organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o146-o147

Redetermination and absolute configuration of 6-hy­droxy­salvinolone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 8 December 2009; accepted 10 December 2009; online 16 December 2009)

The crystal structure of the title compound [systematic name: 5,6,10-trihydr­oxy-7-isopropyl-1,1,4a-trimethyl-2,3,4,4a-tetra­hydro­phenanthren-9(1H)-one], C20H26O4, has been reported previously [Salae et al. (2009[Salae, A. W., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2009). Acta Cryst. E65, o2379-o2380.]). Acta Cryst. E65, o2379–o2380], but the absolute configuration could not be determined as there was no significant anomalous dispersion using data collected with Mo radiation. The absolute configuration has now been determined by refinement of the Flack parameter with data collected using Cu radiation. The absolute configuration at position 4a of the diterpenoid is (R)-methyl; other features of the mol­ecule and its crystal packing are similar to those previously described.

Related literature

For background to diterpenes, see: Fraga et al. (2005[Fraga, B. M., Díaz, C. E., Guadaño, A. & González-Coloma, A. (2005). J. Agric. Food. Chem.. 53, 5200-5206.]); Hueso-Rodríguez et al. (1983[Hueso-Rodríguez, J. A., Jimeno, M. L., Rodríguez, B., Savona, G. & Bruno, M. (1983). Phytochemistry, 22, 2005-2009.]) and Topcu & Ulubelen (1996[Topcu, G. & Ulubelen, A. (1996). J. Nat. Prod. 59, 734-737.]). For the previous determination, see: Salae et al. (2009[Salae, A. W., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2009). Acta Cryst. E65, o2379-o2380.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26O4

  • Mr = 330.41

  • Orthorhombic, P 21 21 21

  • a = 9.4908 (1) Å

  • b = 13.1684 (2) Å

  • c = 13.8105 (2) Å

  • V = 1726.02 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.27 mm

Data collection
  • Bruker APEX Duo CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.790, Tmax = 0.835

  • 6410 measured reflections

  • 2622 independent reflections

  • 2581 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.09

  • 2622 reflections

  • 317 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1609 Friedel pairs

  • Flack parameter: 0.06 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.87 (2) 1.93 (2) 2.5607 (14) 128 (2)
O3—H1O3⋯O2i 0.85 (3) 1.87 (3) 2.6988 (14) 167 (2)
O4—H1O4⋯O3 0.81 (3) 2.04 (3) 2.5690 (14) 123 (2)
C14—H14A⋯O3ii 0.975 (17) 2.542 (17) 3.4774 (17) 160.8 (14)
C15—H15A⋯O2i 0.98 2.45 3.1933 (17) 132
C18—H18B⋯O1 1.005 (18) 2.524 (18) 3.1335 (19) 118.7 (13)
C19—H19A⋯O1 0.971 (19) 2.273 (19) 2.903 (2) 121.7 (14)
C20—H20C⋯O4 1.01 (2) 2.403 (19) 3.0779 (18) 123.9 (14)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title diterpenoid compound (I) known as 6-hydroxysalvinolone (Topcu & Ulubelen, 1996) or 14-deoxycoleon U (Fraga et al., 2005; Hueso-Rodríguez et al., 1983), was isolated from the roots of Premna obtusifolia, a Thai manglove plant which was collected from Satun province in the Southern part of Thailand. Its crystal structure has been reported (Salae et al., 2009) but the absolute configuration could not be determined due to no large anomalous dispersion using a data set collected with Mo radiation. Data on the same sample was recollected using Cu radiation with our newly-installed Bruker Apex-Duo CCD diffractometer and the absolute configuration at atom C10 (or the 4a position) was determined as (R)-methyl making use of the large anomalous scattering of Cu Kα X-radiation with the Flack parameter being refined to 0.06 (17). We report herein the crystal structure of (I) determined from the Cu data.

Fig. 1 shows the molecular structure of (I); the ring conformations, bond lengths and angles are almost identical to those previously described (Salae et al., 2009).

Fig. 2 shows the crystal packing of (I), intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1) linked the molecules into infinite one dimensional screw chains along the [0 0 1] direction. This feature and also the O—H···O hydrogen bonds and weak C—H···O interactions are also similar to those in the previous report by Salae et al. (2009).

Related literature top

For background to diterpenes, see: Fraga et al. (2005); Hueso-Rodríguez et al. (1983) and Topcu et al. (1996). For the previous determination, see: Salae et al. (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The compound was isolated and the crystal grown as reported by Salae et al. (2009).

Refinement top

The H atom attached to C15 was placed in a calculated position with d(C—H) = 0.96 Å and the Uiso values was constrained to be 1.2Ueq of the carrier atom. The remaining H atoms were located from the difference map and isotropically refined. The highest residual electron density peak is located at 0.73 Å from C13 and the deepest hole is located at 0.50 Å from O1. 1609 Friedel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis, showing screw chains along the [0 0 1] direction. Hydrogen bonds are shown as dashed lines.
5,6,10-trihydroxy-7-isopropyl-1,1,4a-trimethyl-2,3,4,4a-tetrahydrophenanthren- 9(1H)-one top
Crystal data top
C20H26O4F(000) = 712
Mr = 330.41Dx = 1.271 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 2622 reflections
a = 9.4908 (1) Åθ = 5.7–62.5°
b = 13.1684 (2) ŵ = 0.70 mm1
c = 13.8105 (2) ÅT = 100 K
V = 1726.02 (4) Å3Block, colorless
Z = 40.35 × 0.30 × 0.27 mm
Data collection top
Bruker APEX Duo CCD area-detector
diffractometer
2622 independent reflections
Radiation source: sealed tube2581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 62.5°, θmin = 5.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.790, Tmax = 0.835k = 1515
6410 measured reflectionsl = 1511
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.062P)2 + 0.1924P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2622 reflectionsΔρmax = 0.22 e Å3
317 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack (1983), 1609 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (17)
Crystal data top
C20H26O4V = 1726.02 (4) Å3
Mr = 330.41Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.4908 (1) ŵ = 0.70 mm1
b = 13.1684 (2) ÅT = 100 K
c = 13.8105 (2) Å0.35 × 0.30 × 0.27 mm
Data collection top
Bruker APEX Duo CCD area-detector
diffractometer
2622 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2581 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.835Rint = 0.023
6410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089Δρmax = 0.22 e Å3
S = 1.09Δρmin = 0.22 e Å3
2622 reflectionsAbsolute structure: Flack (1983), 1609 Friedel pairs
317 parametersAbsolute structure parameter: 0.06 (17)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26498 (14)0.14479 (8)0.64508 (8)0.0226 (3)
H1O10.266 (3)0.2024 (19)0.6146 (17)0.045 (6)*
O20.25865 (15)0.33763 (7)0.66855 (7)0.0248 (3)
O30.24268 (12)0.46642 (8)1.11130 (7)0.0158 (2)
H1O30.247 (3)0.530 (2)1.1204 (17)0.048 (6)*
O40.25736 (13)0.27211 (7)1.09810 (8)0.0182 (3)
H1O40.257 (3)0.3146 (19)1.1402 (19)0.049 (7)*
C10.14780 (17)0.11004 (11)0.98596 (11)0.0173 (3)
H1A0.188 (2)0.1027 (15)1.0541 (15)0.028 (5)*
H1B0.068 (2)0.1522 (15)0.9886 (15)0.026 (5)*
C20.09572 (16)0.00499 (11)0.95493 (11)0.0183 (3)
H2A0.065 (2)0.0370 (17)1.0113 (16)0.034 (5)*
H2B0.013 (2)0.0121 (13)0.9127 (14)0.023 (4)*
C30.20793 (16)0.05336 (11)0.89923 (11)0.0161 (3)
H3A0.1764 (18)0.1257 (14)0.8862 (12)0.016 (4)*
H3B0.291 (2)0.0611 (15)0.9379 (15)0.026 (5)*
C40.24229 (18)0.00042 (10)0.80241 (10)0.0157 (3)
C50.24927 (16)0.11556 (10)0.81588 (11)0.0134 (3)
C60.25717 (17)0.17835 (11)0.73906 (10)0.0166 (3)
C70.25656 (17)0.28940 (11)0.74620 (10)0.0165 (3)
C80.25203 (16)0.33638 (10)0.84151 (10)0.0137 (3)
C90.25196 (14)0.27429 (10)0.92394 (10)0.0125 (3)
C100.26072 (15)0.15823 (10)0.91813 (10)0.0134 (3)
C110.25250 (15)0.32477 (11)1.01271 (10)0.0128 (3)
C120.24735 (15)0.43145 (11)1.01817 (9)0.0127 (3)
C130.24955 (15)0.49239 (10)0.93545 (10)0.0134 (3)
C140.25173 (16)0.44233 (10)0.84755 (10)0.0144 (3)
H14A0.257 (2)0.4837 (13)0.7891 (12)0.017 (4)*
C150.24936 (17)0.60773 (10)0.94334 (10)0.0157 (3)
H15A0.30620.62601.00000.019*
C160.3152 (2)0.65897 (12)0.85566 (14)0.0298 (4)
H16A0.412 (2)0.6255 (18)0.8398 (18)0.050 (7)*
H16B0.3240 (19)0.7331 (16)0.8679 (15)0.029 (5)*
H16C0.255 (2)0.6499 (16)0.8008 (16)0.036 (5)*
C170.09970 (16)0.64673 (11)0.96111 (13)0.0218 (4)
H17A0.059 (2)0.6171 (15)1.0234 (16)0.030 (5)*
H17B0.039 (2)0.6260 (16)0.9072 (16)0.034 (5)*
H17C0.0999 (18)0.7216 (14)0.9708 (13)0.021 (4)*
C180.38294 (17)0.04049 (11)0.76212 (12)0.0187 (3)
H18A0.461 (2)0.0244 (14)0.8056 (14)0.023 (4)*
H18B0.4045 (19)0.0088 (14)0.6976 (13)0.021 (4)*
H18C0.3732 (19)0.1131 (16)0.7533 (14)0.024 (5)*
C190.12291 (17)0.02847 (12)0.73087 (12)0.0210 (4)
H19A0.138 (2)0.0003 (14)0.6670 (14)0.026 (5)*
H19B0.028 (2)0.0059 (14)0.7535 (15)0.029 (5)*
H19C0.1167 (18)0.1038 (14)0.7267 (13)0.017 (4)*
C200.41254 (15)0.13291 (11)0.95429 (11)0.0159 (3)
H20A0.481 (2)0.1651 (14)0.9128 (15)0.026 (5)*
H20B0.4291 (18)0.0620 (15)0.9528 (13)0.021 (4)*
H20C0.425 (2)0.1618 (14)1.0211 (15)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0463 (7)0.0115 (5)0.0101 (5)0.0010 (5)0.0012 (5)0.0010 (4)
O20.0506 (7)0.0120 (5)0.0117 (5)0.0003 (5)0.0000 (5)0.0024 (4)
O30.0281 (6)0.0087 (5)0.0106 (5)0.0025 (5)0.0021 (4)0.0030 (4)
O40.0331 (6)0.0110 (5)0.0104 (5)0.0001 (5)0.0017 (5)0.0004 (4)
C10.0216 (8)0.0100 (7)0.0203 (8)0.0003 (6)0.0057 (6)0.0015 (6)
C20.0203 (8)0.0157 (7)0.0187 (7)0.0018 (6)0.0050 (6)0.0034 (6)
C30.0206 (7)0.0095 (7)0.0181 (8)0.0006 (5)0.0007 (6)0.0005 (6)
C40.0212 (7)0.0117 (7)0.0143 (7)0.0001 (6)0.0000 (6)0.0013 (5)
C50.0139 (7)0.0109 (7)0.0154 (7)0.0012 (6)0.0008 (6)0.0002 (5)
C60.0239 (8)0.0129 (7)0.0129 (7)0.0011 (6)0.0004 (6)0.0022 (5)
C70.0248 (8)0.0121 (7)0.0125 (7)0.0001 (7)0.0012 (6)0.0014 (5)
C80.0156 (7)0.0135 (7)0.0122 (7)0.0001 (6)0.0005 (6)0.0002 (5)
C90.0111 (7)0.0120 (7)0.0142 (7)0.0002 (5)0.0012 (6)0.0005 (5)
C100.0165 (7)0.0119 (7)0.0120 (7)0.0009 (6)0.0016 (6)0.0005 (6)
C110.0145 (7)0.0114 (7)0.0124 (7)0.0001 (6)0.0004 (6)0.0013 (5)
C120.0143 (7)0.0130 (7)0.0109 (7)0.0011 (6)0.0001 (6)0.0021 (5)
C130.0136 (6)0.0110 (7)0.0156 (7)0.0003 (6)0.0011 (6)0.0015 (5)
C140.0193 (7)0.0112 (6)0.0127 (7)0.0005 (6)0.0004 (6)0.0014 (6)
C150.0245 (8)0.0087 (7)0.0139 (7)0.0007 (6)0.0013 (6)0.0016 (5)
C160.0545 (12)0.0102 (8)0.0247 (9)0.0006 (8)0.0132 (9)0.0004 (7)
C170.0255 (8)0.0122 (7)0.0277 (9)0.0021 (7)0.0027 (7)0.0010 (7)
C180.0243 (8)0.0116 (7)0.0200 (8)0.0024 (6)0.0030 (7)0.0005 (6)
C190.0273 (9)0.0148 (8)0.0208 (8)0.0025 (7)0.0050 (7)0.0025 (6)
C200.0194 (7)0.0106 (7)0.0177 (7)0.0018 (6)0.0036 (6)0.0010 (6)
Geometric parameters (Å, º) top
O1—C61.3732 (17)C9—C111.394 (2)
O1—H1O10.87 (3)C9—C101.5327 (18)
O2—C71.2465 (18)C10—C201.561 (2)
O3—C121.3669 (16)C11—C121.408 (2)
O3—H1O30.85 (3)C12—C131.3962 (19)
O4—C111.3688 (16)C13—C141.381 (2)
O4—H1O40.81 (3)C13—C151.5228 (17)
C1—C21.530 (2)C14—H14A0.975 (18)
C1—C101.558 (2)C15—C161.520 (2)
C1—H1A1.02 (2)C15—C171.530 (2)
C1—H1B0.94 (2)C15—H15A0.9800
C2—C31.522 (2)C16—H16A1.04 (2)
C2—H2A1.00 (2)C16—H16B0.99 (2)
C2—H2B0.99 (2)C16—H16C0.96 (2)
C3—C41.543 (2)C17—H17A1.02 (2)
C3—H3A1.014 (19)C17—H17B0.98 (2)
C3—H3B0.96 (2)C17—H17C0.996 (18)
C4—C181.540 (2)C18—H18A0.98 (2)
C4—C51.5399 (18)C18—H18B1.005 (19)
C4—C191.548 (2)C18—H18C0.97 (2)
C5—C61.347 (2)C19—H19A0.970 (19)
C5—C101.5236 (19)C19—H19B1.00 (2)
C6—C71.4656 (19)C19—H19C0.995 (18)
C7—C81.455 (2)C20—H20A0.97 (2)
C8—C141.3978 (19)C20—H20B0.947 (19)
C8—C91.4016 (19)C20—H20C1.00 (2)
C6—O1—H1O1100.3 (15)O4—C11—C9121.07 (12)
C12—O3—H1O3118.0 (16)O4—C11—C12117.42 (12)
C11—O4—H1O4105.7 (17)C9—C11—C12121.51 (12)
C2—C1—C10114.96 (12)O3—C12—C13125.22 (12)
C2—C1—H1A107.1 (11)O3—C12—C11112.81 (12)
C10—C1—H1A109.4 (11)C13—C12—C11121.96 (12)
C2—C1—H1B106.5 (12)C14—C13—C12116.42 (13)
C10—C1—H1B109.7 (12)C14—C13—C15122.60 (13)
H1A—C1—H1B108.9 (17)C12—C13—C15120.98 (12)
C3—C2—C1111.83 (12)C13—C14—C8121.92 (13)
C3—C2—H2A108.6 (12)C13—C14—H14A117.5 (10)
C1—C2—H2A112.2 (12)C8—C14—H14A120.6 (10)
C3—C2—H2B108.0 (10)C16—C15—C13112.65 (12)
C1—C2—H2B109.8 (11)C16—C15—C17111.12 (14)
H2A—C2—H2B106.2 (16)C13—C15—C17110.32 (13)
C2—C3—C4110.96 (12)C16—C15—H15A107.5
C2—C3—H3A111.0 (10)C13—C15—H15A107.5
C4—C3—H3A109.4 (10)C17—C15—H15A107.5
C2—C3—H3B110.3 (12)C15—C16—H16A110.0 (13)
C4—C3—H3B110.9 (12)C15—C16—H16B109.6 (12)
H3A—C3—H3B104.0 (15)H16A—C16—H16B112.1 (16)
C18—C4—C5110.26 (13)C15—C16—H16C109.2 (13)
C18—C4—C3109.98 (12)H16A—C16—H16C108.0 (18)
C5—C4—C3110.64 (12)H16B—C16—H16C107.9 (17)
C18—C4—C19108.79 (12)C15—C17—H17A110.9 (11)
C5—C4—C19110.20 (12)C15—C17—H17B109.4 (12)
C3—C4—C19106.89 (12)H17A—C17—H17B108.1 (16)
C6—C5—C10119.96 (12)C15—C17—H17C110.6 (10)
C6—C5—C4121.06 (13)H17A—C17—H17C105.5 (15)
C10—C5—C4118.74 (12)H17B—C17—H17C112.2 (16)
C5—C6—O1123.36 (13)C4—C18—H18A111.3 (11)
C5—C6—C7124.01 (13)C4—C18—H18B110.8 (10)
O1—C6—C7112.63 (12)H18A—C18—H18B107.4 (15)
O2—C7—C8124.20 (12)C4—C18—H18C107.5 (11)
O2—C7—C6116.78 (12)H18A—C18—H18C111.3 (16)
C8—C7—C6119.02 (12)H18B—C18—H18C108.5 (16)
C14—C8—C9122.27 (12)C4—C19—H19A112.3 (11)
C14—C8—C7118.58 (12)C4—C19—H19B113.0 (12)
C9—C8—C7119.13 (12)H19A—C19—H19B107.5 (16)
C11—C9—C8115.85 (12)C4—C19—H19C108.5 (10)
C11—C9—C10121.41 (12)H19A—C19—H19C110.1 (15)
C8—C9—C10122.62 (12)H19B—C19—H19C105.1 (14)
C5—C10—C9114.36 (11)C10—C20—H20A109.9 (11)
C5—C10—C1110.97 (12)C10—C20—H20B110.9 (11)
C9—C10—C1109.71 (12)H20A—C20—H20B107.8 (15)
C5—C10—C20106.47 (12)C10—C20—H20C108.6 (11)
C9—C10—C20104.26 (12)H20A—C20—H20C107.5 (16)
C1—C10—C20110.82 (11)H20B—C20—H20C112.0 (16)
C10—C1—C2—C328.97 (17)C6—C5—C10—C20103.23 (16)
C1—C2—C3—C464.94 (16)C4—C5—C10—C2071.28 (16)
C2—C3—C4—C18163.23 (12)C11—C9—C10—C5176.24 (12)
C2—C3—C4—C541.17 (16)C8—C9—C10—C57.9 (2)
C2—C3—C4—C1978.83 (15)C11—C9—C10—C150.82 (18)
C18—C4—C5—C667.99 (19)C8—C9—C10—C1133.35 (13)
C3—C4—C5—C6170.13 (14)C11—C9—C10—C2067.90 (16)
C19—C4—C5—C652.1 (2)C8—C9—C10—C20107.93 (15)
C18—C4—C5—C10106.46 (15)C2—C1—C10—C525.05 (17)
C3—C4—C5—C1015.42 (19)C2—C1—C10—C9152.39 (13)
C19—C4—C5—C10133.43 (14)C2—C1—C10—C2093.02 (15)
C10—C5—C6—O1171.82 (14)C8—C9—C11—O4177.74 (13)
C4—C5—C6—O12.6 (2)C10—C9—C11—O41.6 (2)
C10—C5—C6—C79.0 (2)C8—C9—C11—C122.6 (2)
C4—C5—C6—C7176.61 (15)C10—C9—C11—C12178.69 (13)
C5—C6—C7—O2177.13 (14)O4—C11—C12—O32.3 (2)
O1—C6—C7—O22.1 (2)C9—C11—C12—O3177.35 (13)
C5—C6—C7—C82.2 (3)O4—C11—C12—C13176.60 (12)
O1—C6—C7—C8178.55 (12)C9—C11—C12—C133.7 (2)
O2—C7—C8—C140.8 (2)O3—C12—C13—C14178.86 (14)
C6—C7—C8—C14179.89 (14)C11—C12—C13—C142.3 (2)
O2—C7—C8—C9179.14 (16)O3—C12—C13—C151.1 (2)
C6—C7—C8—C91.6 (2)C11—C12—C13—C15177.71 (13)
C14—C8—C9—C110.4 (2)C12—C13—C14—C80.1 (2)
C7—C8—C9—C11177.83 (14)C15—C13—C14—C8179.93 (14)
C14—C8—C9—C10176.45 (13)C9—C8—C14—C130.8 (2)
C7—C8—C9—C101.8 (2)C7—C8—C14—C13179.08 (14)
C6—C5—C10—C911.3 (2)C14—C13—C15—C1625.5 (2)
C4—C5—C10—C9174.14 (12)C12—C13—C15—C16154.57 (15)
C6—C5—C10—C1136.09 (15)C14—C13—C15—C1799.31 (17)
C4—C5—C10—C149.39 (18)C12—C13—C15—C1780.62 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.87 (2)1.93 (2)2.5607 (14)128 (2)
O3—H1O3···O2i0.85 (3)1.87 (3)2.6988 (14)167 (2)
O4—H1O4···O30.81 (3)2.04 (3)2.5690 (14)123 (2)
C14—H14A···O3ii0.975 (17)2.542 (17)3.4774 (17)160.8 (14)
C15—H15A···O2i0.982.453.1933 (17)132
C18—H18B···O11.005 (18)2.524 (18)3.1335 (19)118.7 (13)
C19—H19A···O10.971 (19)2.273 (19)2.903 (2)121.7 (14)
C20—H20C···O41.01 (2)2.403 (19)3.0779 (18)123.9 (14)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC20H26O4
Mr330.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.4908 (1), 13.1684 (2), 13.8105 (2)
V3)1726.02 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.35 × 0.30 × 0.27
Data collection
DiffractometerBruker APEX Duo CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.790, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
6410, 2622, 2581
Rint0.023
(sin θ/λ)max1)0.575
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.09
No. of reflections2622
No. of parameters317
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.22
Absolute structureFlack (1983), 1609 Friedel pairs
Absolute structure parameter0.06 (17)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.87 (2)1.93 (2)2.5607 (14)128 (2)
O3—H1O3···O2i0.85 (3)1.87 (3)2.6988 (14)167 (2)
O4—H1O4···O30.81 (3)2.04 (3)2.5690 (14)123 (2)
C14—H14A···O3ii0.975 (17)2.542 (17)3.4774 (17)160.8 (14)
C15—H15A···O2i0.982.453.1933 (17)132
C18—H18B···O11.005 (18)2.524 (18)3.1335 (19)118.7 (13)
C19—H19A···O10.971 (19)2.273 (19)2.903 (2)121.7 (14)
C20—H20C···O41.01 (2)2.403 (19)3.0779 (18)123.9 (14)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-5085-2009. Additional correspondence author, email: suchada.c@psu.ac.th

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. Mr Abdul Wahab Salae is acknowledged for supplying the sample of 6-hydroxy­salvinolone.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFraga, B. M., Díaz, C. E., Guadaño, A. & González-Coloma, A. (2005). J. Agric. Food. Chem.. 53, 5200–5206.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHueso-Rodríguez, J. A., Jimeno, M. L., Rodríguez, B., Savona, G. & Bruno, M. (1983). Phytochemistry, 22, 2005–2009.  Google Scholar
First citationSalae, A. W., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2009). Acta Cryst. E65, o2379–o2380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTopcu, G. & Ulubelen, A. (1996). J. Nat. Prod. 59, 734–737.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o146-o147
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds