (2004); Wang et al. (2005). For the synthesis of the title compound, see: Ullman et al. (1970, 1972).

Experimental top

The nitronyl nitroxide radical (4,4,5,5-tetramethyl-2-(5-methylimidazol-4-yl)-2-imidazoline-1-oxyl-3-oxide) was synthesized according to the literature procedures (Ullman et al., 1970; Ullman et al., 1972). The complex was synthesized by mixing 5 ml of a methanol solution of nitronyl nitroxide radical (0.4 mmol) and 5 ml of a methanol solution of Co(ClO4)2.6H2O (0.2 mmol). After stirring for two hours at room temperature, the mixture solution was filtered. The clear deep purple filtrate was diffused with diethyl ether vapour at room temperature for two days, to afford deep purple crystals suitable for X-ray analysis.

Refinement top

The H atoms were positioned geometrically and refined using a riding-model approximation, with C—H = 0.93–0.96 Å, N—H = 0.86 Å, O—H = 0.85 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C, O) for hydroxy and methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are generated by the symmetry operation (-x+1,-y+1,-z+1).
Dimethanolbis[4,4,5,5-tetramethyl-2-(5-methylimidazol-4-yl)-2- imidazoline-1-oxyl-3-oxide-κ2O,N]cobalt(II) diperchlorate top
Crystal data top
[Co(C11H17N4O2)2(CH4O)2](ClO4)2Z = 1
Mr = 796.49F(000) = 415
Triclinic, P1Dx = 1.546 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.761 (3) ÅCell parameters from 1879 reflections
b = 9.030 (3) Åθ = 2.5–23.8°
c = 11.819 (4) ŵ = 0.73 mm1
α = 88.470 (8)°T = 295 K
β = 85.260 (11)°Block, purple
γ = 66.638 (7)°0.21 × 0.10 × 0.06 mm
V = 855.4 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3880 independent reflections
Radiation source: fine-focus sealed tube2629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
phi and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.862, Tmax = 0.959k = 1111
7639 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.099P)2]
where P = (Fo2 + 2Fc2)/3
3880 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Co(C11H17N4O2)2(CH4O)2](ClO4)2γ = 66.638 (7)°
Mr = 796.49V = 855.4 (5) Å3
Triclinic, P1Z = 1
a = 8.761 (3) ÅMo Kα radiation
b = 9.030 (3) ŵ = 0.73 mm1
c = 11.819 (4) ÅT = 295 K
α = 88.470 (8)°0.21 × 0.10 × 0.06 mm
β = 85.260 (11)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3880 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2629 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.959Rint = 0.035
7639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.02Δρmax = 1.11 e Å3
3880 reflectionsΔρmin = 0.70 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.0314 (2)
O10.7069 (3)0.5395 (3)0.44273 (19)0.0368 (6)
O20.6974 (3)0.6104 (4)0.0527 (2)0.0508 (7)
O30.1971 (5)0.1192 (5)0.3303 (3)0.0772 (10)
O40.3181 (5)0.0497 (4)0.1465 (3)0.0735 (10)
O50.0366 (5)0.1057 (6)0.1857 (4)0.1136 (16)
O60.2364 (6)0.1310 (4)0.2532 (3)0.0897 (13)
O80.3412 (3)0.7434 (3)0.4682 (2)0.0479 (7)
H8D0.32540.78100.40150.072*
N10.4844 (3)0.4351 (3)0.3332 (2)0.0343 (6)
N20.4676 (4)0.2834 (4)0.1975 (3)0.0405 (7)
H20.43570.21950.16280.049*
N30.7304 (3)0.5838 (3)0.3387 (2)0.0303 (6)
N40.7347 (3)0.6110 (4)0.1542 (2)0.0373 (7)
C10.5901 (4)0.4399 (4)0.2393 (3)0.0314 (7)
C20.5821 (4)0.3431 (4)0.1536 (3)0.0347 (7)
C30.4138 (4)0.3410 (4)0.3035 (3)0.0396 (8)
H30.33590.31680.34980.048*
C40.6842 (4)0.5387 (4)0.2443 (3)0.0313 (7)
C50.7972 (4)0.7126 (4)0.3165 (3)0.0357 (8)
C60.8510 (5)0.6844 (5)0.1892 (3)0.0425 (9)
C70.6485 (6)0.8712 (5)0.3436 (5)0.0623 (12)
H7A0.56040.88080.29700.094*
H7B0.68170.95970.32870.094*
H7C0.60980.87310.42220.094*
C80.9369 (5)0.6878 (5)0.3931 (3)0.0502 (10)
H8A0.89040.71590.46980.075*
H8B0.99450.75510.36800.075*
H8C1.01360.57680.38980.075*
C90.8249 (7)0.8374 (6)0.1205 (4)0.0746 (15)
H9A0.86360.80890.04260.112*
H9B0.88630.89290.15060.112*
H9C0.70840.90650.12530.112*
C101.0289 (5)0.5579 (7)0.1667 (4)0.0648 (13)
H10A1.03820.45900.20350.097*
H10B1.10590.59600.19600.097*
H10C1.05440.53930.08640.097*
C110.6750 (5)0.2887 (5)0.0407 (3)0.0468 (9)
H11A0.66250.19350.01700.070*
H11B0.79110.26500.04620.070*
H11C0.63130.37260.01390.070*
C120.2019 (5)0.8318 (5)0.5434 (4)0.0537 (10)
H12A0.12200.78330.54540.081*
H12B0.15160.94100.51760.081*
H12C0.23750.83100.61810.081*
Cl10.19354 (13)0.03724 (13)0.22937 (9)0.0534 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0307 (3)0.0365 (4)0.0318 (4)0.0185 (3)0.0037 (2)0.0074 (3)
O10.0374 (12)0.0511 (15)0.0307 (12)0.0268 (11)0.0057 (10)0.0070 (11)
O20.0599 (17)0.0717 (19)0.0359 (14)0.0412 (15)0.0107 (12)0.0100 (13)
O30.099 (3)0.089 (3)0.061 (2)0.056 (2)0.0030 (19)0.0138 (19)
O40.088 (2)0.094 (3)0.063 (2)0.064 (2)0.0018 (18)0.0024 (18)
O50.071 (2)0.141 (4)0.137 (4)0.044 (3)0.049 (3)0.023 (3)
O60.156 (4)0.072 (2)0.071 (2)0.073 (3)0.032 (2)0.0274 (18)
O80.0429 (14)0.0436 (14)0.0524 (16)0.0128 (12)0.0051 (12)0.0156 (12)
N10.0322 (14)0.0399 (16)0.0360 (16)0.0196 (13)0.0053 (12)0.0038 (12)
N20.0428 (16)0.0409 (16)0.0486 (18)0.0268 (14)0.0100 (14)0.0006 (14)
N30.0323 (13)0.0363 (14)0.0296 (14)0.0213 (12)0.0038 (11)0.0062 (11)
N40.0393 (16)0.0487 (17)0.0331 (15)0.0267 (14)0.0072 (12)0.0069 (13)
C10.0313 (16)0.0322 (17)0.0339 (17)0.0157 (14)0.0055 (13)0.0052 (13)
C20.0319 (16)0.0374 (18)0.0395 (19)0.0177 (15)0.0094 (14)0.0042 (15)
C30.0339 (17)0.044 (2)0.048 (2)0.0229 (16)0.0082 (15)0.0094 (17)
C40.0309 (16)0.0363 (17)0.0315 (17)0.0185 (14)0.0022 (13)0.0035 (14)
C50.0372 (18)0.0408 (19)0.0399 (19)0.0267 (16)0.0063 (14)0.0053 (15)
C60.048 (2)0.057 (2)0.039 (2)0.0388 (19)0.0089 (16)0.0105 (17)
C70.061 (3)0.044 (2)0.088 (3)0.027 (2)0.003 (2)0.005 (2)
C80.053 (2)0.067 (3)0.050 (2)0.043 (2)0.0154 (18)0.008 (2)
C90.108 (4)0.085 (3)0.069 (3)0.076 (3)0.032 (3)0.040 (3)
C100.049 (2)0.095 (4)0.058 (3)0.039 (3)0.010 (2)0.017 (3)
C110.049 (2)0.052 (2)0.042 (2)0.0218 (19)0.0002 (17)0.0075 (17)
C120.050 (2)0.043 (2)0.062 (3)0.0106 (19)0.012 (2)0.0047 (19)
Cl10.0628 (6)0.0628 (6)0.0512 (6)0.0409 (5)0.0164 (5)0.0139 (5)
Geometric parameters (Å, º) top
Co1—O1i2.042 (2)C2—C111.491 (5)
Co1—O12.042 (2)C3—H30.9300
Co1—N1i2.102 (3)C5—C81.524 (5)
Co1—N12.102 (3)C5—C71.526 (6)
Co1—O8i2.127 (3)C5—C61.537 (5)
Co1—O82.127 (3)C6—C91.530 (5)
O1—N31.308 (3)C6—C101.531 (6)
O2—N41.271 (4)C7—H7A0.9600
O3—Cl11.430 (3)C7—H7B0.9600
O4—Cl11.441 (3)C7—H7C0.9600
O5—Cl11.402 (4)C8—H8A0.9600
O6—Cl11.439 (3)C8—H8B0.9600
O8—C121.415 (5)C8—H8C0.9600
O8—H8D0.8501C9—H9A0.9600
N1—C31.302 (4)C9—H9B0.9600
N1—C11.396 (4)C9—H9C0.9600
N2—C31.343 (5)C10—H10A0.9600
N2—C21.376 (4)C10—H10B0.9600
N2—H20.8600C10—H10C0.9600
N3—C41.343 (4)C11—H11A0.9600
N3—C51.504 (4)C11—H11B0.9600
N4—C41.368 (4)C11—H11C0.9600
N4—C61.506 (4)C12—H12A0.9600
C1—C21.380 (5)C12—H12B0.9600
C1—C41.440 (4)C12—H12C0.9600
O1i—Co1—O1180.000 (1)N4—C6—C9109.6 (3)
O1i—Co1—N1i88.12 (10)N4—C6—C10107.2 (3)
O1—Co1—N1i91.88 (10)C9—C6—C10111.2 (4)
O1i—Co1—N191.88 (10)N4—C6—C5100.7 (3)
O1—Co1—N188.12 (10)C9—C6—C5114.9 (4)
N1i—Co1—N1180.0C10—C6—C5112.4 (3)
O1i—Co1—O8i91.60 (10)C5—C7—H7A109.5
O1—Co1—O8i88.40 (10)C5—C7—H7B109.5
N1i—Co1—O8i90.41 (11)H7A—C7—H7B109.5
N1—Co1—O8i89.59 (11)C5—C7—H7C109.5
O1i—Co1—O888.40 (10)H7A—C7—H7C109.5
O1—Co1—O891.60 (10)H7B—C7—H7C109.5
N1i—Co1—O889.59 (11)C5—C8—H8A109.5
N1—Co1—O890.41 (11)C5—C8—H8B109.5
O8i—Co1—O8180.00 (14)H8A—C8—H8B109.5
N3—O1—Co1122.87 (18)C5—C8—H8C109.5
C12—O8—Co1122.0 (2)H8A—C8—H8C109.5
C12—O8—H8D109.8H8B—C8—H8C109.5
Co1—O8—H8D122.5C6—C9—H9A109.5
C3—N1—C1105.6 (3)C6—C9—H9B109.5
C3—N1—Co1126.3 (2)H9A—C9—H9B109.5
C1—N1—Co1125.3 (2)C6—C9—H9C109.5
C3—N2—C2109.0 (3)H9A—C9—H9C109.5
C3—N2—H2125.5H9B—C9—H9C109.5
C2—N2—H2125.5C6—C10—H10A109.5
O1—N3—C4126.8 (3)C6—C10—H10B109.5
O1—N3—C5120.2 (2)H10A—C10—H10B109.5
C4—N3—C5112.6 (3)C6—C10—H10C109.5
O2—N4—C4125.5 (3)H10A—C10—H10C109.5
O2—N4—C6123.4 (3)H10B—C10—H10C109.5
C4—N4—C6111.0 (3)C2—C11—H11A109.5
C2—C1—N1109.8 (3)C2—C11—H11B109.5
C2—C1—C4131.0 (3)H11A—C11—H11B109.5
N1—C1—C4119.2 (3)C2—C11—H11C109.5
N2—C2—C1104.0 (3)H11A—C11—H11C109.5
N2—C2—C11121.3 (3)H11B—C11—H11C109.5
C1—C2—C11134.4 (3)O8—C12—H12A109.5
N1—C3—N2111.6 (3)O8—C12—H12B109.5
N1—C3—H3124.2H12A—C12—H12B109.5
N2—C3—H3124.2O8—C12—H12C109.5
N3—C4—N4107.6 (3)H12A—C12—H12C109.5
N3—C4—C1126.3 (3)H12B—C12—H12C109.5
N4—C4—C1126.1 (3)O5—Cl1—O3111.2 (3)
N3—C5—C8109.8 (3)O5—Cl1—O6110.4 (3)
N3—C5—C7105.0 (3)O3—Cl1—O6109.6 (2)
C8—C5—C7111.4 (3)O5—Cl1—O4109.4 (3)
N3—C5—C6100.1 (3)O3—Cl1—O4108.1 (2)
C8—C5—C6115.5 (3)O6—Cl1—O4108.0 (2)
C7—C5—C6113.8 (3)
N1i—Co1—O1—N3151.2 (2)C5—N3—C4—N48.1 (4)
N1—Co1—O1—N328.8 (2)O1—N3—C4—C14.0 (5)
O8i—Co1—O1—N3118.5 (2)C5—N3—C4—C1168.7 (3)
O8—Co1—O1—N361.5 (2)O2—N4—C4—N3172.0 (3)
O1i—Co1—O8—C1239.5 (3)C6—N4—C4—N311.4 (4)
O1—Co1—O8—C12140.5 (3)O2—N4—C4—C14.7 (6)
N1i—Co1—O8—C1248.7 (3)C6—N4—C4—C1171.8 (3)
N1—Co1—O8—C12131.3 (3)C2—C1—C4—N3155.3 (3)
O1i—Co1—N1—C325.0 (3)N1—C1—C4—N325.4 (5)
O1—Co1—N1—C3155.0 (3)C2—C1—C4—N428.5 (6)
O8i—Co1—N1—C366.6 (3)N1—C1—C4—N4150.8 (3)
O8—Co1—N1—C3113.4 (3)O1—N3—C5—C841.8 (4)
O1i—Co1—N1—C1177.2 (3)C4—N3—C5—C8145.0 (3)
O1—Co1—N1—C12.8 (3)O1—N3—C5—C778.0 (4)
O8i—Co1—N1—C191.2 (3)C4—N3—C5—C795.2 (4)
O8—Co1—N1—C188.8 (3)O1—N3—C5—C6163.8 (3)
Co1—O1—N3—C434.9 (4)C4—N3—C5—C623.0 (3)
Co1—O1—N3—C5137.3 (2)O2—N4—C6—C936.9 (5)
C3—N1—C1—C21.0 (4)C4—N4—C6—C9146.5 (4)
Co1—N1—C1—C2160.5 (2)O2—N4—C6—C1083.8 (4)
C3—N1—C1—C4178.4 (3)C4—N4—C6—C1092.7 (4)
Co1—N1—C1—C420.1 (4)O2—N4—C6—C5158.4 (3)
C3—N2—C2—C10.7 (4)C4—N4—C6—C525.0 (4)
C3—N2—C2—C11174.6 (3)N3—C5—C6—N426.4 (3)
N1—C1—C2—N21.0 (4)C8—C5—C6—N4144.2 (3)
C4—C1—C2—N2178.3 (3)C7—C5—C6—N485.1 (3)
N1—C1—C2—C11173.3 (4)N3—C5—C6—C9144.0 (3)
C4—C1—C2—C117.4 (6)C8—C5—C6—C998.1 (4)
C1—N1—C3—N20.6 (4)C7—C5—C6—C932.5 (4)
Co1—N1—C3—N2160.7 (2)N3—C5—C6—C1087.4 (3)
C2—N2—C3—N10.0 (4)C8—C5—C6—C1030.4 (4)
O1—N3—C4—N4179.2 (3)C7—C5—C6—C10161.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.862.182.988 (4)156
O8—H8D···O6ii0.851.992.828 (4)167
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C11H17N4O2)2(CH4O)2](ClO4)2
Mr796.49
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.761 (3), 9.030 (3), 11.819 (4)
α, β, γ (°)88.470 (8), 85.260 (11), 66.638 (7)
V3)855.4 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.21 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.862, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
7639, 3880, 2629
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.169, 1.02
No. of reflections3880
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.70

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.862.182.988 (4)156.4
O8—H8D···O6i0.851.992.828 (4)166.9
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation and Basic Research Program of Henan province (No. 092300410195)

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationChang, J. L., Gao, Z. Y. & Jiang, K. (2009). Acta Cryst. E65, m181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFokin, S., Ovcharenko, V., Romanenko, G. & Ikorskii, V. (2004). Inorg. Chem. 43, 969–977.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMarvilliers, A., Pei, Y., Boquera, J. C., Vostrikova, K. E., Paulsen, C., Riviere, E. & Mallha, T. (1999). Chem. Commun. pp. 1951–1952.  Web of Science CrossRef Google Scholar
First citationOmata, J., Ishida, T., Hashizume, D., Iwasaki, F. & Nogami, T. (2001). Inorg. Chem. 40, 3954–3958.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUllman, E. F., Call, L. & Osieckei, J. H. J. (1970). J. Org. Chem. 35, 3623–3628.  CrossRef CAS Web of Science Google Scholar
First citationUllman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc. 94, 7049–7059.  CrossRef CAS Web of Science Google Scholar
First citationWang, S. P., Li, D. J., Song, Y., Gao, D. Z., Chen, J., Liu, Z. Q., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2005). Z. Anorg. Allg. Chem. 631, 1702–1705.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYamamoto, Y., Suzuki, T. & Kaizaki, S. (2001). J. Chem. Soc. Dalton Trans. pp. 1566–1572.  Web of Science CSD CrossRef Google Scholar
First citationZhang, J. Y., Liu, C. M., Zhang, D. Q., Gao, S. & Zhu, D. B. (2007). Inorg. Chim. Acta, 360, 3553–3559.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds