metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(2-amino­thia­zole-κN3)di­chloridocadmium(II)

aCenter for Chemical Analysis, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea, and bDepartment of Chemistry, Konyang University, Nonsan 320-711, Republic of Korea
*Correspondence e-mail: ihkim@konyang.ac.kr

(Received 26 November 2009; accepted 1 December 2009; online 4 December 2009)

In the title complex, [CdCl2(C3H4N2S)4],the CdII atom has an trans-Cl2N4 octa­hedral coordination geometry defined by four N atoms derived from the four 2-amino­thia­zole ligands and two Cl atoms. The amino groups participate in intra- and inter­molecular N—H⋯N and N—H⋯Cl hydrogen bonding that stabilizes both the mol­ecular and crystal structures.

Related literature

For the coordination properties of heterocycles, see: Raper (1994[Raper, E. S. (1994). Coord. Chem. Rev. 129, 91-151.]); Karlin & Zubieta (1983[Karlin, K. D. & Zubieta, J. (1983). Biological and Inorganic Copper Chemistry. New York: Adenine Press.]). For the structures of related amino­thia­zole complexes, see: Batı et al. (2006[Batı, H., Yüksektepe, Ç., Çalı˛skan, N. & Büyükgüngör, O. (2006). Acta Cryst. E62, m2313-m2315.]); Davarski et al. (1996[Davarski, K., Macicek, J. & Konovalov, L. (1996). J. Coord. Chem. 38, 123-134.]); Macíček & Davarski (1993[Macíček, J. & Davarski, K. (1993). Acta Cryst. C49, 592-593.]); Maniukiewicz (2004[Maniukiewicz, W. (2004). Acta Cryst. E60, m340-m341.]); Raper et al. (1981[Raper, E. S., Oughtred, R. E., Nowell, I. W. & March, L. A. (1981). Acta Cryst. B37, 928-930.]); Suh et al. (2005[Suh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol. 18, 386-390.], 2007[Suh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.], 2009[Suh, S. W., Kim, C.-H. & Kim, I. H. (2009). Acta Cryst. E65, m1054.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C3H4N2S)4]

  • Mr = 583.87

  • Monoclinic, P 21 /c

  • a = 8.6056 (1) Å

  • b = 15.2838 (2) Å

  • c = 16.2097 (2) Å

  • β = 103.605 (1)°

  • V = 2072.18 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 296 K

  • 0.40 × 0.19 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.544, Tmax = 0.870

  • 21163 measured reflections

  • 5159 independent reflections

  • 4532 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.052

  • S = 1.05

  • 5159 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N16—H16A⋯N23 0.86 2.63 3.277 (2) 133
N16—H16A⋯Cl1 0.86 2.81 3.3903 (19) 126
N16—H16B⋯Cl2i 0.86 2.52 3.2941 (18) 151
N26—H26A⋯Cl2 0.86 2.41 3.1722 (17) 149
N26—H26B⋯Cl1ii 0.86 2.51 3.3300 (16) 161
N36—H36A⋯N43 0.86 2.61 3.324 (2) 142
N36—H36B⋯Cl1iii 0.86 2.63 3.3810 (18) 147
N46—H46A⋯Cl1 0.86 2.44 3.2135 (18) 150
N46—H46B⋯N36iv 0.86 2.56 3.417 (2) 177
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) -x, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some heterocyclic organic compounds have biologically useful properties, having anti-tumour, anti-fungal, and anti-infection activities. Amongst these, aminothiazoles are an important type of N,S-containing heterocycle (Raper, 1994). The N and S atoms play a key role in the coordination of metals at the active sites of various metallobiomelecules (Karlin & Zubieta, 1983). The crystal structures of aminothiazole complexes have attracted recent interest (Suh et al., 2005, 2007, 2009; Batı et al., 2006; Davarski et al., 1996; Macíček & Davarski, 1993; Maniukiewicz, 2004; Raper et al., 1981). Herein, we report the synthesis and crystal structure of the title complex, (I).

As shown in Fig. 1, the complex (I) comprises discrete Cd(C3H4N2S)4Cl2 molecules. The octahedral CdII coordination environment is defined by four N atoms derived from four neutral monodentate 2-aminothiazole ligands and two Cl atoms [Cd—Cl = 2.6294 (5) and 2.6560 (4) Å, and Cd—N = 2.3569 (14)-2.4432 (14) Å]. The Cl atoms occupy trans positions. The amino groups participate in intra- and inter-molecular N—H···N and N—H···Cl hydrogen bonds (Table 1). In the crystal structure molecules are interconnected by these interactions into a three-dimensional hydrogen bond network (Fig. 2).

Related literature top

For the coordination properties of heterocycles, see: Raper (1994); Karlin & Zubieta (1983). For the structures of related aminothiazole complexes, see: Batı et al. (2006); Davarski et al. (1996); Macíček & Davarski (1993); Maniukiewicz (2004); Raper et al. (1981); Suh et al. (2005, 2007, 2009).

Experimental top

A water–ethanol (1:1) solution (40 ml) of 2-aminothiazole (5 mmol) was added dropwise to a water–ethanol (1:1) solution (40 ml) of CdCl2.2.5H2O (2 mmol) with stirring. The small amount of precipitates formed from the mixed solution were filtered off. The filtered solution was allowed to stand at room temperature. After several days, yellow blocks were obtained. Analysis found: C 24.95, H 2.74, N 19.11, S 21.72, Cd 19.30%; C12H16CdCl2N8S4 requires: C 24.68, H 2.76, N 19.20, S 21.96, Cl 12.14, Cd 19.25%.

Refinement top

Positional parameters for the H atoms were calculated geometrically and constrained to ride on their attached atoms with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of the unit cell contents of (I). The C–H atoms have been omitted for reasons of clarity (dashed lines).
Tetrakis(2-aminothiazole-κN3)dichloridocadmium(II) top
Crystal data top
[CdCl2(C3H4N2S)4]F(000) = 1160
Mr = 583.87Dx = 1.872 Mg m3
Dm = 1.87 Mg m3
Dm measured by flotation method
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5290 reflections
a = 8.6056 (1) Åθ = 2.7–28.3°
b = 15.2838 (2) ŵ = 1.73 mm1
c = 16.2097 (2) ÅT = 296 K
β = 103.605 (1)°Block, yellow
V = 2072.18 (4) Å30.40 × 0.19 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5159 independent reflections
Radiation source: fine-focus sealed tube4532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.544, Tmax = 0.87k = 2020
21163 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0234P)2 + 0.6132P]
where P = (Fo2 + 2Fc2)/3
5159 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[CdCl2(C3H4N2S)4]V = 2072.18 (4) Å3
Mr = 583.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6056 (1) ŵ = 1.73 mm1
b = 15.2838 (2) ÅT = 296 K
c = 16.2097 (2) Å0.40 × 0.19 × 0.08 mm
β = 103.605 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5159 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4532 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 0.87Rint = 0.020
21163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
5159 reflectionsΔρmin = 0.30 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.237289 (14)0.127887 (8)0.242806 (7)0.02555 (5)
Cl10.41984 (5)0.15665 (3)0.13431 (3)0.03443 (10)
Cl20.05073 (6)0.10433 (3)0.34816 (3)0.03723 (11)
S110.72017 (6)0.00335 (3)0.42080 (3)0.04305 (13)
C120.6028 (2)0.07360 (12)0.35499 (11)0.0312 (4)
N130.44963 (17)0.05509 (9)0.33585 (9)0.0304 (3)
C140.4223 (2)0.02238 (12)0.37465 (12)0.0369 (4)
H14A0.32000.04530.36820.044*
C150.5505 (3)0.06232 (13)0.42170 (13)0.0432 (5)
H150.54850.11460.45080.052*
N160.6685 (2)0.14549 (12)0.33020 (12)0.0482 (5)
H16A0.60890.18390.29920.058*
H16B0.77020.15320.34530.058*
S210.44426 (7)0.38898 (3)0.41822 (3)0.04409 (13)
C220.3558 (2)0.28774 (11)0.39147 (11)0.0292 (4)
N230.34496 (18)0.26409 (9)0.31227 (9)0.0295 (3)
C240.4114 (2)0.32847 (12)0.27081 (12)0.0367 (4)
H24A0.41530.32260.21420.044*
C250.4692 (3)0.39916 (14)0.31605 (13)0.0440 (5)
H250.51600.44680.29560.053*
N260.3052 (2)0.23949 (10)0.44936 (10)0.0400 (4)
H26A0.26200.18920.43560.048*
H26B0.31590.25890.50020.048*
S310.24063 (6)0.26745 (4)0.06541 (4)0.04824 (14)
C320.1262 (2)0.18601 (12)0.12468 (11)0.0327 (4)
N330.02729 (18)0.20338 (10)0.14653 (9)0.0311 (3)
C340.0573 (2)0.28381 (12)0.11430 (12)0.0384 (4)
H34A0.16010.30660.12300.046*
C350.0703 (3)0.32678 (14)0.06998 (13)0.0467 (5)
H350.06700.38140.04510.056*
N360.1933 (2)0.10964 (11)0.14150 (12)0.0458 (4)
H36A0.13400.06850.16830.055*
H36B0.29500.10240.12540.055*
S410.07311 (8)0.15017 (3)0.08737 (4)0.05010 (14)
C420.1437 (2)0.04377 (12)0.10337 (11)0.0319 (4)
N430.13773 (18)0.01062 (9)0.17752 (9)0.0309 (3)
C440.0725 (2)0.07152 (12)0.22319 (12)0.0385 (4)
H44A0.05810.05910.27710.046*
C450.0316 (3)0.14861 (13)0.18614 (13)0.0446 (5)
H450.01290.19480.21010.054*
N460.1983 (2)0.00158 (11)0.04363 (10)0.0455 (4)
H46A0.23290.05120.05240.055*
H46B0.19870.02720.00350.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.02192 (7)0.02708 (7)0.02791 (7)0.00039 (5)0.00638 (5)0.00172 (5)
Cl10.0292 (2)0.0456 (3)0.0302 (2)0.00291 (19)0.01048 (17)0.00135 (18)
Cl20.0292 (2)0.0449 (3)0.0411 (2)0.00374 (19)0.01530 (19)0.0022 (2)
S110.0319 (3)0.0432 (3)0.0476 (3)0.0073 (2)0.0034 (2)0.0046 (2)
C120.0268 (9)0.0340 (9)0.0320 (9)0.0029 (7)0.0052 (7)0.0023 (7)
N130.0257 (7)0.0313 (8)0.0331 (8)0.0016 (6)0.0047 (6)0.0035 (6)
C140.0342 (10)0.0359 (10)0.0395 (10)0.0050 (8)0.0063 (8)0.0053 (8)
C150.0451 (12)0.0348 (10)0.0462 (11)0.0008 (9)0.0033 (9)0.0097 (9)
N160.0252 (9)0.0486 (10)0.0682 (12)0.0030 (7)0.0054 (8)0.0154 (9)
S210.0559 (3)0.0367 (3)0.0391 (3)0.0151 (2)0.0100 (2)0.0074 (2)
C220.0275 (9)0.0268 (8)0.0313 (9)0.0013 (7)0.0028 (7)0.0005 (7)
N230.0310 (8)0.0275 (7)0.0295 (7)0.0006 (6)0.0063 (6)0.0009 (6)
C240.0377 (10)0.0407 (11)0.0310 (9)0.0061 (8)0.0066 (8)0.0035 (8)
C250.0495 (13)0.0413 (11)0.0411 (11)0.0136 (9)0.0103 (9)0.0042 (9)
N260.0550 (11)0.0371 (9)0.0281 (8)0.0106 (8)0.0101 (7)0.0006 (7)
S310.0343 (3)0.0509 (3)0.0531 (3)0.0143 (2)0.0025 (2)0.0033 (2)
C320.0275 (9)0.0375 (10)0.0317 (9)0.0055 (8)0.0045 (7)0.0035 (8)
N330.0261 (8)0.0324 (8)0.0330 (8)0.0028 (6)0.0036 (6)0.0023 (6)
C340.0361 (11)0.0364 (10)0.0414 (10)0.0012 (8)0.0067 (8)0.0057 (8)
C350.0504 (13)0.0384 (11)0.0483 (12)0.0074 (10)0.0056 (10)0.0097 (9)
N360.0262 (9)0.0461 (10)0.0622 (11)0.0022 (7)0.0045 (8)0.0047 (8)
S410.0633 (4)0.0360 (3)0.0516 (3)0.0144 (3)0.0148 (3)0.0128 (2)
C420.0263 (9)0.0302 (9)0.0369 (10)0.0011 (7)0.0029 (7)0.0014 (7)
N430.0302 (8)0.0266 (7)0.0352 (8)0.0018 (6)0.0064 (6)0.0013 (6)
C440.0405 (11)0.0370 (10)0.0380 (10)0.0067 (8)0.0096 (8)0.0005 (8)
C450.0468 (13)0.0361 (10)0.0497 (12)0.0121 (9)0.0086 (10)0.0030 (9)
N460.0569 (12)0.0439 (10)0.0374 (9)0.0117 (8)0.0147 (8)0.0049 (7)
Geometric parameters (Å, º) top
Cd—N132.3569 (14)C25—H250.9300
Cd—N332.3886 (14)N26—H26A0.8600
Cd—N432.4308 (14)N26—H26B0.8600
Cd—N232.4432 (14)S31—C351.711 (2)
Cd—Cl22.6294 (5)S31—C321.7310 (19)
Cd—Cl12.6560 (4)C32—N331.312 (2)
S11—C151.719 (2)C32—N361.358 (2)
S11—C121.7420 (18)N33—C341.384 (2)
C12—N131.312 (2)C34—C351.335 (3)
C12—N161.340 (2)C34—H34A0.9300
N13—C141.387 (2)C35—H350.9300
C14—C151.332 (3)N36—H36A0.8600
C14—H14A0.9300N36—H36B0.8600
C15—H150.9300S41—C451.721 (2)
N16—H16A0.8600S41—C421.7339 (18)
N16—H16B0.8600C42—N431.316 (2)
S21—C251.726 (2)C42—N461.337 (2)
S21—C221.7341 (18)N43—C441.387 (2)
C22—N231.316 (2)C44—C451.332 (3)
C22—N261.344 (2)C44—H44A0.9300
N23—C241.388 (2)C45—H450.9300
C24—C251.335 (3)N46—H46A0.8600
C24—H24A0.9300N46—H46B0.8600
N13—Cd—N33178.41 (5)N23—C24—H24A121.6
N13—Cd—N4390.48 (5)C24—C25—S21109.85 (15)
N33—Cd—N4390.07 (5)C24—C25—H25125.1
N13—Cd—N2387.39 (5)S21—C25—H25125.1
N33—Cd—N2392.07 (5)C22—N26—H26A120.0
N43—Cd—N23177.85 (5)C22—N26—H26B120.0
N13—Cd—Cl291.13 (4)H26A—N26—H26B120.0
N33—Cd—Cl290.39 (4)C35—S31—C3289.29 (10)
N43—Cd—Cl287.53 (4)N33—C32—N36124.62 (17)
N23—Cd—Cl292.33 (4)N33—C32—S31114.17 (14)
N13—Cd—Cl190.66 (4)N36—C32—S31121.10 (14)
N33—Cd—Cl187.82 (4)C32—N33—C34110.08 (15)
N43—Cd—Cl193.36 (4)C32—N33—Cd129.62 (12)
N23—Cd—Cl186.84 (4)C34—N33—Cd119.74 (12)
Cl2—Cd—Cl1177.991 (15)C35—C34—N33115.94 (19)
C15—S11—C1289.30 (9)C35—C34—H34A122.0
N13—C12—N16125.25 (17)N33—C34—H34A122.0
N13—C12—S11113.89 (14)C34—C35—S31110.51 (16)
N16—C12—S11120.83 (14)C34—C35—H35124.7
C12—N13—C14110.17 (15)S31—C35—H35124.7
C12—N13—Cd129.36 (12)C32—N36—H36A120.0
C14—N13—Cd120.32 (12)C32—N36—H36B120.0
C15—C14—N13116.44 (18)H36A—N36—H36B120.0
C15—C14—H14A121.8C45—S41—C4289.42 (9)
N13—C14—H14A121.8N43—C42—N46124.85 (17)
C14—C15—S11110.20 (15)N43—C42—S41114.21 (14)
C14—C15—H15124.9N46—C42—S41120.94 (14)
S11—C15—H15124.9C42—N43—C44109.66 (15)
C12—N16—H16A120.0C42—N43—Cd130.33 (12)
C12—N16—H16B120.0C44—N43—Cd119.83 (11)
H16A—N16—H16B120.0C45—C44—N43116.75 (18)
C25—S21—C2289.25 (9)C45—C44—H44A121.6
N23—C22—N26124.78 (16)N43—C44—H44A121.6
N23—C22—S21114.54 (13)C44—C45—S41109.95 (15)
N26—C22—S21120.69 (13)C44—C45—H45125.0
C22—N23—C24109.57 (15)S41—C45—H45125.0
C22—N23—Cd128.01 (11)C42—N46—H46A120.0
C24—N23—Cd122.38 (11)C42—N46—H46B120.0
C25—C24—N23116.79 (17)H46A—N46—H46B120.0
C25—C24—H24A121.6
C15—S11—C12—N130.25 (15)C35—S31—C32—N330.69 (15)
C15—S11—C12—N16177.77 (17)C35—S31—C32—N36175.75 (17)
N16—C12—N13—C14177.55 (19)N36—C32—N33—C34175.40 (18)
S11—C12—N13—C140.36 (19)S31—C32—N33—C340.9 (2)
N16—C12—N13—Cd7.0 (3)N36—C32—N33—Cd13.3 (3)
S11—C12—N13—Cd175.09 (8)S31—C32—N33—Cd170.40 (8)
N43—Cd—N13—C12131.98 (16)N43—Cd—N33—C3247.14 (16)
N23—Cd—N13—C1248.20 (15)N23—Cd—N33—C32132.74 (16)
Cl2—Cd—N13—C12140.48 (15)Cl2—Cd—N33—C3240.39 (15)
Cl1—Cd—N13—C1238.61 (15)Cl1—Cd—N33—C32140.51 (15)
N43—Cd—N13—C1443.08 (13)N43—Cd—N33—C34142.28 (14)
N23—Cd—N13—C14136.74 (13)N23—Cd—N33—C3437.84 (14)
Cl2—Cd—N13—C1444.46 (13)Cl2—Cd—N33—C34130.19 (13)
Cl1—Cd—N13—C14136.45 (13)Cl1—Cd—N33—C3448.91 (13)
C12—N13—C14—C150.3 (2)C32—N33—C34—C350.7 (2)
Cd—N13—C14—C15175.60 (14)Cd—N33—C34—C35171.58 (14)
N13—C14—C15—S110.1 (2)N33—C34—C35—S310.2 (2)
C12—S11—C15—C140.05 (17)C32—S31—C35—C340.27 (17)
C25—S21—C22—N230.46 (15)C45—S41—C42—N430.69 (15)
C25—S21—C22—N26179.14 (17)C45—S41—C42—N46179.30 (17)
N26—C22—N23—C24178.86 (18)N46—C42—N43—C44179.12 (18)
S21—C22—N23—C240.72 (19)S41—C42—N43—C440.87 (19)
N26—C22—N23—Cd1.1 (3)N46—C42—N43—Cd5.8 (3)
S21—C22—N23—Cd178.50 (8)S41—C42—N43—Cd174.18 (8)
N13—Cd—N23—C2264.98 (15)N13—Cd—N43—C42105.72 (16)
N33—Cd—N23—C22116.52 (15)N33—Cd—N43—C4272.79 (16)
Cl2—Cd—N23—C2226.04 (15)Cl2—Cd—N43—C42163.17 (16)
Cl1—Cd—N23—C22155.79 (15)Cl1—Cd—N43—C4215.03 (16)
N13—Cd—N23—C24112.54 (14)N13—Cd—N43—C4468.91 (14)
N33—Cd—N23—C2465.97 (14)N33—Cd—N43—C44112.58 (14)
Cl2—Cd—N23—C24156.44 (13)Cl2—Cd—N43—C4422.20 (13)
Cl1—Cd—N23—C2421.73 (13)Cl1—Cd—N43—C44159.60 (13)
C22—N23—C24—C250.7 (2)C42—N43—C44—C450.7 (2)
Cd—N23—C24—C25178.63 (15)Cd—N43—C44—C45174.98 (15)
N23—C24—C25—S210.4 (2)N43—C44—C45—S410.2 (2)
C22—S21—C25—C240.04 (17)C42—S41—C45—C440.28 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16A···N230.862.633.277 (2)133
N16—H16A···Cl10.862.813.3903 (19)126
N16—H16B···Cl2i0.862.523.2941 (18)151
N26—H26A···Cl20.862.413.1722 (17)149
N26—H26B···Cl1ii0.862.513.3300 (16)161
N36—H36A···N430.862.613.324 (2)142
N36—H36B···Cl1iii0.862.633.3810 (18)147
N46—H46A···Cl10.862.443.2135 (18)150
N46—H46B···N36iv0.862.563.417 (2)177
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[CdCl2(C3H4N2S)4]
Mr583.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.6056 (1), 15.2838 (2), 16.2097 (2)
β (°) 103.605 (1)
V3)2072.18 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.40 × 0.19 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.544, 0.87
No. of measured, independent and
observed [I > 2σ(I)] reflections
21163, 5159, 4532
Rint0.020
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.052, 1.05
No. of reflections5159
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16A···N230.862.633.277 (2)132.7
N16—H16A···Cl10.862.813.3903 (19)125.9
N16—H16B···Cl2i0.862.523.2941 (18)150.8
N26—H26A···Cl20.862.413.1722 (17)148.8
N26—H26B···Cl1ii0.862.513.3300 (16)160.9
N36—H36A···N430.862.613.324 (2)141.8
N36—H36B···Cl1iii0.862.633.3810 (18)147.2
N46—H46A···Cl10.862.443.2135 (18)150.3
N46—H46B···N36iv0.862.563.417 (2)177.3
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x, y, z.
 

References

First citationBatı, H., Yüksektepe, Ç., Çalı˛skan, N. & Büyükgüngör, O. (2006). Acta Cryst. E62, m2313–m2315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavarski, K., Macicek, J. & Konovalov, L. (1996). J. Coord. Chem. 38, 123–134.  CrossRef CAS Web of Science Google Scholar
First citationKarlin, K. D. & Zubieta, J. (1983). Biological and Inorganic Copper Chemistry. New York: Adenine Press.  Google Scholar
First citationMacíček, J. & Davarski, K. (1993). Acta Cryst. C49, 592–593.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationManiukiewicz, W. (2004). Acta Cryst. E60, m340–m341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRaper, E. S. (1994). Coord. Chem. Rev. 129, 91–151.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S., Oughtred, R. E., Nowell, I. W. & March, L. A. (1981). Acta Cryst. B37, 928–930.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol. 18, 386–390.  Google Scholar
First citationSuh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuh, S. W., Kim, C.-H. & Kim, I. H. (2009). Acta Cryst. E65, m1054.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds