organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-Benzyl­­idene-5-methyl­isoxazole-4-carbohydrazide

aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China
*Correspondence e-mail: snowflakej@gmail.com

(Received 4 December 2009; accepted 9 December 2009; online 12 December 2009)

The mol­ecule of the title compound, C12H11N3O2, is approximately planar with an r.m.s. deviation of 0.0814 Å from the plane through all the non-H atoms. The dihedral angle formed by the benzene and isoxazole rings is 6.88 (16)°. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯N hydrogen bond, forming an S(6) ring, and the mol­ecule displays an E configuration with respect to the C=N double bond. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds form centrosymmetric dimers which are further linked by weak C—H⋯N inter­actions augmented by very weak C—H⋯π contacts, forming layers parallel to (120).

Related literature

For the biological activity and coordination ability of hydrazone compounds, see: Molina et al. (1994[Molina, P., Almendros, O. & Fresneda, P. M. (1994). Tetrahedron, 50, 2241-2243.]); Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Reiter et al. (1985[Reiter, J., Somoral, T. & Dvortsak, P. (1985). Heterocycl. Chem. 22, 385-394.]). For the biological properties of isoxazole derivatives, see: Stevens & Albizati (1984[Stevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett. 25, 4587-4591.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Wei et al. (2009[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688.]); Khaledi et al. (2008[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.]). For reference bond-length parameters, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O2

  • Mr = 229.24

  • Triclinic, [P \overline 1]

  • a = 6.6562 (6) Å

  • b = 7.4874 (9) Å

  • c = 11.3051 (11) Å

  • α = 87.319 (8)°

  • β = 84.640 (7)°

  • γ = 87.878 (8)°

  • V = 560.04 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.08 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.992

  • 6763 measured reflections

  • 1936 independent reflections

  • 1219 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.095

  • wR(F2) = 0.302

  • S = 1.10

  • 1936 reflections

  • 159 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N3 0.93 2.39 2.893 (5) 114
N2—H2⋯O2i 0.90 (1) 1.98 (1) 2.867 (4) 170 (4)
C1—H1B⋯N1ii 0.96 2.67 3.598 (6) 162
C1—H1ACg1iii 0.96 3.35 4.136 (7) 140
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1. Cg1 is the centroid of the C7–C12 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A large number of hydrazone derivatives have been reported recently (Fun et al. 2008; Wei et al. 2009; Khaledi et al. 2008) and their biological activity (Molina et al. 1994; Khattab 2005) and coordination ability (Reiter et al.1985) have also been noted. Isoxazole compounds have also attracted much interest as they exhibit some fungicidal, plant-growth regulating and antibacterial activity (Stevens et al.1984). In order to study the properties of a new compound containing both the hydrazine and isoxazole groups, we synthesized the title compound and report its crystal structure here, Fig 1.

The title compound C12H11N3O2, is approximately planar (rms deviation 0.0814 from the plane through all non-hydrogen atoms)with a dihedral angle of 6.88 (16)°. between the C7···C12 benzene and C2···C4,N1,O1 isoxazole rings. The molecule displays an E configuration with respect to the C6N3 double bond, with a C7—C6—N3—N2 torsion angle of -179.3 (3)°. The dihedral angle formed by the benzene and isoxazole rings is 2.457 (114)°. An intramolecular C—H···N hydrogen bond generates an S6 ring motif (Bernstein et al. 1997) and locks the molecule into a planar configuration. Bond lengths (Allen et al.,1987) and angles are unexceptional and similar to those found in related stuctures (Fun et al., 2008; Wei et al., 2009; Khaledi et al., 2008).

In the crystal structure (Fig. 2), intermolecular N2—H2···O2 hydrogen bonds form centrosymmetric dimers. These are further linked by weak C1—H1B···N1 interactions augmented by very weak, inversion related C1—H1A···Cg1 contacts to form layers parallel to [120] (Cg1 is the centroid of the C7···C12 phenyl ring).

Related literature top

For the biological activity and coordination ability of hydrazone compounds, see: Molina et al. (1994); Khattab (2005); Reiter et al. (1985). For the biological properties of isoxazole derivatives, see: Stevens & Albizati (1984). For related structures, see: Fun et al. (2008); Wei et al. (2009); Khaledi et al. (2008). For reference bond-length parameters, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Benzaldehyde (4.6 g,0.02 mol) and 5-methylisoxazole-4-carbonyl hydrazine (2.8 g, 0.02 mol) was mixed with glacial acetic acid (50 ml). The mixture was heated at 65° C for 3 h, the precipitate collected by filtration and washed with water, chloroform and ethanol. The product was recrystallized from ethanol, then dried under reduced pressure to give the title compound in 85% yield. Colourless, block-shaped crystals were obtained by slow evaporation of a dimethylformamide solution.

Refinement top

The H atom bound to N2 was located in a difference Fourier map and refined freely with the N–H distance restrained to 0.90 Å. All other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso = 1.2 Uiso(C) or 1.5 Uiso(C) for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-N'-Benzylidene-5-methylisoxazole-4-carbohydrazide top
Crystal data top
C12H11N3O2Z = 2
Mr = 229.24F(000) = 240
Triclinic, P1Dx = 1.359 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6562 (6) ÅCell parameters from 1711 reflections
b = 7.4874 (9) Åθ = 2.7–23.4°
c = 11.3051 (11) ŵ = 0.10 mm1
α = 87.319 (8)°T = 293 K
β = 84.640 (7)°Block, colourless
γ = 87.878 (8)°0.22 × 0.19 × 0.08 mm
V = 560.04 (10) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
1936 independent reflections
Radiation source: fine-focus sealed tube1219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 77
Tmin = 0.979, Tmax = 0.992k = 88
6763 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.095Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.302H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
1936 reflections(Δ/σ)max = 0.004
159 parametersΔρmax = 0.53 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
C12H11N3O2γ = 87.878 (8)°
Mr = 229.24V = 560.04 (10) Å3
Triclinic, P1Z = 2
a = 6.6562 (6) ÅMo Kα radiation
b = 7.4874 (9) ŵ = 0.10 mm1
c = 11.3051 (11) ÅT = 293 K
α = 87.319 (8)°0.22 × 0.19 × 0.08 mm
β = 84.640 (7)°
Data collection top
Bruker APEXII area-detector
diffractometer
1936 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1219 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.992Rint = 0.040
6763 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0951 restraint
wR(F2) = 0.302H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.53 e Å3
1936 reflectionsΔρmin = 0.34 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1634 (6)0.4088 (7)0.0931 (4)0.0719 (13)
H1A0.14340.53640.09320.108*
H1B0.04350.35280.12820.108*
H1C0.19220.37260.01280.108*
C20.3348 (5)0.3544 (5)0.1625 (3)0.0564 (11)
C30.5697 (5)0.2840 (6)0.2794 (3)0.0617 (11)
H30.63440.26290.34840.074*
C40.3642 (5)0.3410 (5)0.2793 (3)0.0504 (10)
C50.2072 (5)0.3862 (5)0.3748 (3)0.0522 (10)
C60.4198 (6)0.2675 (5)0.6388 (3)0.0569 (10)
H60.30920.30720.68820.068*
C70.5963 (6)0.1885 (5)0.6923 (3)0.0535 (10)
C80.7688 (6)0.1292 (6)0.6238 (4)0.0636 (11)
H80.77270.13740.54130.076*
C90.9325 (6)0.0591 (6)0.6767 (4)0.0726 (13)
H91.04660.02020.62990.087*
C100.9299 (7)0.0456 (6)0.7985 (4)0.0741 (13)
H101.04170.00170.83420.089*
C110.7604 (7)0.1027 (6)0.8669 (4)0.0785 (14)
H110.75690.09340.94930.094*
C120.5962 (7)0.1736 (6)0.8140 (4)0.0684 (12)
H120.48260.21220.86130.082*
H20.150 (5)0.408 (5)0.545 (3)0.075 (12)*
N10.6576 (5)0.2644 (5)0.1742 (3)0.0742 (12)
N20.2397 (4)0.3615 (4)0.4894 (3)0.0578 (9)
N30.4137 (5)0.2831 (4)0.5270 (3)0.0546 (9)
O10.5060 (4)0.3099 (4)0.0977 (2)0.0689 (10)
O20.0417 (4)0.4503 (4)0.3494 (2)0.0672 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.052 (2)0.111 (3)0.051 (2)0.007 (2)0.0067 (19)0.012 (2)
C20.039 (2)0.072 (2)0.054 (2)0.0057 (17)0.0052 (16)0.0055 (18)
C30.041 (2)0.095 (3)0.046 (2)0.0154 (19)0.0029 (16)0.0016 (19)
C40.0349 (19)0.065 (2)0.049 (2)0.0093 (15)0.0018 (15)0.0009 (16)
C50.037 (2)0.068 (2)0.051 (2)0.0094 (16)0.0003 (15)0.0050 (17)
C60.045 (2)0.072 (2)0.051 (2)0.0075 (17)0.0048 (17)0.0029 (17)
C70.050 (2)0.062 (2)0.047 (2)0.0037 (17)0.0017 (16)0.0022 (16)
C80.054 (2)0.084 (3)0.051 (2)0.010 (2)0.0017 (18)0.0024 (19)
C90.053 (2)0.086 (3)0.077 (3)0.017 (2)0.002 (2)0.003 (2)
C100.066 (3)0.080 (3)0.078 (3)0.015 (2)0.021 (2)0.004 (2)
C110.078 (3)0.099 (3)0.057 (3)0.020 (3)0.011 (2)0.002 (2)
C120.065 (3)0.087 (3)0.052 (2)0.016 (2)0.0003 (19)0.004 (2)
N10.0411 (19)0.121 (3)0.057 (2)0.0189 (18)0.0007 (15)0.0025 (19)
N20.0372 (17)0.087 (2)0.0468 (19)0.0153 (15)0.0002 (13)0.0059 (16)
N30.0408 (17)0.073 (2)0.0486 (19)0.0090 (14)0.0024 (13)0.0020 (14)
O10.0457 (16)0.113 (2)0.0448 (16)0.0136 (14)0.0042 (12)0.0022 (14)
O20.0419 (16)0.104 (2)0.0547 (17)0.0250 (14)0.0063 (12)0.0128 (14)
Geometric parameters (Å, º) top
C1—C21.478 (5)C7—C121.375 (5)
C1—H1A0.9600C7—C81.394 (5)
C1—H1B0.9600C8—C91.368 (5)
C1—H1C0.9600C8—H80.9300
C2—O11.337 (4)C9—C101.374 (6)
C2—C41.352 (5)C9—H90.9300
C3—N11.288 (5)C10—C111.373 (6)
C3—C41.417 (5)C10—H100.9300
C3—H30.9300C11—C121.373 (6)
C4—C51.473 (5)C11—H110.9300
C5—O21.239 (4)C12—H120.9300
C5—N21.336 (5)N1—O11.412 (4)
C6—N31.269 (5)N2—N31.373 (4)
C6—C71.464 (5)N2—H20.902 (10)
C6—H60.9300
C2—C1—H1A109.5C8—C7—C6122.2 (3)
C2—C1—H1B109.5C9—C8—C7120.7 (4)
H1A—C1—H1B109.5C9—C8—H8119.7
C2—C1—H1C109.5C7—C8—H8119.7
H1A—C1—H1C109.5C8—C9—C10120.6 (4)
H1B—C1—H1C109.5C8—C9—H9119.7
O1—C2—C4109.7 (3)C10—C9—H9119.7
O1—C2—C1115.1 (3)C11—C10—C9119.2 (4)
C4—C2—C1135.3 (4)C11—C10—H10120.4
N1—C3—C4113.2 (3)C9—C10—H10120.4
N1—C3—H3123.4C12—C11—C10120.3 (4)
C4—C3—H3123.4C12—C11—H11119.9
C2—C4—C3103.5 (3)C10—C11—H11119.9
C2—C4—C5123.5 (3)C11—C12—C7121.3 (4)
C3—C4—C5133.0 (3)C11—C12—H12119.4
O2—C5—N2118.7 (3)C7—C12—H12119.4
O2—C5—C4119.9 (3)C3—N1—O1104.4 (3)
N2—C5—C4121.4 (3)C5—N2—N3123.3 (3)
N3—C6—C7121.8 (3)C5—N2—H2119 (3)
N3—C6—H6119.1N3—N2—H2118 (3)
C7—C6—H6119.1C6—N3—N2115.5 (3)
C12—C7—C8117.9 (4)C2—O1—N1109.3 (3)
C12—C7—C6119.8 (4)
O1—C2—C4—C30.0 (4)C7—C8—C9—C100.0 (7)
C1—C2—C4—C3178.5 (5)C8—C9—C10—C110.3 (7)
O1—C2—C4—C5178.0 (3)C9—C10—C11—C120.4 (8)
C1—C2—C4—C50.5 (8)C10—C11—C12—C70.3 (8)
N1—C3—C4—C20.0 (5)C8—C7—C12—C110.1 (7)
N1—C3—C4—C5177.7 (4)C6—C7—C12—C11179.0 (4)
C2—C4—C5—O24.5 (6)C4—C3—N1—O10.0 (5)
C3—C4—C5—O2172.8 (4)O2—C5—N2—N3176.6 (3)
C2—C4—C5—N2176.3 (4)C4—C5—N2—N34.2 (6)
C3—C4—C5—N26.4 (7)C7—C6—N3—N2179.3 (3)
N3—C6—C7—C12179.8 (4)C5—N2—N3—C6179.1 (4)
N3—C6—C7—C81.2 (6)C4—C2—O1—N10.0 (5)
C12—C7—C8—C90.2 (7)C1—C2—O1—N1178.8 (3)
C6—C7—C8—C9178.8 (4)C3—N1—O1—C20.0 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N30.932.392.893 (5)114
N2—H2···O2i0.90 (1)1.98 (1)2.867 (4)170 (4)
C1—H1B···N1ii0.962.673.598 (6)162
C1—H1A···Cg1iii0.963.354.136 (7)140
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H11N3O2
Mr229.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.6562 (6), 7.4874 (9), 11.3051 (11)
α, β, γ (°)87.319 (8), 84.640 (7), 87.878 (8)
V3)560.04 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.19 × 0.08
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.979, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
6763, 1936, 1219
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.302, 1.10
No. of reflections1936
No. of parameters159
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N30.932.392.893 (5)113.7
N2—H2···O2i0.902 (10)1.975 (13)2.867 (4)170 (4)
C1—H1B···N1ii0.962.673.598 (6)161.8
C1—H1A···Cg1iii0.963.3524.136 (7)140.2
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (No. Y406049).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolina, P., Almendros, O. & Fresneda, P. M. (1994). Tetrahedron, 50, 2241–2243.  CrossRef CAS Google Scholar
First citationReiter, J., Somoral, T. & Dvortsak, P. (1985). Heterocycl. Chem. 22, 385–394.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett. 25, 4587–4591.  CrossRef CAS Web of Science Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds