organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4Z)-4-[(4-Chloro­anilino)(phen­yl)methyl­ene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aDepartment of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: xiamin@hzcnc.com

(Received 11 December 2009; accepted 20 December 2009; online 24 December 2009)

The title compound, C23H18ClN3O, was synthesized by the reaction of 4-chloro­aniline and 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one. The terminal benzene rings are twisted at dihedral angles of 48.3 (2), 71.4 (2) and 36.1 (2)° with respect to the central eight-atom methyl­pyrazolone/amino­methyl­ene unit. An intra­molecular N—H⋯O hydrogen bond stabilizes the planar conformation [mean deviation = 0.0398 (5) Å] of the central unit, generating an S(6) ring motif. The crystal packing is stabilized by van der Waals forces.

Related literature

For the properties of β-enamino­ketones, see: Li et al. (2000[Li, J. Z., Li, G. & Yu, W. J. (2000). J. Rare Earths, 18, 233-236.]); Zhang et al. (2003[Zhang, G. L., Dai, B. Q. & Li, J. Z. (2003). Chin. J. Inorg. Chem. 19, 1331-1334.], 2008[Zhang, H. Q., Li, J. Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990-993.]); Cingolani et al. (2006[Cingolani, A., Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W., Somers, N. & White, A. H. (2006). Polyhedron, 25, 124-133.]); Marchetti et al. (2005[Marchetti, F., Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 2909-2945.]). For the preparation of β-enamino­ketones, see: Yang et al. (2004[Yang, Y., Wang, J. L., Li, A. X., Qiao, Y. H. & Miao, F. M. (2004). Acta Chim. Sin. 62, 720-724.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18ClN3O

  • Mr = 387.85

  • Triclinic, [P \overline 1]

  • a = 7.4305 (15) Å

  • b = 11.069 (2) Å

  • c = 13.518 (3) Å

  • α = 109.28 (3)°

  • β = 98.78 (3)°

  • γ = 105.08 (3)°

  • V = 978.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.34 × 0.31 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.921, Tmax = 0.985

  • 7818 measured reflections

  • 3506 independent reflections

  • 2198 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.142

  • S = 1.05

  • 3506 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.93 (3) 1.87 (3) 2.701 (3) 146 (2)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 4-acyl-3-methyl-1-phenyl-1H-pyrazol-5(4H)-ones are a novel type of β-enaminoketone (Yang et al., 2004) with a heterocyclic structure, which have the strong coordination to be as the extractants of trace metals, laser materials, shift reagents in NMR and so on [Marchetti et al., 2005]. Apart from the similar capacity of the selective coordination with many metals [Zhang et al., 2008; Cingolani et al., 2006], the Schiff's base derivatives of 4-acyl-3-methyl- 1-phenyl-1H-pyrazol-5(4H)-ones have also exhibited their special photoluminescence [Zhang et al., 2003] and bioactivities [Li et al., 2000]. As a part of work interested in the complexes with these Schiff's bases, we herein report the preparation of the title compound and its corresponding crystal structure.

The bond lengths and angles of the title molecule (Fig. 1) are within normal ranges. The terminal benzene rings [C1–C6, C8–C13 and C18–C23] are twisted at dihedral angles of 48.3 (2), 71.4 (2) and 36.1 (2) ° with respect to the central eight atom methylpyrazolone/aminomethylene unit [mean deviation = 0.0398 (5) Å]. An intramolecular N—H···O hydrogen bond generating an S(6) ring is observed [Bernstein et al., 1995]. The crystal packing is stabilized by van der Waals forces.

Related literature top

For the properties of β-enaminoketone, see: Li et al. (2000); Zhang et al. (2003, 2008); Cingolani et al. (2006); Marchetti et al. (2005). For the preparation of β-enaminoketone, see: Yang et al. (2004). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The solution of 4-chloroaniline (1.2 mmol) and 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol- 5(4H)-one (1 mmol) in ethanol (10 mL) was refluxed for 5 h and the yellow precipitate was gradually formed. After cooled to the room temperature, the mixture was filtrated and the collected solid was washed with additional ethanol and dried in the air. Suitable crystals were obtained by evaporation of an ethanol/dichloromethane(1:1) mixed solution (m.p. 488–489 K).

Refinement top

The structures were solved by Direct methods and using Fourier techniques. The non-hydrogen atoms were refined anisotropically. All H-atoms were placed in idealized locations with C–H distances 0.93 - 0.96 Å and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 or 1.5 times Ueq(bearing atom).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary size.
(4Z)-4-[(4-Chloroanilino)(phenyl)methylene]-3- methyl-1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C23H18ClN3OZ = 2
Mr = 387.85F(000) = 404
Triclinic, P1Dx = 1.317 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4305 (15) ÅCell parameters from 5058 reflections
b = 11.069 (2) Åθ = 3.1–27.5°
c = 13.518 (3) ŵ = 0.21 mm1
α = 109.28 (3)°T = 293 K
β = 98.78 (3)°Platelet, yellow
γ = 105.08 (3)°0.34 × 0.31 × 0.09 mm
V = 978.0 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3506 independent reflections
Radiation source: fine-focus sealed tube2198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.00 pixels mm-1θmax = 25.2°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.921, Tmax = 0.985l = 1616
7818 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.2511P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3506 reflectionsΔρmax = 0.61 e Å3
259 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (3)
Crystal data top
C23H18ClN3Oγ = 105.08 (3)°
Mr = 387.85V = 978.0 (5) Å3
Triclinic, P1Z = 2
a = 7.4305 (15) ÅMo Kα radiation
b = 11.069 (2) ŵ = 0.21 mm1
c = 13.518 (3) ÅT = 293 K
α = 109.28 (3)°0.34 × 0.31 × 0.09 mm
β = 98.78 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3506 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2198 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.985Rint = 0.033
7818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.61 e Å3
3506 reflectionsΔρmin = 0.56 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.15532 (15)0.75138 (11)0.40321 (8)0.0994 (4)
O10.4993 (3)1.13318 (17)0.73705 (15)0.0511 (5)
N10.6371 (3)0.9255 (2)0.66884 (17)0.0474 (6)
N20.3133 (3)1.10057 (19)0.85631 (17)0.0444 (5)
N30.2491 (3)1.0019 (2)0.89847 (17)0.0478 (6)
C10.9987 (4)0.7976 (3)0.4798 (2)0.0569 (8)
C20.8521 (4)0.8344 (3)0.4374 (2)0.0568 (8)
H20.83370.83270.36730.068*
C30.7319 (4)0.8742 (3)0.5007 (2)0.0482 (7)
H30.63130.89880.47250.058*
C40.7596 (4)0.8780 (2)0.6053 (2)0.0428 (6)
C50.9092 (4)0.8414 (3)0.6470 (2)0.0550 (7)
H50.92990.84500.71770.066*
C61.0273 (4)0.7997 (3)0.5837 (2)0.0610 (8)
H61.12620.77300.61090.073*
C70.5574 (4)0.8763 (2)0.73575 (19)0.0405 (6)
C80.5736 (4)0.7455 (2)0.7374 (2)0.0424 (6)
C90.4800 (4)0.6275 (3)0.6453 (2)0.0553 (8)
H90.40620.63050.58460.066*
C100.4969 (5)0.5063 (3)0.6442 (3)0.0709 (10)
H100.43340.42710.58280.085*
C110.6068 (6)0.5014 (3)0.7330 (3)0.0746 (10)
H110.61950.41930.73130.090*
C120.6985 (5)0.6180 (3)0.8250 (3)0.0647 (9)
H120.77230.61450.88550.078*
C130.6809 (4)0.7401 (3)0.8275 (2)0.0517 (7)
H130.74130.81850.88990.062*
C140.4532 (4)0.9448 (2)0.79664 (19)0.0398 (6)
C150.4324 (4)1.0689 (2)0.7907 (2)0.0413 (6)
C160.3330 (4)0.9113 (2)0.8635 (2)0.0433 (6)
C170.2877 (5)0.7911 (3)0.8946 (3)0.0597 (8)
H17A0.19110.79430.93420.090*
H17B0.40270.79270.93920.090*
H17C0.24040.70920.83020.090*
C180.2310 (4)1.2054 (2)0.8705 (2)0.0431 (6)
C190.3398 (5)1.3293 (3)0.8740 (2)0.0571 (8)
H190.46741.34520.87040.069*
C200.2567 (5)1.4296 (3)0.8829 (3)0.0682 (9)
H200.32881.51300.88450.082*
C210.0701 (5)1.4074 (3)0.8896 (2)0.0669 (9)
H210.01471.47470.89440.080*
C220.0349 (5)1.2852 (3)0.8891 (2)0.0640 (9)
H220.16091.27090.89530.077*
C230.0437 (4)1.1834 (3)0.8794 (2)0.0554 (7)
H230.02861.10080.87900.067*
H10.605 (4)1.002 (3)0.669 (2)0.067 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0867 (7)0.1399 (9)0.0781 (6)0.0596 (6)0.0465 (5)0.0223 (6)
O10.0581 (13)0.0564 (11)0.0614 (12)0.0307 (9)0.0305 (10)0.0351 (9)
N10.0555 (15)0.0529 (13)0.0502 (13)0.0312 (11)0.0243 (11)0.0253 (11)
N20.0529 (14)0.0436 (12)0.0490 (12)0.0244 (10)0.0232 (11)0.0225 (10)
N30.0531 (15)0.0520 (13)0.0505 (13)0.0245 (11)0.0226 (11)0.0254 (11)
C10.0485 (18)0.0643 (18)0.0495 (17)0.0193 (14)0.0190 (14)0.0085 (14)
C20.057 (2)0.0678 (18)0.0444 (15)0.0203 (15)0.0179 (14)0.0192 (14)
C30.0483 (17)0.0539 (16)0.0490 (16)0.0197 (13)0.0147 (13)0.0251 (13)
C40.0400 (16)0.0441 (14)0.0451 (14)0.0153 (12)0.0151 (12)0.0153 (12)
C50.0515 (18)0.0749 (19)0.0425 (15)0.0307 (15)0.0135 (13)0.0197 (14)
C60.0484 (18)0.079 (2)0.0564 (18)0.0333 (15)0.0126 (14)0.0184 (15)
C70.0394 (15)0.0438 (14)0.0387 (13)0.0177 (11)0.0065 (12)0.0152 (11)
C80.0470 (17)0.0422 (14)0.0445 (15)0.0221 (12)0.0190 (13)0.0163 (12)
C90.065 (2)0.0500 (16)0.0475 (16)0.0203 (14)0.0168 (14)0.0126 (13)
C100.101 (3)0.0409 (17)0.065 (2)0.0197 (17)0.035 (2)0.0109 (15)
C110.115 (3)0.0557 (19)0.090 (3)0.051 (2)0.064 (2)0.0407 (19)
C120.081 (2)0.075 (2)0.070 (2)0.0506 (18)0.0323 (18)0.0418 (18)
C130.0607 (19)0.0509 (16)0.0500 (16)0.0285 (14)0.0162 (14)0.0193 (13)
C140.0420 (16)0.0412 (14)0.0412 (13)0.0183 (11)0.0123 (12)0.0180 (11)
C150.0409 (16)0.0458 (14)0.0432 (14)0.0199 (12)0.0134 (12)0.0192 (12)
C160.0442 (16)0.0451 (14)0.0437 (14)0.0185 (12)0.0134 (12)0.0172 (12)
C170.068 (2)0.0565 (17)0.074 (2)0.0273 (15)0.0325 (16)0.0370 (15)
C180.0486 (17)0.0429 (14)0.0420 (14)0.0238 (12)0.0143 (12)0.0140 (11)
C190.063 (2)0.0514 (17)0.071 (2)0.0299 (15)0.0297 (16)0.0271 (15)
C200.090 (3)0.0549 (18)0.084 (2)0.0412 (18)0.044 (2)0.0351 (16)
C210.085 (3)0.069 (2)0.065 (2)0.0523 (19)0.0249 (18)0.0240 (16)
C220.052 (2)0.072 (2)0.0669 (19)0.0360 (17)0.0168 (15)0.0136 (16)
C230.0482 (18)0.0525 (16)0.0617 (18)0.0201 (13)0.0164 (14)0.0139 (14)
Geometric parameters (Å, º) top
Cl1—C11.737 (3)C10—C111.370 (5)
O1—C151.244 (3)C10—H100.9300
N1—C71.337 (3)C11—C121.379 (5)
N1—C41.426 (3)C11—H110.9300
N1—H10.93 (3)C12—C131.381 (4)
N2—C151.374 (3)C12—H120.9300
N2—N31.403 (3)C13—H130.9300
N2—C181.419 (3)C14—C161.431 (4)
N3—C161.311 (3)C14—C151.448 (3)
C1—C21.369 (4)C16—C171.496 (4)
C1—C61.379 (4)C17—H17A0.9600
C2—C31.383 (4)C17—H17B0.9600
C2—H20.9300C17—H17C0.9600
C3—C41.382 (4)C18—C191.380 (4)
C3—H30.9300C18—C231.380 (4)
C4—C51.382 (4)C19—C201.386 (4)
C5—C61.377 (4)C19—H190.9300
C5—H50.9300C20—C211.366 (5)
C6—H60.9300C20—H200.9300
C7—C141.393 (3)C21—C221.372 (4)
C7—C81.491 (3)C21—H210.9300
C8—C131.378 (4)C22—C231.377 (4)
C8—C91.389 (4)C22—H220.9300
C9—C101.376 (4)C23—H230.9300
C9—H90.9300
C7—N1—C4128.4 (2)C11—C12—C13120.0 (3)
C7—N1—H1110.4 (18)C11—C12—H12120.0
C4—N1—H1121.2 (18)C13—C12—H12120.0
C15—N2—N3112.28 (19)C8—C13—C12119.9 (3)
C15—N2—C18127.5 (2)C8—C13—H13120.0
N3—N2—C18119.5 (2)C12—C13—H13120.0
C16—N3—N2106.1 (2)C7—C14—C16132.6 (2)
C2—C1—C6121.1 (3)C7—C14—C15121.7 (2)
C2—C1—Cl1119.7 (2)C16—C14—C15105.3 (2)
C6—C1—Cl1119.2 (2)O1—C15—N2126.0 (2)
C1—C2—C3118.9 (3)O1—C15—C14129.5 (2)
C1—C2—H2120.6N2—C15—C14104.4 (2)
C3—C2—H2120.6N3—C16—C14111.7 (2)
C4—C3—C2120.8 (3)N3—C16—C17118.0 (2)
C4—C3—H3119.6C14—C16—C17130.3 (2)
C2—C3—H3119.6C16—C17—H17A109.5
C5—C4—C3119.6 (2)C16—C17—H17B109.5
C5—C4—N1121.8 (2)H17A—C17—H17B109.5
C3—C4—N1118.6 (2)C16—C17—H17C109.5
C6—C5—C4119.8 (3)H17A—C17—H17C109.5
C6—C5—H5120.1H17B—C17—H17C109.5
C4—C5—H5120.1C19—C18—C23120.3 (2)
C5—C6—C1119.9 (3)C19—C18—N2119.2 (2)
C5—C6—H6120.1C23—C18—N2120.5 (2)
C1—C6—H6120.1C18—C19—C20119.2 (3)
N1—C7—C14118.9 (2)C18—C19—H19120.4
N1—C7—C8118.6 (2)C20—C19—H19120.4
C14—C7—C8122.4 (2)C21—C20—C19120.7 (3)
C13—C8—C9119.8 (2)C21—C20—H20119.7
C13—C8—C7121.4 (2)C19—C20—H20119.7
C9—C8—C7118.8 (2)C20—C21—C22119.6 (3)
C10—C9—C8119.7 (3)C20—C21—H21120.2
C10—C9—H9120.2C22—C21—H21120.2
C8—C9—H9120.2C21—C22—C23120.9 (3)
C11—C10—C9120.5 (3)C21—C22—H22119.5
C11—C10—H10119.8C23—C22—H22119.5
C9—C10—H10119.8C22—C23—C18119.3 (3)
C10—C11—C12120.0 (3)C22—C23—H23120.4
C10—C11—H11120.0C18—C23—H23120.4
C12—C11—H11120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.93 (3)1.87 (3)2.701 (3)146 (2)

Experimental details

Crystal data
Chemical formulaC23H18ClN3O
Mr387.85
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4305 (15), 11.069 (2), 13.518 (3)
α, β, γ (°)109.28 (3), 98.78 (3), 105.08 (3)
V3)978.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.34 × 0.31 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.921, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7818, 3506, 2198
Rint0.033
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.142, 1.05
No. of reflections3506
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.56

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.93 (3)1.87 (3)2.701 (3)146 (2)
 

Acknowledgements

We are grateful for financial support from the Xinmiao Project in the Science and Technology Department of Zhejiang Province (2008R40G2060018).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCingolani, A., Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W., Somers, N. & White, A. H. (2006). Polyhedron, 25, 124–133.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, J. Z., Li, G. & Yu, W. J. (2000). J. Rare Earths, 18, 233–236.  Google Scholar
First citationMarchetti, F., Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 2909–2945.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Wang, J. L., Li, A. X., Qiao, Y. H. & Miao, F. M. (2004). Acta Chim. Sin. 62, 720–724.  CAS Google Scholar
First citationZhang, G. L., Dai, B. Q. & Li, J. Z. (2003). Chin. J. Inorg. Chem. 19, 1331–1334.  CAS Google Scholar
First citationZhang, H. Q., Li, J. Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990–993.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds