organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy-3,4-di­phenyl­phenol

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 12 November 2009; accepted 25 November 2009; online 9 December 2009)

The title compound, C19H16O2, was isolated as the major product after the solid-state photochemical reaction of 2-meth­oxy-4,4-diphenyl­cyclo­hexa-2,5-dienone. The dihedral angles between the central ring and pendant benzene rings are 60.76 (6) and 51.64 (6)°. The O—C vector of the meth­oxy group is almost perpendicular to the plane of the central ring as indicated by the C—C—O—C torsion angle of 94.89 (18)°. Hydrogen-bonded dimers are formed in the crystal structure via O—H⋯O inter­actions. The data were collected at room temperature on a Bruker SMART X2S diffractometer in the automated mode and processed manually thereafter.

Related literature

For the characterization of reaction products, see: Frimer et al. (1994[ Frimer, A. A., Marks, V., Sprecher, M. & Gilinsky-Sharon, P. (1994). J. Org. Chem. 59, 1831-1843.]); Matoba et al. (1985[ Matoba, K., Kawagoshi, F., Tanabe, M. & Yamazaki, T. (1985). Chem. Pharm. Bull. 33, 3709-3714]). Mogul (Bruno et al., 2002[ Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) was used for the geometrical analysis.

[Scheme 1]

Experimental

Crystal data
  • C19H16O2

  • Mr = 276.32

  • Monoclinic, P 21 /c

  • a = 14.312 (3) Å

  • b = 6.2585 (14) Å

  • c = 17.167 (4) Å

  • β = 102.930 (7)°

  • V = 1498.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 300 K

  • 0.36 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART X2S diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[ Bruker (2007). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.978

  • 13658 measured reflections

  • 2645 independent reflections

  • 1897 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.129

  • S = 1.01

  • 2645 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.21 2.9043 (18) 142
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: GIS (Bruker, 2009[ Bruker (2009). GIS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[ Bruker (2007). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and OLEX2 (Dolomanov et al., 2009[ Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); mol­ecular graphics: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: local programs (Guzei, 2007[ Guzei, I. A. (2007). FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]) and publCIF (Westrip, 2009[ Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The title compound (I), Fig. 1, was isolated as the major product during our studies of the solid state photochemical behavior of 2-methoxy-4,4-diphenyl-2,5-cyclohexadienone as described in the Experimental.

All bond distances and angles in (I) fall in the expected ranges according to the Mogul structural check (Bruno, et al., 2002). The dihedral angles between the C1—C6 ring and rings C8—C13 and C14—C19 are 60.76 (6)° and 51.64 (6)°, respectively. The O1—C7 vector of the methoxy group is almost perpendicular to the plane of the C1—C6 ring as indicated by the dihedral angle C2—C1—O1—C7 of 94.89 (18)°. Compound (I) forms hydrogen-bonded dimers in the solid state. The graph set notation for the dimers connected by O2—H2···O1 hydrogen bonds is R22(10).

Related literature top

For the characterization of reaction products, see: Frimer et al. (1994); Matoba et al. (1985). Mogul (Bruno et al., 2002) was used for the geometrical analysis.

Experimental top

Solid state photolysis of 2-methoxy-4,4-diphenyl-2,5-cyclohexadienone (II) was studied as follows.

A thin film of (II) (0.30 g, 0.001 mol) was irradiated under nitrogen for 18 h through a CuSO4 filter with a 400 watt medium pressure mercury lamp. The lamp was surrounded by a water-cooled immersion jacket and a cylindrical flask. The film of (II) was deposited on the inner wall of the outer flask (4 cm from the lamp) by slow evaporation of its dichloromethane solution and was dried before photolysis under nitrogen for 2 h. The resulting orange solid was chromatographed (silica gel 2.5 cm x 37 cm), eluted with hexane-CH2Cl2 (2:3) to give the following: band 1, 2-methoxy-4,5-diphenylphenol (III); band 2, 2-methoxy-3,4-diphenylphenol (I), band 3, 6-methoxy-5,6-diphenyl-2,4-cyclohexadienone (IV). The unreacted (band 4) cyclohexadienone (II) (0.10 g, 33%) was separated by using CH2Cl2—CH3OH (9:1) elution (Scheme 1).

2-Methoxy-4,5-diphenylphenol (III) (Band 1): Recrystallization from ether-hexane gave (75 mg, 25%) colorless crystals, mp 419–421 K (Literature mp 422–423 K (Frimer et al., 1994)). 1H NMR (CDCl3, 300 MHz): δ 3.95 (s, 3H), 5.62 (s, 1H), 6.91 (s, 1H), 7.02 (s, 1H), 7.10–7.21 (m, 10H) p.p.m.; 13C NMR (CDCl3, 75 MHz) δ 56.3, 113.3, 116.9, 126.4, 128.0, 128.1, 130.2, 130.2, 133.3, 134.1, 141.6, 142.0, 145.1, 146.1 p.p.m.

2-Methoxy-3,4-diphenylphenol (I) (Band 2): Recrystallization from CH2Cl2-hexane gave (90 mg, 30%) colorless crystals, mp 417–419 K. 1H NMR (CDCl3, 300 MHz): δ 3.29 (s, 3H), 5.88 (s, 1H), 6.99–7.04 (m, 3H), 7.08–7.17 (m, 6H), 7.20–7.24 (m, 3H) p.p.m.; 13C NMR (CDCl3, 75 MHz) δ 60.7, 114.5, 126.2, 126.8, 127.1, 127.8, 128.0, 130.2, 131.1, 133.8, 134.5, 136.3, 141.3, 145.3, 148.4 p.p.m.

6-Methoxy-5,6-diphenyl-2,4-cyclohexadienone (IV) (Band 3): This was recrystallized from CH2Cl2-hexane mixture. Yield = 15 mg, 5%; mp 467–469 K (Literature mp 469–471 K (Matoba et al.,1985). 1H NMR (CDCl3, 300 MHz): δ 3.66 (s, 3H, OCH3), 5.56 (d, J = 7.8 Hz, 1H), 5.88 (d, J = 9.9 Hz, 1H), 7.15–7.29 (m, 11H) p.p.m.; 13C NMR (CDCl3, 75 MHz) δ 56.2, 69.5, 94.5, 118.8, 127.6, 128.3, 129.9, 141.0, 143.5, 171.2, 201.2 p.p.m.

Refinement top

All H-atoms were placed in idealized locations (N—H = 0.82 Å and C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(bearing atom).

Computing details top

Data collection: GIS (Bruker, 2009); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: local programs (Guzei, 2007) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The formation of the title compound.
2-Methoxy-3,4-diphenylphenol top
Crystal data top
C19H16O2F(000) = 584
Mr = 276.32Dx = 1.225 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 999 reflections
a = 14.312 (3) Åθ = 2.4–25.0°
b = 6.2585 (14) ŵ = 0.08 mm1
c = 17.167 (4) ÅT = 300 K
β = 102.930 (7)°Block, colourless
V = 1498.7 (6) Å30.36 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
2645 independent reflections
Radiation source: micro-focus sealed tube1897 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.040
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1717
Tmin = 0.972, Tmax = 0.978k = 77
13658 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0877P)2]
where P = (Fo2 + 2Fc2)/3
2645 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H16O2V = 1498.7 (6) Å3
Mr = 276.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.312 (3) ŵ = 0.08 mm1
b = 6.2585 (14) ÅT = 300 K
c = 17.167 (4) Å0.36 × 0.30 × 0.28 mm
β = 102.930 (7)°
Data collection top
Bruker SMART X2S
diffractometer
2645 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1897 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.978Rint = 0.040
13658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
2645 reflectionsΔρmin = 0.19 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40221 (7)0.44465 (18)0.45356 (6)0.0466 (3)
O20.55156 (8)0.1831 (2)0.44401 (8)0.0630 (4)
H20.54310.26080.48030.095*
C10.39866 (10)0.3357 (2)0.38259 (9)0.0388 (4)
C20.47494 (10)0.2000 (3)0.38019 (10)0.0443 (4)
C30.47283 (12)0.0780 (3)0.31276 (11)0.0501 (5)
H30.52280.01550.31100.060*
C40.39596 (11)0.0956 (3)0.24786 (10)0.0453 (4)
H40.39450.01070.20310.054*
C50.32054 (10)0.2373 (2)0.24768 (9)0.0388 (4)
C60.32128 (10)0.3600 (2)0.31656 (9)0.0352 (4)
C70.35107 (16)0.3378 (4)0.50515 (13)0.0751 (6)
H7A0.28430.33010.47950.113*
H7C0.35860.41580.55430.113*
H7B0.37610.19600.51620.113*
C80.24411 (10)0.2612 (3)0.17289 (10)0.0413 (4)
C90.22906 (13)0.4551 (3)0.13291 (11)0.0532 (5)
H90.26500.57360.15420.064*
C100.16117 (15)0.4750 (4)0.06154 (12)0.0648 (6)
H100.15220.60630.03550.078*
C110.10739 (14)0.3023 (4)0.02930 (12)0.0668 (6)
H110.06200.31570.01850.080*
C120.12096 (13)0.1098 (4)0.06801 (13)0.0660 (6)
H120.08430.00740.04630.079*
C130.18878 (12)0.0874 (3)0.13916 (11)0.0532 (5)
H130.19740.04470.16460.064*
C140.24119 (10)0.5068 (2)0.32365 (9)0.0368 (4)
C150.25989 (12)0.7172 (3)0.34987 (10)0.0464 (4)
H150.32230.76910.36000.056*
C160.18630 (14)0.8488 (3)0.36086 (11)0.0580 (5)
H160.19960.98830.37850.070*
C170.09338 (14)0.7743 (3)0.34579 (12)0.0634 (5)
H170.04410.86260.35380.076*
C180.07375 (12)0.5682 (3)0.31880 (12)0.0577 (5)
H180.01100.51790.30810.069*
C190.14693 (11)0.4360 (3)0.30755 (10)0.0456 (4)
H190.13280.29750.28890.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0403 (6)0.0606 (8)0.0379 (6)0.0037 (5)0.0068 (5)0.0070 (5)
O20.0436 (7)0.0751 (10)0.0632 (9)0.0138 (6)0.0030 (6)0.0042 (7)
C10.0354 (8)0.0435 (9)0.0389 (9)0.0043 (6)0.0114 (7)0.0017 (7)
C20.0323 (8)0.0502 (10)0.0499 (10)0.0019 (7)0.0081 (7)0.0050 (8)
C30.0415 (9)0.0498 (11)0.0617 (12)0.0109 (7)0.0172 (8)0.0012 (8)
C40.0473 (9)0.0456 (10)0.0466 (10)0.0035 (7)0.0184 (8)0.0033 (8)
C50.0401 (8)0.0402 (9)0.0387 (9)0.0003 (6)0.0141 (7)0.0010 (7)
C60.0315 (7)0.0378 (8)0.0377 (9)0.0010 (6)0.0106 (6)0.0030 (7)
C70.0934 (15)0.0886 (16)0.0522 (12)0.0144 (12)0.0352 (11)0.0028 (11)
C80.0425 (8)0.0460 (10)0.0377 (9)0.0045 (7)0.0138 (7)0.0020 (7)
C90.0626 (11)0.0505 (11)0.0455 (10)0.0042 (8)0.0099 (8)0.0000 (8)
C100.0763 (14)0.0673 (13)0.0487 (12)0.0224 (11)0.0096 (10)0.0073 (10)
C110.0560 (11)0.0907 (16)0.0481 (12)0.0149 (11)0.0003 (9)0.0069 (11)
C120.0487 (10)0.0768 (15)0.0670 (14)0.0026 (9)0.0013 (9)0.0157 (11)
C130.0493 (10)0.0531 (11)0.0555 (11)0.0016 (8)0.0082 (8)0.0036 (9)
C140.0367 (8)0.0420 (9)0.0320 (8)0.0018 (6)0.0081 (6)0.0003 (7)
C150.0510 (9)0.0437 (10)0.0446 (10)0.0018 (7)0.0111 (7)0.0000 (8)
C160.0765 (13)0.0435 (11)0.0527 (11)0.0110 (9)0.0116 (10)0.0052 (9)
C170.0588 (11)0.0742 (14)0.0566 (12)0.0296 (10)0.0112 (9)0.0059 (10)
C180.0369 (9)0.0767 (14)0.0582 (12)0.0099 (8)0.0075 (8)0.0063 (10)
C190.0365 (8)0.0506 (10)0.0489 (10)0.0018 (7)0.0075 (7)0.0051 (8)
Geometric parameters (Å, º) top
O1—C11.3871 (18)C9—H90.9300
O1—C71.434 (2)C10—C111.370 (3)
O2—C21.3698 (19)C10—H100.9300
O2—H20.8200C11—C121.368 (3)
C1—C21.391 (2)C11—H110.9300
C1—C61.405 (2)C12—C131.387 (3)
C2—C31.382 (2)C12—H120.9300
C3—C41.384 (2)C13—H130.9300
C3—H30.9300C14—C191.388 (2)
C4—C51.397 (2)C14—C151.398 (2)
C4—H40.9300C15—C161.383 (2)
C5—C61.408 (2)C15—H150.9300
C5—C81.496 (2)C16—C171.378 (3)
C6—C141.495 (2)C16—H160.9300
C7—H7A0.9600C17—C181.378 (3)
C7—H7C0.9600C17—H170.9300
C7—H7B0.9600C18—C191.382 (2)
C8—C91.387 (2)C18—H180.9300
C8—C131.393 (2)C19—H190.9300
C9—C101.389 (3)
C1—O1—C7112.95 (13)C10—C9—H9119.5
C2—O2—H2109.5C11—C10—C9120.29 (19)
O1—C1—C2116.83 (13)C11—C10—H10119.9
O1—C1—C6121.54 (13)C9—C10—H10119.9
C2—C1—C6121.63 (14)C12—C11—C10119.52 (18)
O2—C2—C3119.41 (14)C12—C11—H11120.2
O2—C2—C1121.10 (15)C10—C11—H11120.2
C3—C2—C1119.49 (15)C11—C12—C13120.80 (19)
C2—C3—C4119.66 (15)C11—C12—H12119.6
C2—C3—H3120.2C13—C12—H12119.6
C4—C3—H3120.2C12—C13—C8120.53 (17)
C3—C4—C5121.82 (16)C12—C13—H13119.7
C3—C4—H4119.1C8—C13—H13119.7
C5—C4—H4119.1C19—C14—C15118.20 (14)
C4—C5—C6118.94 (14)C19—C14—C6121.10 (14)
C4—C5—C8118.79 (14)C15—C14—C6120.66 (13)
C6—C5—C8122.20 (13)C16—C15—C14120.53 (16)
C1—C6—C5118.38 (13)C16—C15—H15119.7
C1—C6—C14118.76 (13)C14—C15—H15119.7
C5—C6—C14122.79 (13)C17—C16—C15120.36 (17)
O1—C7—H7A109.5C17—C16—H16119.8
O1—C7—H7C109.5C15—C16—H16119.8
H7A—C7—H7C109.5C18—C17—C16119.70 (16)
O1—C7—H7B109.5C18—C17—H17120.2
H7A—C7—H7B109.5C16—C17—H17120.2
H7C—C7—H7B109.5C17—C18—C19120.23 (17)
C9—C8—C13117.81 (16)C17—C18—H18119.9
C9—C8—C5120.99 (15)C19—C18—H18119.9
C13—C8—C5121.14 (15)C18—C19—C14120.97 (16)
C8—C9—C10121.06 (18)C18—C19—H19119.5
C8—C9—H9119.5C14—C19—H19119.5
C7—O1—C1—C294.89 (18)C6—C5—C8—C13123.15 (17)
C7—O1—C1—C684.55 (18)C13—C8—C9—C100.1 (3)
O1—C1—C2—O22.8 (2)C5—C8—C9—C10177.00 (16)
C6—C1—C2—O2177.77 (14)C8—C9—C10—C110.1 (3)
O1—C1—C2—C3176.31 (14)C9—C10—C11—C120.1 (3)
C6—C1—C2—C33.1 (2)C10—C11—C12—C130.3 (3)
O2—C2—C3—C4179.50 (15)C11—C12—C13—C80.4 (3)
C1—C2—C3—C41.4 (2)C9—C8—C13—C120.2 (2)
C2—C3—C4—C51.3 (3)C5—C8—C13—C12177.25 (16)
C3—C4—C5—C62.3 (2)C1—C6—C14—C19125.28 (16)
C3—C4—C5—C8174.84 (15)C5—C6—C14—C1951.8 (2)
O1—C1—C6—C5177.28 (13)C1—C6—C14—C1552.1 (2)
C2—C1—C6—C52.1 (2)C5—C6—C14—C15130.82 (16)
O1—C1—C6—C140.1 (2)C19—C14—C15—C161.3 (2)
C2—C1—C6—C14179.32 (14)C6—C14—C15—C16176.18 (15)
C4—C5—C6—C10.6 (2)C14—C15—C16—C170.2 (3)
C8—C5—C6—C1176.46 (13)C15—C16—C17—C180.7 (3)
C4—C5—C6—C14176.52 (13)C16—C17—C18—C190.6 (3)
C8—C5—C6—C146.5 (2)C17—C18—C19—C140.5 (3)
C4—C5—C8—C9117.18 (18)C15—C14—C19—C181.4 (2)
C6—C5—C8—C959.8 (2)C6—C14—C19—C18176.05 (15)
C4—C5—C8—C1359.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.212.9043 (18)142
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H16O2
Mr276.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)300
a, b, c (Å)14.312 (3), 6.2585 (14), 17.167 (4)
β (°) 102.930 (7)
V3)1498.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART X2S
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.972, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
13658, 2645, 1897
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.129, 1.01
No. of reflections2645
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: GIS (Bruker, 2009), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), local programs (Guzei, 2007) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.212.9043 (18)142
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge Bruker sponsorship of this publication. Support of the photochemical research by the NSF is gratefully acknowledged.

References

First citation Bruker (2007). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Bruker (2009). GIS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citation Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citation Frimer, A. A., Marks, V., Sprecher, M. & Gilinsky-Sharon, P. (1994). J. Org. Chem. 59, 1831-1843.  CrossRef CAS Web of Science Google Scholar
First citation Guzei, I. A. (2007). FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin–Madison, Madison, Wisconsin, USA.  Google Scholar
First citation Matoba, K., Kawagoshi, F., Tanabe, M. & Yamazaki, T. (1985). Chem. Pharm. Bull. 33, 3709–3714  CrossRef CAS Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Westrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds