organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o83-o84

(E)-1-[(Di­phenyl­amino)meth­yl]-4-(4-fluoro­benzyl­­idene­amino)-3-[1-(4-iso­butyl­phen­yl)eth­yl]-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 2 December 2009; accepted 3 December 2009; online 9 December 2009)

The title 1,2,4-triazole compound, C34H34FN5S, exists in a trans configuration with respect to the acyclic C=N bond. An intra­molecular C—H⋯S contact generates a six-membered ring, producing an S(6) ring motif. The essentially planar 1,2,4-triazole ring [maximum deviation 0.008 (1) Å] is inclined at 21.43 (5) and 83.03 (6)°, respectively, with respect to the flurophenyl unit and the isobutyl-substituted benzene ring. The diphenyl­amino unit is not planar, as indicated by the dihedral angle between two phenyl rings of 76.95 (6)°. The crystal structure is stabilized by C—H⋯π and ππ [centroid–centroid distance = 3.6169 (6) Å] inter­actions; mol­ecules are stacked along the b axis.

Related literature

For general background to and applications of 1,2,4-triazole derivatives, see: Calhoun et al. (1995[Calhoun, W., Carlson, R. P., Crossley, R., Datko, L. J., Dietrich, S., Heatherington, K., Marshall, L. A., Meade, P. J., Opalko, A. & Shepherd, R. G. (1995). J. Med. Chem. 38, 1473-1481.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). J. Pharm. Sci. 9, 25-31.], 2000[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Arzneim. Forsch. 50, 55-59.]); Sujith et al. (2009[Sujith, K. V., Rao, J. N., Shetty, P. & Kalluraya, B. (2009). Eur. J. Med. Chem. 44, 3697-3702.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a closely related structure, see: Goh et al. (2010[Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66 o89-o90.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C34H34FN5S

  • Mr = 563.72

  • Monoclinic, P 21 /c

  • a = 10.8175 (2) Å

  • b = 9.9579 (1) Å

  • c = 27.8344 (4) Å

  • β = 105.199 (1)°

  • V = 2893.43 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.50 × 0.36 × 0.32 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.953

  • 58342 measured reflections

  • 10414 independent reflections

  • 8240 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 1.04

  • 10414 reflections

  • 373 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯S1 0.93 2.51 3.1983 (11) 131
C4—H4ACg1i 0.93 2.65 3.5688 (13) 169
C20—H20CCg2ii 0.96 2.99 3.9291 (12) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg1 and Cg2 are the centroids of the C11–C16 and C29–C34 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used. Despite their large therapeutic applications, they have several undesired, often serious side-effects (Calhoun et al., 1995) so long-term administration is not advisable. Thus, the need for new anti-inflammatory drugs is obvious and accordingly, there has been renewed interest in anti-inflammatory agents endowed with potent biological activity. In this context, it has been shown that some Mannich bases find applications as anti-inflammatory analgesic agents (Sujith et al., 2009) and anti-microbial activities (Pandeya et al., 1999, 2000).

The title 1,2,4-triazole derivative (Fig. 1) exists in an E configuration with respect to the acyclic C7N1 bond [bond length of C7N1 = 1.2824 (14) Å and torsion angle of C6–C7–N1–N2 = -177.20 (9)°]. An intramolecular C7—H7A···S1 contact generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The 1,2,4-triazole ring (N2/C8/N3/N4/C9) is essentially planar, with maximum deviation of 0.008 (1) for atom N2. The 1,2,4-triazole ring is inclined at dihedral angles of 21.43 (5) and 83.03 (6)°, respectively, to the fluorophenyl moiety (C1-C6/F1) and isobutyl-substituted phenyl ring (C11-C16). The diphenylamino moiety is not planar, as indicated by the dihedral angle formed between two phenyl rings (C23-C28 and C29-C34) of 76.95 (6)°. The bond lengths and angles are within normal ranges and comparable to a closely related structure (Goh et al., 2010).

In the crystal structure, molecules are stacked along the b axis (Fig. 2). Intermolecular C4—H4A···Cg1, C20—H20C···Cg2 (Table 1) as well as Cg3···Cg3 interactions stabilize the crystal structure [Cg3···Cg3 = 3.6169 (6)i; (i) 1-x, 1-y, 1-z; Cg1, Cg2 and Cg3 are the centroids of C11-C16, C29-C34 and C1-C6 phenyl rings, respectively].

Related literature top

For general background to and applications of 1,2,4-triazole derivatives, see: Calhoun et al. (1995); Pandeya et al. (1999, 2000); Sujith et al. (2009). For hydrogen-bond motifs, see : Bernstein et al. (1995). For a closely related structure, see: Goh et al. (2010). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are the centroids of the C11–C16 and C29–C34 benzene rings, respectively.

Experimental top

The title 1,2,4-triazole compound was obtained by the Mannich reaction of Schiff base (0.01 mol), formaldehyde (40 %, 1 ml) and N,N-diphenylamine (0.01 mol) in ethanol (10 ml) after stirring at room temperature for 20 h. The solid product obtained was collected by filtration, washed with ethanol and dried. Colourless single crystals were obtained from a 1:2 mixture of N,N-dimethylformamide and ethanol by slow evaporation.

Refinement top

All hydrogen atoms were placed in their calculated positions, with C—H = 0.93 – 0.97 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular contact is shown as dashed line.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the b axis, showing molecules being stacked along the b axis.
(E)-1-[(Diphenylamino)methyl]-4-(4-fluorobenzylideneamino)-3- [1-(4-isobutylphenyl)ethyl]-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C34H34FN5SF(000) = 1192
Mr = 563.72Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9739 reflections
a = 10.8175 (2) Åθ = 2.6–34.7°
b = 9.9579 (1) ŵ = 0.15 mm1
c = 27.8344 (4) ÅT = 100 K
β = 105.199 (1)°Block, colourless
V = 2893.43 (7) Å30.50 × 0.36 × 0.32 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10414 independent reflections
Radiation source: fine-focus sealed tube8240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 32.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1616
Tmin = 0.928, Tmax = 0.953k = 1514
58342 measured reflectionsl = 4241
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.8906P]
where P = (Fo2 + 2Fc2)/3
10414 reflections(Δ/σ)max < 0.001
373 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C34H34FN5SV = 2893.43 (7) Å3
Mr = 563.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8175 (2) ŵ = 0.15 mm1
b = 9.9579 (1) ÅT = 100 K
c = 27.8344 (4) Å0.50 × 0.36 × 0.32 mm
β = 105.199 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10414 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8240 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.953Rint = 0.035
58342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
10414 reflectionsΔρmin = 0.25 e Å3
373 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16117 (3)0.22751 (3)0.589154 (11)0.02485 (7)
F10.52953 (8)0.48389 (9)0.37293 (3)0.03681 (19)
N10.17190 (9)0.50769 (9)0.51987 (3)0.01794 (17)
N20.11972 (9)0.49448 (9)0.56030 (3)0.01672 (16)
N30.04413 (9)0.43808 (9)0.62106 (3)0.01820 (17)
N40.01010 (9)0.57105 (9)0.61131 (3)0.01838 (17)
N50.05479 (9)0.45860 (10)0.70862 (3)0.02075 (18)
C10.29376 (11)0.54223 (11)0.44134 (4)0.0207 (2)
H1A0.22730.60130.44160.025*
C20.36276 (12)0.55679 (12)0.40618 (4)0.0244 (2)
H2A0.34380.62550.38280.029*
C30.46049 (12)0.46680 (12)0.40667 (4)0.0242 (2)
C40.49201 (11)0.36250 (11)0.43997 (4)0.0227 (2)
H4A0.55760.30300.43900.027*
C50.42230 (11)0.34904 (11)0.47520 (4)0.0200 (2)
H5A0.44150.27930.49820.024*
C60.32382 (10)0.43867 (10)0.47658 (4)0.01744 (18)
C70.26117 (10)0.42571 (10)0.51707 (4)0.01848 (19)
H7A0.28610.35810.54070.022*
C80.11087 (10)0.38574 (10)0.59048 (4)0.01786 (19)
C90.05599 (10)0.60207 (10)0.57402 (4)0.01684 (18)
C100.04846 (10)0.73715 (10)0.55006 (4)0.01775 (19)
H10A0.02370.72460.51390.021*
C110.17695 (10)0.80893 (10)0.56429 (4)0.01719 (18)
C120.24975 (11)0.81605 (11)0.61379 (4)0.0201 (2)
H12A0.22510.76690.63810.024*
C130.35875 (11)0.89604 (11)0.62690 (4)0.0211 (2)
H13A0.40560.90020.66010.025*
C140.39935 (11)0.97024 (10)0.59134 (4)0.0202 (2)
C150.32793 (12)0.95927 (11)0.54167 (4)0.0221 (2)
H15A0.35431.00580.51710.026*
C160.21845 (11)0.88019 (11)0.52838 (4)0.0204 (2)
H16A0.17240.87480.49520.024*
C170.51678 (11)1.05862 (11)0.60507 (4)0.0229 (2)
H17A0.52721.09190.63860.028*
H17B0.50301.13550.58290.028*
C180.64135 (11)0.98818 (10)0.60244 (4)0.0200 (2)
H18A0.62640.94500.56980.024*
C190.74893 (12)1.09067 (12)0.60727 (5)0.0260 (2)
H19A0.82591.04540.60540.039*
H19B0.76341.13610.63870.039*
H19C0.72511.15490.58070.039*
C200.68007 (12)0.87972 (12)0.64228 (4)0.0241 (2)
H20A0.75450.83340.63820.036*
H20B0.61090.81700.63900.036*
H20C0.69910.92050.67460.036*
C210.05414 (11)0.82343 (11)0.56409 (5)0.0238 (2)
H21A0.13590.77980.55310.036*
H21B0.05800.90970.54840.036*
H21C0.03280.83480.59960.036*
C220.02287 (12)0.37238 (11)0.66559 (4)0.0217 (2)
H22A0.06630.34610.65900.026*
H22B0.07460.29160.67260.026*
C230.04449 (10)0.50037 (10)0.73041 (4)0.01839 (19)
C240.15516 (11)0.56251 (12)0.70258 (4)0.0222 (2)
H24A0.16610.57890.66880.027*
C250.24961 (11)0.60002 (12)0.72568 (4)0.0240 (2)
H25A0.32460.64000.70700.029*
C260.23290 (11)0.57828 (11)0.77618 (4)0.0218 (2)
H26A0.29610.60440.79140.026*
C270.12167 (11)0.51754 (11)0.80400 (4)0.0218 (2)
H27A0.11000.50350.83790.026*
C280.02782 (11)0.47779 (11)0.78124 (4)0.0209 (2)
H28A0.04620.43610.79980.025*
C290.17503 (10)0.52279 (11)0.72258 (4)0.0194 (2)
C300.18674 (11)0.64932 (11)0.74534 (4)0.0215 (2)
H30A0.11520.68990.75160.026*
C310.30399 (12)0.71451 (12)0.75856 (5)0.0258 (2)
H31A0.31050.79840.77370.031*
C320.41226 (12)0.65524 (13)0.74936 (5)0.0277 (2)
H32A0.49100.69880.75830.033*
C330.40086 (12)0.53055 (13)0.72666 (5)0.0267 (2)
H33A0.47290.49040.72060.032*
C340.28381 (11)0.46417 (12)0.71282 (4)0.0235 (2)
H34A0.27770.38110.69710.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03825 (17)0.01658 (12)0.02449 (14)0.00605 (11)0.01669 (12)0.00197 (9)
F10.0399 (5)0.0505 (5)0.0279 (4)0.0028 (4)0.0231 (3)0.0001 (3)
N10.0216 (4)0.0189 (4)0.0153 (4)0.0013 (3)0.0085 (3)0.0008 (3)
N20.0204 (4)0.0164 (4)0.0151 (4)0.0031 (3)0.0079 (3)0.0002 (3)
N30.0224 (4)0.0173 (4)0.0167 (4)0.0026 (3)0.0083 (3)0.0001 (3)
N40.0202 (4)0.0174 (4)0.0183 (4)0.0030 (3)0.0063 (3)0.0005 (3)
N50.0199 (4)0.0249 (4)0.0198 (4)0.0003 (3)0.0093 (3)0.0036 (3)
C10.0223 (5)0.0227 (5)0.0179 (5)0.0033 (4)0.0067 (4)0.0004 (4)
C20.0275 (6)0.0289 (5)0.0177 (5)0.0015 (5)0.0075 (4)0.0018 (4)
C30.0256 (5)0.0318 (6)0.0185 (5)0.0022 (5)0.0117 (4)0.0060 (4)
C40.0221 (5)0.0228 (5)0.0253 (5)0.0008 (4)0.0097 (4)0.0072 (4)
C50.0210 (5)0.0177 (4)0.0222 (5)0.0008 (4)0.0073 (4)0.0030 (4)
C60.0181 (5)0.0181 (4)0.0167 (4)0.0001 (4)0.0057 (4)0.0028 (3)
C70.0193 (5)0.0192 (4)0.0180 (5)0.0005 (4)0.0067 (4)0.0001 (3)
C80.0216 (5)0.0174 (4)0.0157 (4)0.0016 (4)0.0069 (4)0.0007 (3)
C90.0169 (4)0.0173 (4)0.0164 (4)0.0024 (4)0.0044 (4)0.0022 (3)
C100.0200 (5)0.0168 (4)0.0165 (4)0.0041 (4)0.0048 (4)0.0006 (3)
C110.0196 (5)0.0155 (4)0.0176 (4)0.0043 (4)0.0067 (4)0.0005 (3)
C120.0222 (5)0.0230 (5)0.0166 (5)0.0018 (4)0.0078 (4)0.0003 (4)
C130.0223 (5)0.0248 (5)0.0167 (5)0.0009 (4)0.0061 (4)0.0021 (4)
C140.0217 (5)0.0168 (4)0.0230 (5)0.0024 (4)0.0076 (4)0.0005 (4)
C150.0268 (5)0.0195 (4)0.0209 (5)0.0020 (4)0.0082 (4)0.0046 (4)
C160.0248 (5)0.0196 (4)0.0165 (4)0.0032 (4)0.0050 (4)0.0032 (3)
C170.0244 (5)0.0181 (4)0.0267 (5)0.0001 (4)0.0072 (4)0.0016 (4)
C180.0246 (5)0.0188 (4)0.0180 (5)0.0005 (4)0.0078 (4)0.0000 (4)
C190.0278 (6)0.0225 (5)0.0312 (6)0.0012 (4)0.0139 (5)0.0010 (4)
C200.0252 (5)0.0221 (5)0.0234 (5)0.0010 (4)0.0036 (4)0.0024 (4)
C210.0211 (5)0.0207 (5)0.0294 (6)0.0055 (4)0.0064 (4)0.0008 (4)
C220.0275 (5)0.0204 (5)0.0198 (5)0.0007 (4)0.0111 (4)0.0004 (4)
C230.0191 (5)0.0188 (4)0.0193 (5)0.0005 (4)0.0086 (4)0.0014 (3)
C240.0248 (5)0.0246 (5)0.0185 (5)0.0014 (4)0.0078 (4)0.0024 (4)
C250.0224 (5)0.0253 (5)0.0249 (5)0.0038 (4)0.0074 (4)0.0034 (4)
C260.0211 (5)0.0224 (5)0.0247 (5)0.0006 (4)0.0113 (4)0.0011 (4)
C270.0239 (5)0.0247 (5)0.0183 (5)0.0007 (4)0.0083 (4)0.0001 (4)
C280.0201 (5)0.0248 (5)0.0182 (5)0.0025 (4)0.0058 (4)0.0007 (4)
C290.0195 (5)0.0218 (5)0.0184 (5)0.0018 (4)0.0077 (4)0.0024 (4)
C300.0213 (5)0.0212 (5)0.0234 (5)0.0015 (4)0.0086 (4)0.0018 (4)
C310.0264 (6)0.0245 (5)0.0272 (6)0.0026 (4)0.0079 (5)0.0012 (4)
C320.0205 (5)0.0358 (6)0.0272 (6)0.0036 (5)0.0069 (4)0.0043 (5)
C330.0209 (5)0.0369 (6)0.0247 (5)0.0046 (5)0.0104 (4)0.0050 (5)
C340.0235 (5)0.0268 (5)0.0223 (5)0.0035 (4)0.0100 (4)0.0008 (4)
Geometric parameters (Å, º) top
S1—C81.6705 (11)C17—C181.5378 (16)
F1—C31.3552 (13)C17—H17A0.9700
N1—C71.2824 (14)C17—H17B0.9700
N1—N21.3910 (12)C18—C201.5257 (15)
N2—C91.3809 (13)C18—C191.5271 (16)
N2—C81.3892 (13)C18—H18A0.9800
N3—C81.3562 (13)C19—H19A0.9600
N3—N41.3821 (12)C19—H19B0.9600
N3—C221.4720 (14)C19—H19C0.9600
N4—C91.2999 (14)C20—H20A0.9600
N5—C291.4095 (15)C20—H20B0.9600
N5—C231.4267 (14)C20—H20C0.9600
N5—C221.4401 (14)C21—H21A0.9600
C1—C21.3854 (16)C21—H21B0.9600
C1—C61.4014 (15)C21—H21C0.9600
C1—H1A0.9300C22—H22A0.9700
C2—C31.3832 (17)C22—H22B0.9700
C2—H2A0.9300C23—C241.3891 (16)
C3—C41.3742 (17)C23—C281.3968 (15)
C4—C51.3914 (16)C24—C251.3932 (16)
C4—H4A0.9300C24—H24A0.9300
C5—C61.3980 (15)C25—C261.3863 (16)
C5—H5A0.9300C25—H25A0.9300
C6—C71.4650 (15)C26—C271.3874 (16)
C7—H7A0.9300C26—H26A0.9300
C9—C101.4940 (14)C27—C281.3879 (15)
C10—C111.5202 (15)C27—H27A0.9300
C10—C211.5330 (15)C28—H28A0.9300
C10—H10A0.9800C29—C301.4010 (16)
C11—C161.3926 (15)C29—C341.4025 (15)
C11—C121.3983 (15)C30—C311.3859 (17)
C12—C131.3900 (16)C30—H30A0.9300
C12—H12A0.9300C31—C321.3939 (18)
C13—C141.3953 (16)C31—H31A0.9300
C13—H13A0.9300C32—C331.3839 (19)
C14—C151.4000 (16)C32—H32A0.9300
C14—C171.5098 (16)C33—C341.3902 (17)
C15—C161.3891 (16)C33—H33A0.9300
C15—H15A0.9300C34—H34A0.9300
C16—H16A0.9300
C7—N1—N2117.44 (9)H17A—C17—H17B107.6
C9—N2—C8108.60 (9)C20—C18—C19110.58 (10)
C9—N2—N1119.22 (8)C20—C18—C17111.43 (9)
C8—N2—N1132.06 (8)C19—C18—C17110.37 (9)
C8—N3—N4113.78 (9)C20—C18—H18A108.1
C8—N3—C22125.73 (9)C19—C18—H18A108.1
N4—N3—C22119.91 (8)C17—C18—H18A108.1
C9—N4—N3104.27 (8)C18—C19—H19A109.5
C29—N5—C23119.58 (9)C18—C19—H19B109.5
C29—N5—C22120.16 (9)H19A—C19—H19B109.5
C23—N5—C22118.96 (9)C18—C19—H19C109.5
C2—C1—C6120.16 (10)H19A—C19—H19C109.5
C2—C1—H1A119.9H19B—C19—H19C109.5
C6—C1—H1A119.9C18—C20—H20A109.5
C3—C2—C1118.50 (11)C18—C20—H20B109.5
C3—C2—H2A120.7H20A—C20—H20B109.5
C1—C2—H2A120.7C18—C20—H20C109.5
F1—C3—C4118.56 (11)H20A—C20—H20C109.5
F1—C3—C2118.06 (11)H20B—C20—H20C109.5
C4—C3—C2123.37 (11)C10—C21—H21A109.5
C3—C4—C5117.63 (10)C10—C21—H21B109.5
C3—C4—H4A121.2H21A—C21—H21B109.5
C5—C4—H4A121.2C10—C21—H21C109.5
C4—C5—C6121.03 (10)H21A—C21—H21C109.5
C4—C5—H5A119.5H21B—C21—H21C109.5
C6—C5—H5A119.5N5—C22—N3112.27 (9)
C5—C6—C1119.29 (10)N5—C22—H22A109.1
C5—C6—C7118.32 (10)N3—C22—H22A109.1
C1—C6—C7122.27 (10)N5—C22—H22B109.1
N1—C7—C6119.89 (10)N3—C22—H22B109.1
N1—C7—H7A120.1H22A—C22—H22B107.9
C6—C7—H7A120.1C24—C23—C28120.00 (10)
N3—C8—N2102.26 (8)C24—C23—N5121.85 (10)
N3—C8—S1127.33 (8)C28—C23—N5118.16 (10)
N2—C8—S1130.34 (8)C23—C24—C25119.42 (10)
N4—C9—N2111.06 (9)C23—C24—H24A120.3
N4—C9—C10125.65 (9)C25—C24—H24A120.3
N2—C9—C10123.22 (9)C26—C25—C24120.64 (11)
C9—C10—C11111.58 (8)C26—C25—H25A119.7
C9—C10—C21110.44 (9)C24—C25—H25A119.7
C11—C10—C21110.10 (9)C25—C26—C27119.83 (11)
C9—C10—H10A108.2C25—C26—H26A120.1
C11—C10—H10A108.2C27—C26—H26A120.1
C21—C10—H10A108.2C26—C27—C28120.04 (10)
C16—C11—C12118.50 (10)C26—C27—H27A120.0
C16—C11—C10119.83 (9)C28—C27—H27A120.0
C12—C11—C10121.39 (9)C27—C28—C23120.06 (10)
C13—C12—C11120.51 (10)C27—C28—H28A120.0
C13—C12—H12A119.7C23—C28—H28A120.0
C11—C12—H12A119.7C30—C29—C34118.75 (10)
C12—C13—C14121.35 (10)C30—C29—N5120.00 (10)
C12—C13—H13A119.3C34—C29—N5121.22 (10)
C14—C13—H13A119.3C31—C30—C29120.61 (11)
C13—C14—C15117.67 (10)C31—C30—H30A119.7
C13—C14—C17121.98 (10)C29—C30—H30A119.7
C15—C14—C17120.35 (10)C30—C31—C32120.49 (11)
C16—C15—C14121.23 (10)C30—C31—H31A119.8
C16—C15—H15A119.4C32—C31—H31A119.8
C14—C15—H15A119.4C33—C32—C31119.02 (11)
C15—C16—C11120.69 (10)C33—C32—H32A120.5
C15—C16—H16A119.7C31—C32—H32A120.5
C11—C16—H16A119.7C32—C33—C34121.25 (11)
C14—C17—C18114.31 (9)C32—C33—H33A119.4
C14—C17—H17A108.7C34—C33—H33A119.4
C18—C17—H17A108.7C33—C34—C29119.86 (11)
C14—C17—H17B108.7C33—C34—H34A120.1
C18—C17—H17B108.7C29—C34—H34A120.1
C7—N1—N2—C9159.24 (10)C11—C12—C13—C140.57 (17)
C7—N1—N2—C825.33 (16)C12—C13—C14—C151.30 (16)
C8—N3—N4—C90.16 (12)C12—C13—C14—C17179.39 (10)
C22—N3—N4—C9171.99 (10)C13—C14—C15—C161.72 (16)
C6—C1—C2—C30.36 (17)C17—C14—C15—C16178.96 (10)
C1—C2—C3—F1178.37 (10)C14—C15—C16—C110.26 (17)
C1—C2—C3—C40.72 (18)+C12—C11—C16—C151.62 (16)
F1—C3—C4—C5178.21 (10)C10—C11—C16—C15172.38 (10)
C2—C3—C4—C50.87 (18)C13—C14—C17—C1891.25 (13)
C3—C4—C5—C60.04 (16)C15—C14—C17—C1888.04 (13)
C4—C5—C6—C11.07 (16)C14—C17—C18—C2067.35 (12)
C4—C5—C6—C7175.07 (10)C14—C17—C18—C19169.38 (10)
C2—C1—C6—C51.22 (16)C29—N5—C22—N351.66 (14)
C2—C1—C6—C7174.75 (11)C23—N5—C22—N3115.30 (11)
N2—N1—C7—C6177.20 (9)C8—N3—C22—N5129.58 (11)
C5—C6—C7—N1178.88 (10)N4—N3—C22—N541.19 (14)
C1—C6—C7—N12.87 (16)C29—N5—C23—C24113.07 (12)
N4—N3—C8—N20.73 (12)C22—N5—C23—C2453.97 (15)
C22—N3—C8—N2170.53 (10)C29—N5—C23—C2866.63 (14)
N4—N3—C8—S1176.59 (8)C22—N5—C23—C28126.33 (11)
C22—N3—C8—S112.14 (16)C28—C23—C24—C250.94 (17)
C9—N2—C8—N31.31 (11)N5—C23—C24—C25179.36 (10)
N1—N2—C8—N3177.11 (10)C23—C24—C25—C261.27 (18)
C9—N2—C8—S1175.90 (9)C24—C25—C26—C270.57 (18)
N1—N2—C8—S10.10 (18)C25—C26—C27—C280.47 (17)
N3—N4—C9—N21.03 (12)C26—C27—C28—C230.79 (17)
N3—N4—C9—C10178.02 (10)C24—C23—C28—C270.08 (17)
C8—N2—C9—N41.55 (12)N5—C23—C28—C27179.62 (10)
N1—N2—C9—N4177.97 (9)C23—N5—C29—C3018.94 (15)
C8—N2—C9—C10178.62 (10)C22—N5—C29—C30147.93 (11)
N1—N2—C9—C104.95 (15)C23—N5—C29—C34162.97 (10)
N4—C9—C10—C11105.64 (12)C22—N5—C29—C3430.15 (15)
N2—C9—C10—C1170.99 (13)C34—C29—C30—C310.87 (17)
N4—C9—C10—C2117.17 (15)N5—C29—C30—C31178.99 (10)
N2—C9—C10—C21166.20 (10)C29—C30—C31—C320.09 (18)
C9—C10—C11—C16138.70 (10)C30—C31—C32—C330.22 (18)
C21—C10—C11—C1698.30 (11)C31—C32—C33—C340.25 (18)
C9—C10—C11—C1247.47 (13)C32—C33—C34—C291.04 (18)
C21—C10—C11—C1275.53 (12)C30—C29—C34—C331.33 (17)
C16—C11—C12—C132.04 (16)N5—C29—C34—C33179.43 (10)
C10—C11—C12—C13171.87 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···S10.932.513.1983 (11)131
C4—H4A···Cg1i0.932.653.5688 (13)169
C20—H20C···Cg2ii0.962.993.9291 (12)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC34H34FN5S
Mr563.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.8175 (2), 9.9579 (1), 27.8344 (4)
β (°) 105.199 (1)
V3)2893.43 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.50 × 0.36 × 0.32
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.928, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
58342, 10414, 8240
Rint0.035
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.04
No. of reflections10414
No. of parameters373
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···S10.932.513.1983 (11)131
C4—H4A···Cg1i0.932.653.5688 (13)169
C20—H20C···Cg2ii0.962.993.9291 (12)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalhoun, W., Carlson, R. P., Crossley, R., Datko, L. J., Dietrich, S., Heatherington, K., Marshall, L. A., Meade, P. J., Opalko, A. & Shepherd, R. G. (1995). J. Med. Chem. 38, 1473–1481.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66 o89–o90.  Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). J. Pharm. Sci. 9, 25–31.  CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Arzneim. Forsch. 50, 55–59.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSujith, K. V., Rao, J. N., Shetty, P. & Kalluraya, B. (2009). Eur. J. Med. Chem. 44, 3697–3702.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o83-o84
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds