organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o226-o227

2-Propynyl 2-hy­droxy­benzoate

aInstitute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast 4222, Australia, and bEskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan Campus, Brisbane 4111, Australia
*Correspondence e-mail: p.healy@griffith.edu.au

(Received 15 December 2009; accepted 16 December 2009; online 24 December 2009)

The title compound, C10H8O3, has been synthesized as part of our investigations into the generation of new anti­bacterial agents and serves as a building block for the synthesis of compound libraries. The compound crystallizes with two independent mol­ecules in the asymmetric unit. The transoid propynyl ester groups are coplanar with the 2-hydroxy­benzoate group with maximum deviations of −0.3507 (3) and 0.1591 (3) Å for the terminal carbons, with intra­molecular O—H⋯O hydrogen bonding providing rigidity to the structure and ensuring that the reactivity of the alkyne is not compromised by steric factors. The propynyl group forms inter­molecular C—H⋯O inter­actions with the phenolic O atom. Supra­molecular chains along the b axis are found for both mol­ecules with links by weak O—H⋯O inter­molecular inter­actions in the first independent mol­ecule and C—H⋯O inter­actions in the second.

Related literature

For background to Cu(I)-mediated azide–alkyne cyclo­additions, see: Houston et al. (2008[Houston, T. A., Quader, S., Boyd, S. E., Jenkins, I. D. & Healy, P. C. (2008). Acta Cryst. E64, o1738.]); Wilkinson et al. (2009[Wilkinson, B. L., Bornaghi, L. F., Houston, T. A. & Poulsen, S.-A. (2009). Click Chemistry in Carbohydrate Based Drug Development and Glycobiology: An Update in Glycobiology Research Trends, edited by G. Powell & O. McCabe, pp. 127-172. New York: Nova Science Publishers.]). For the biological use of salicylates, see: Sox & Olson (1989[Sox, T. E. & Olson, C. A. (1989). Antimicrob. Agents Chemother. 33, 2075-2082.]). For background to boric acid-mediated esterification, see: Houston et al. (2004[Houston, T. A., Wilkinson, B. L. & Blanchfield, J. T. (2004). Org. Lett. 6, 678-681.], 2007[Houston, T. A., Levonis, S. M. & Kiefel, M. J. (2007). Aust. J. Chem. 60, 811-815.]); Levonis et al. (2007[Levonis, S. M., Bornaghi, L. F. & Houston, T. A. (2007). Aust. J. Chem. 60, 821-823.]). For stereochemistry, see: Wilkinson et al. (2006[Wilkinson, B. L., Bornaghi, L. F., Houston, T. A., Poulsen, S.-A. & White, A. R. (2006). Acta Cryst. E62, o5065-o5067.]); Wiberg & Laidig (1987[Wiberg, K. B. & Laidig, K. E. (1987). J. Am. Chem. Soc. 109, 5935-5943.]). For previous synthesis of the title compound and its anti-tumour activity, see: Jung et al. (1997[Jung, M., Kerr, D. E. & Senter, P. D. (1997). Archiv. Der Pharm. 330, 173-176.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8O3

  • Mr = 176.16

  • Monoclinic, P 21 /c

  • a = 18.7150 (14) Å

  • b = 12.7972 (10) Å

  • c = 7.2310 (7) Å

  • β = 90.191 (8)°

  • V = 1731.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.36 × 0.30 × 0.12 mm

Data collection
  • Oxford-Diffraction GEMINI S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.965, Tmax = 0.988

  • 10756 measured reflections

  • 3081 independent reflections

  • 1941 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 0.93

  • 3081 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7 0.90 1.86 2.6193 (16) 141
O1—H1⋯O7i 0.90 2.55 3.2081 (17) 130
O11—H11⋯O17 0.90 1.82 2.6007 (18) 144
C10—H10⋯O11ii 0.95 2.38 3.310 (2) 165
C16—H16⋯O17iii 0.96 2.48 3.291 (2) 143
C20—H20⋯O1iv 0.95 2.46 3.340 (2) 154
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

In an attempt to identify new antibacterial compounds, we have assembled a diverse range of azide and alkyne coupling partners for the purpose of creating compound libraries using Cu(I)-mediated azide-alkyne cycloadditions [CuAAC] (Houston et al., 2008; Wilkinson et al., 2009). Salicylates such as bismuth subsalicylate have been used for many years to treat diarrhea and other gastrointestinal disorders (Sox & Olson, 1989). We required a core salicylate scaffold that could be readily transformed into a variety of derivatives. Here, we describe the synthesis and X-ray crystal structure of 2'-propynyl 2-hydroxybenzoate (propargyl salicylate) (I) using our chemoselective method of boric acid-mediated esterification (Houston et al., 2004; 2007). Borate can activate hydroxycarboxylic acids such as salicylate toward esterification under mild conditions that are tolerant to acid-labile functional groups such as alkynes. This ester was previously synthesized by alkylation for the synthesis of cobalt carbonyl complexes and study of their anti-tumour activity (Jung et al., 1997).

Compound (I) was synthesized cleanly from salicylic acid and propargyl alcohol in 55% yield using 10 mol% boric acid in acetonitrile (Levonis et al., 2007) (Fig. 1), and crystallizes from toluene with two independent molecules in the asymmetric unit (Fig. 2). The ester group adopts the transoid arrangement (Wilkinson et al., 2006) as stereoelectronic requirements are met when the carbonyl bifurcates the methylene H atoms (Wiberg & Laidig, 1987). This allows both p π and n σ* overlap from the propargylated oxygen to the carbonyl. The propynyl groups are co-planar with the 2-hydroxybenzoate; with the intra-molecular O—H···O hydrogen bond between the phenolic proton and the carbonyl oxygen providing rigidity to the structure (Table 1). These factors result in the extension of the propynyl group away from the aromatic core and ensures that the reactivity of the alkyne when using the CuAAC method is not compromised by steric constraints. In the crystal lattice, the propynyl groups form inter-molecular C—H···O interactions with the phenolic oxygen (Table 1). Supramolecular chains along the direction of the b axis are found for both molecules with links by weak O1—H1···O7 (molecule A) and C16—H16···O17 (molecule B) inter-molecular interactions (Table 1, Fig. 3).

Related literature top

For background to Cu(I)-mediated azide–alkyne cycloadditions, see: Houston et al. (2008); Wilkinson et al. (2009). For the biological use of salicylates, see: Sox & Olson (1989). For background to boric acid-mediated esterification, see: Houston et al. (2004, 2007); Levonis et al. (2007). For stereochemistry, see: Wilkinson et al. (2006); Wiberg & Laidig (1987). For previous synthesis of the title compound and its anti-tumour activity, see: Jung et al. (1997).

Experimental top

To a stirred solution of salicylic acid (208 mg, 1.5 mmol) and propargyl alcohol (84 mg, 174 mL,3.0 mmol) in acetonitrile (3 ml) was added boric acid (9 mg, 0.15 mmol). The solution was heated and maintained at reflux for 16 h before concentrating in vacuo. Flash column chromatography was performed on silica using ethyl acetate as the mobile phase to yield 145 mg(55%) of (I) as a white solid. This was initially recrystallized from MeOH to furnish white needles (31%) for NMR analysis. A second recrystallization from toluene at 0°C produced single crystals suitable for X-ray diffraction analysis.

1H NMR (CDCl3 300 MHz, 298 K) δ p.p.m. 2.53 (t, J = 2.4 Hz, 1H), 4.91 (s, 2H), 6.87 (ddd, J = 8.1, 7.35, 1.2 Hz, 1H), 6.96 (dd, J = 8.4, 0.9 Hz, 1H), 7.45 (ddd, J = 8.4, 7.2, 1.8 Hz, 1H), 7.85 (dd, J = 7.9, 1.8 Hz, 1H), 10.5 (s, 1H). 13C{1H} NMR (CD3OD, 75 MHz, 298 K) δ p.p.m. 53.7, 77.1, 78.3, 113.2, 118.5, 120.4, 130.9, 137.0, 162.9 170.5. MS(ESI–) 175.1 [M—H+]

Refinement top

H atoms were positioned geometrically, with C–H = 0.95 - 0.96 Å and O—H = 0.90 Å, and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Reaction scheme for the preparation of the title compound (I).
[Figure 2] Fig. 2. View of the two independent molecules in (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level.
[Figure 3] Fig. 3. Crystal packing in the structure of (I), viewed down the c axis.
2-Propynyl 2-hydroxybenzoate top
Crystal data top
C10H8O3F(000) = 736
Mr = 176.16Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 3378 reflections
a = 18.7150 (14) Åθ = 3.2–25.0°
b = 12.7972 (10) ŵ = 0.10 mm1
c = 7.2310 (7) ÅT = 296 K
β = 90.191 (8)°Block, colourless
V = 1731.8 (3) Å30.36 × 0.30 × 0.12 mm
Z = 8
Data collection top
Oxford-Diffraction GEMINI S Ultra
diffractometer
3081 independent reflections
Radiation source: Enhance (Mo) X-ray Source1941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.0774 pixels mm-1θmax = 25.2°, θmin = 3.2°
ω and ϕ scansh = 2222
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1515
Tmin = 0.965, Tmax = 0.988l = 88
10756 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0531P)2]
where P = (Fo2 + 2Fc2)/3
3081 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C10H8O3V = 1731.8 (3) Å3
Mr = 176.16Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.7150 (14) ŵ = 0.10 mm1
b = 12.7972 (10) ÅT = 296 K
c = 7.2310 (7) Å0.36 × 0.30 × 0.12 mm
β = 90.191 (8)°
Data collection top
Oxford-Diffraction GEMINI S Ultra
diffractometer
3081 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1941 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.988Rint = 0.031
10756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.93Δρmax = 0.14 e Å3
3081 reflectionsΔρmin = 0.14 e Å3
235 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47564 (6)0.17697 (9)0.12869 (19)0.0639 (5)
O70.57032 (6)0.02715 (9)0.10015 (17)0.0548 (5)
O80.68501 (5)0.06996 (8)0.06527 (16)0.0471 (4)
C10.53250 (9)0.24189 (13)0.1244 (2)0.0435 (6)
C20.60284 (8)0.20595 (12)0.1059 (2)0.0370 (5)
C30.65779 (8)0.27917 (13)0.1010 (2)0.0464 (6)
C40.64437 (10)0.38407 (14)0.1112 (3)0.0554 (7)
C50.57450 (11)0.41802 (14)0.1295 (3)0.0580 (7)
C60.51933 (9)0.34830 (14)0.1376 (2)0.0535 (7)
C70.61613 (8)0.09414 (12)0.0911 (2)0.0387 (6)
C80.69957 (9)0.04016 (13)0.0400 (3)0.0529 (7)
C90.77295 (9)0.05066 (13)0.0228 (2)0.0497 (7)
C100.83132 (10)0.06146 (15)0.0747 (3)0.0633 (8)
O111.00806 (6)0.04958 (11)0.2637 (2)0.0843 (6)
O170.91622 (6)0.09764 (10)0.33340 (19)0.0675 (5)
O180.80791 (6)0.05357 (8)0.43315 (15)0.0496 (4)
C110.95424 (9)0.11680 (14)0.3039 (3)0.0528 (7)
C120.88641 (8)0.08199 (13)0.3537 (2)0.0428 (6)
C130.83356 (9)0.15589 (13)0.3864 (2)0.0516 (7)
C140.84724 (10)0.26037 (15)0.3751 (3)0.0624 (8)
C150.91532 (11)0.29250 (15)0.3294 (3)0.0661 (8)
C160.96819 (10)0.22262 (16)0.2939 (3)0.0641 (8)
C170.87317 (9)0.02986 (13)0.3700 (2)0.0453 (6)
C180.79398 (10)0.16364 (13)0.4549 (3)0.0561 (7)
C190.72292 (10)0.17626 (13)0.5328 (2)0.0513 (7)
C200.66642 (10)0.19093 (15)0.5941 (3)0.0627 (8)
H10.489500.111100.101600.0760*
H30.705900.255600.089500.0550*
H40.682500.433500.105700.0670*
H50.565400.491500.137000.0690*
H60.471800.373300.152700.0630*
H8A0.693700.076200.154000.0630*
H8B0.668200.068900.049800.0630*
H100.878900.070300.117000.0750*
H110.993900.016500.288200.0990*
H130.786800.132800.421000.0610*
H140.810700.310600.396700.0750*
H150.925800.365300.324500.0790*
H161.015000.246000.261100.0790*
H18A0.796400.197000.337700.0640*
H18B0.828500.193400.535600.0640*
H200.620100.202800.644300.0760*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0381 (7)0.0519 (8)0.1017 (11)0.0002 (6)0.0130 (6)0.0085 (7)
O70.0394 (7)0.0389 (7)0.0862 (10)0.0057 (6)0.0079 (6)0.0033 (6)
O80.0360 (6)0.0325 (7)0.0728 (8)0.0015 (5)0.0047 (6)0.0034 (5)
C10.0414 (10)0.0436 (11)0.0456 (11)0.0020 (8)0.0048 (8)0.0021 (8)
C20.0388 (9)0.0340 (9)0.0381 (10)0.0011 (7)0.0050 (7)0.0004 (7)
C30.0418 (10)0.0402 (11)0.0574 (12)0.0010 (8)0.0100 (8)0.0030 (8)
C40.0619 (12)0.0377 (11)0.0668 (14)0.0063 (9)0.0118 (10)0.0065 (9)
C50.0769 (14)0.0356 (11)0.0614 (13)0.0098 (10)0.0049 (10)0.0041 (9)
C60.0504 (11)0.0489 (12)0.0612 (13)0.0144 (9)0.0068 (9)0.0059 (9)
C70.0343 (9)0.0388 (10)0.0431 (10)0.0016 (8)0.0025 (7)0.0002 (8)
C80.0461 (10)0.0331 (10)0.0794 (14)0.0048 (8)0.0039 (9)0.0018 (9)
C90.0470 (11)0.0380 (11)0.0641 (13)0.0043 (8)0.0025 (9)0.0048 (9)
C100.0509 (12)0.0542 (13)0.0847 (15)0.0051 (10)0.0100 (11)0.0090 (10)
O110.0449 (8)0.0664 (10)0.1419 (14)0.0016 (7)0.0332 (8)0.0043 (9)
O170.0504 (8)0.0455 (8)0.1068 (12)0.0114 (6)0.0168 (7)0.0037 (7)
O180.0498 (7)0.0343 (7)0.0649 (8)0.0014 (5)0.0163 (6)0.0002 (5)
C110.0421 (10)0.0540 (12)0.0624 (13)0.0011 (9)0.0113 (9)0.0022 (9)
C120.0413 (9)0.0418 (10)0.0454 (11)0.0025 (8)0.0078 (8)0.0011 (8)
C130.0455 (10)0.0427 (11)0.0667 (13)0.0010 (8)0.0172 (9)0.0000 (8)
C140.0636 (13)0.0421 (12)0.0817 (15)0.0012 (10)0.0155 (11)0.0021 (10)
C150.0756 (14)0.0418 (11)0.0810 (15)0.0126 (11)0.0095 (12)0.0039 (10)
C160.0517 (12)0.0622 (14)0.0785 (15)0.0170 (10)0.0158 (10)0.0031 (11)
C170.0406 (10)0.0439 (11)0.0513 (12)0.0025 (8)0.0059 (8)0.0013 (8)
C180.0615 (12)0.0350 (11)0.0718 (13)0.0001 (9)0.0112 (10)0.0010 (9)
C190.0570 (12)0.0366 (11)0.0602 (12)0.0055 (9)0.0079 (9)0.0017 (8)
C200.0575 (12)0.0481 (12)0.0826 (15)0.0045 (10)0.0124 (11)0.0012 (10)
Geometric parameters (Å, º) top
O1—C11.351 (2)C5—H50.9600
O7—C71.2143 (19)C6—H60.9500
O8—C71.3394 (18)C8—H8B0.9500
O8—C81.447 (2)C8—H8A0.9500
O1—H10.9000C10—H100.9500
O11—C111.357 (2)C11—C121.394 (2)
O17—C171.214 (2)C11—C161.381 (3)
O18—C171.340 (2)C12—C171.458 (2)
O18—C181.441 (2)C12—C131.389 (2)
O11—H110.9000C13—C141.364 (3)
C1—C61.387 (2)C14—C151.380 (3)
C1—C21.401 (2)C15—C161.359 (3)
C2—C31.392 (2)C18—C191.455 (3)
C2—C71.456 (2)C19—C201.163 (3)
C3—C41.368 (2)C13—H130.9600
C4—C51.385 (3)C14—H140.9500
C5—C61.366 (3)C15—H150.9500
C8—C91.454 (2)C16—H160.9600
C9—C101.165 (3)C18—H18A0.9500
C3—H30.9500C18—H18B0.9500
C4—H40.9500C20—H200.9500
O1···O72.6193 (16)C20···O1ii3.340 (2)
O1···O7i3.2081 (17)C20···C8xi3.519 (3)
O1···C20ii3.340 (2)C3···H13iv2.9700
O7···O1i3.2081 (17)C4···H13iv3.0100
O7···O12.6193 (16)C7···H12.3800
O7···C6iii3.416 (2)C13···H3vii3.0300
O7···O7i3.0795 (17)C14···H3vii3.0800
O8···C4iv3.419 (2)C15···H11x3.1000
O11···O172.6007 (18)C17···H112.3400
O11···C10v3.310 (2)C18···H8A3.0800
O17···O112.6007 (18)C19···H18Axi3.0600
O17···C16vi3.291 (2)C19···H8A3.0700
O17···C103.379 (3)C20···H8Bxii3.0100
O18···C93.3593 (18)C20···H8Axi3.0500
O1···H20ii2.4600H1···O71.8600
O7···H6iii2.7800H1···C72.3800
O7···H8B2.4600H1···O7i2.5500
O7···H11.8600H3···C13iv3.0300
O7···H8A2.6900H3···C14iv3.0800
O7···H1i2.5500H3···H13iv2.4100
O8···H32.4100H3···H14iv2.5500
O11···H15vi2.7400H3···O82.4100
O11···H10v2.3800H4···H13iv2.5200
O17···H111.8200H6···O7viii2.7800
O17···H18A2.5800H8A···C183.0800
O17···H18B2.5200H8A···C193.0700
O17···H16vi2.4800H8A···C20ix3.0500
O18···H132.4200H8A···O72.6900
C4···O8vii3.419 (2)H8B···C20xiii3.0100
C4···C7vii3.523 (3)H8B···O72.4600
C5···C7vii3.429 (3)H10···O11v2.3800
C6···O7viii3.416 (2)H11···O171.8200
C7···C4iv3.523 (3)H11···C172.3400
C7···C5iv3.429 (3)H11···C15vi3.1000
C8···C20ix3.519 (3)H11···H15vi2.2800
C9···C173.409 (2)H13···O182.4200
C9···O183.3593 (18)H13···C3vii2.9700
C10···O11v3.310 (2)H13···C4vii3.0100
C10···C18ix3.593 (3)H13···H3vii2.4100
C10···C173.332 (3)H13···H4vii2.5200
C10···O173.379 (3)H14···H3vii2.5500
C14···C15vii3.584 (3)H15···O11x2.7400
C15···C14iv3.584 (3)H15···H11x2.2800
C15···C16vii3.504 (3)H16···O17x2.4800
C16···O17x3.291 (2)H18A···O172.5800
C16···C15iv3.504 (3)H18A···C19ix3.0600
C17···C93.409 (2)H18B···O172.5200
C17···C103.332 (3)H20···O1ii2.4600
C18···C10xi3.593 (3)
C7—O8—C8115.11 (12)O8—C8—H8A110.00
C1—O1—H1110.00C9—C10—H10180.00
C17—O18—C18115.08 (13)O11—C11—C16118.02 (16)
C11—O11—H11109.00C12—C11—C16119.96 (16)
O1—C1—C6117.52 (15)O11—C11—C12122.01 (16)
O1—C1—C2122.74 (15)C11—C12—C13118.42 (15)
C2—C1—C6119.73 (15)C11—C12—C17119.34 (15)
C1—C2—C3118.42 (14)C13—C12—C17122.24 (14)
C1—C2—C7119.36 (14)C12—C13—C14121.55 (16)
C3—C2—C7122.22 (14)C13—C14—C15118.69 (17)
C2—C3—C4121.57 (15)C14—C15—C16121.51 (18)
C3—C4—C5119.13 (16)C11—C16—C15119.84 (18)
C4—C5—C6120.89 (17)O17—C17—O18121.26 (15)
C1—C6—C5120.25 (16)O17—C17—C12124.83 (15)
O7—C7—O8121.63 (14)O18—C17—C12113.91 (14)
O7—C7—C2124.67 (14)O18—C18—C19108.46 (14)
O8—C7—C2113.70 (13)C18—C19—C20177.08 (19)
O8—C8—C9107.93 (13)C12—C13—H13119.00
C8—C9—C10178.35 (19)C14—C13—H13119.00
C2—C3—H3119.00C13—C14—H14121.00
C4—C3—H3119.00C15—C14—H14120.00
C5—C4—H4120.00C14—C15—H15119.00
C3—C4—H4121.00C16—C15—H15119.00
C4—C5—H5119.00C11—C16—H16120.00
C6—C5—H5120.00C15—C16—H16121.00
C1—C6—H6120.00O18—C18—H18A109.00
C5—C6—H6119.00O18—C18—H18B110.00
O8—C8—H8B110.00C19—C18—H18A110.00
C9—C8—H8A110.00C19—C18—H18B110.00
H8A—C8—H8B109.00H18A—C18—H18B109.00
C9—C8—H8B109.00C19—C20—H20180.00
C8—O8—C7—O73.0 (2)C2—C3—C4—C50.9 (3)
C8—O8—C7—C2176.81 (14)C3—C4—C5—C60.1 (3)
C7—O8—C8—C9168.65 (13)C4—C5—C6—C11.1 (3)
C18—O18—C17—O170.6 (2)O11—C11—C12—C13177.77 (16)
C18—O18—C17—C12178.56 (14)O11—C11—C12—C172.3 (3)
C17—O18—C18—C19177.13 (13)C16—C11—C12—C132.1 (3)
C6—C1—C2—C7179.66 (13)C16—C11—C12—C17177.86 (17)
O1—C1—C6—C5178.39 (16)O11—C11—C16—C15178.65 (19)
C2—C1—C6—C51.1 (2)C12—C11—C16—C151.2 (3)
O1—C1—C2—C70.2 (2)C11—C12—C13—C141.6 (2)
C6—C1—C2—C30.1 (2)C17—C12—C13—C14178.33 (16)
O1—C1—C2—C3179.35 (14)C11—C12—C17—O174.3 (2)
C1—C2—C3—C40.9 (2)C11—C12—C17—O18174.83 (15)
C7—C2—C3—C4178.62 (16)C13—C12—C17—O17175.82 (15)
C3—C2—C7—O82.5 (2)C13—C12—C17—O185.1 (2)
C1—C2—C7—O72.8 (2)C12—C13—C14—C150.2 (3)
C1—C2—C7—O8177.01 (13)C13—C14—C15—C160.7 (3)
C3—C2—C7—O7177.69 (15)C14—C15—C16—C110.2 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+2, y, z; (vi) x+2, y1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x+1, y+1/2, z+1/2; (ix) x, y1/2, z1/2; (x) x+2, y+1/2, z+1/2; (xi) x, y1/2, z+1/2; (xii) x, y, z+1; (xiii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O70.901.862.6193 (16)141
O1—H1···O7i0.902.553.2081 (17)130
O11—H11···O170.901.822.6007 (18)144
C10—H10···O11v0.952.383.310 (2)165
C16—H16···O17x0.9602.483.291 (2)143
C20—H20···O1ii0.952.463.340 (2)154
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (v) x+2, y, z; (x) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8O3
Mr176.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.7150 (14), 12.7972 (10), 7.2310 (7)
β (°) 90.191 (8)
V3)1731.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.30 × 0.12
Data collection
DiffractometerOxford-Diffraction GEMINI S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.965, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10756, 3081, 1941
Rint0.031
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 0.93
No. of reflections3081
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O70.901.862.6193 (16)141
O1—H1···O7i0.902.553.2081 (17)130
O11—H11···O170.901.822.6007 (18)144
C10—H10···O11ii0.952.383.310 (2)165
C16—H16···O17iii0.9602.483.291 (2)143
C20—H20···O1iv0.952.463.340 (2)154
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y, z+1.
 

Acknowledgements

We acknowledge support of this work by Griffith University, the Queensland University of Technology, the Eskitis Institute for Cell and Mol­ecular Therapies, and the Institute for Glycomics.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHouston, T. A., Levonis, S. M. & Kiefel, M. J. (2007). Aust. J. Chem. 60, 811–815.  Web of Science CrossRef CAS Google Scholar
First citationHouston, T. A., Quader, S., Boyd, S. E., Jenkins, I. D. & Healy, P. C. (2008). Acta Cryst. E64, o1738.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHouston, T. A., Wilkinson, B. L. & Blanchfield, J. T. (2004). Org. Lett. 6, 678–681.  Web of Science CrossRef Google Scholar
First citationJung, M., Kerr, D. E. & Senter, P. D. (1997). Archiv. Der Pharm. 330, 173–176.  CrossRef CAS Web of Science Google Scholar
First citationLevonis, S. M., Bornaghi, L. F. & Houston, T. A. (2007). Aust. J. Chem. 60, 821–823.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSox, T. E. & Olson, C. A. (1989). Antimicrob. Agents Chemother. 33, 2075–2082.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationWiberg, K. B. & Laidig, K. E. (1987). J. Am. Chem. Soc. 109, 5935–5943.  CrossRef CAS Web of Science Google Scholar
First citationWilkinson, B. L., Bornaghi, L. F., Houston, T. A. & Poulsen, S.-A. (2009). Click Chemistry in Carbohydrate Based Drug Development and Glycobiology: An Update in Glycobiology Research Trends, edited by G. Powell & O. McCabe, pp. 127–172. New York: Nova Science Publishers.  Google Scholar
First citationWilkinson, B. L., Bornaghi, L. F., Houston, T. A., Poulsen, S.-A. & White, A. R. (2006). Acta Cryst. E62, o5065–o5067.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o226-o227
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds