organic compounds
2-Propynyl 2-hydroxybenzoate
aInstitute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast 4222, Australia, and bEskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan Campus, Brisbane 4111, Australia
*Correspondence e-mail: p.healy@griffith.edu.au
The title compound, C10H8O3, has been synthesized as part of our investigations into the generation of new antibacterial agents and serves as a building block for the synthesis of compound libraries. The compound crystallizes with two independent molecules in the The transoid propynyl ester groups are coplanar with the 2-hydroxybenzoate group with maximum deviations of −0.3507 (3) and 0.1591 (3) Å for the terminal carbons, with intramolecular O—H⋯O hydrogen bonding providing rigidity to the structure and ensuring that the reactivity of the alkyne is not compromised by steric factors. The propynyl group forms intermolecular C—H⋯O interactions with the phenolic O atom. Supramolecular chains along the b axis are found for both molecules with links by weak O—H⋯O intermolecular interactions in the first independent molecule and C—H⋯O interactions in the second.
Related literature
For background to Cu(I)-mediated azide–alkyne cycloadditions, see: Houston et al. (2008); Wilkinson et al. (2009). For the biological use of salicylates, see: Sox & Olson (1989). For background to boric acid-mediated esterification, see: Houston et al. (2004, 2007); Levonis et al. (2007). For stereochemistry, see: Wilkinson et al. (2006); Wiberg & Laidig (1987). For previous synthesis of the title compound and its anti-tumour activity, see: Jung et al. (1997).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
10.1107/S160053680905421X/tk2601sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680905421X/tk2601Isup2.hkl
To a stirred solution of salicylic acid (208 mg, 1.5 mmol) and propargyl alcohol (84 mg, 174 mL,3.0 mmol) in acetonitrile (3 ml) was added boric acid (9 mg, 0.15 mmol). The solution was heated and maintained at reflux for 16 h before concentrating in vacuo. Flash
was performed on silica using ethyl acetate as the mobile phase to yield 145 mg(55%) of (I) as a white solid. This was initially recrystallized from MeOH to furnish white needles (31%) for NMR analysis. A second recrystallization from toluene at 0°C produced single crystals suitable for X-ray diffraction analysis.1H NMR (CDCl3 300 MHz, 298 K) δ p.p.m. 2.53 (t, J = 2.4 Hz, 1H), 4.91 (s, 2H), 6.87 (ddd, J = 8.1, 7.35, 1.2 Hz, 1H), 6.96 (dd, J = 8.4, 0.9 Hz, 1H), 7.45 (ddd, J = 8.4, 7.2, 1.8 Hz, 1H), 7.85 (dd, J = 7.9, 1.8 Hz, 1H), 10.5 (s, 1H). 13C{1H} NMR (CD3OD, 75 MHz, 298 K) δ p.p.m. 53.7, 77.1, 78.3, 113.2, 118.5, 120.4, 130.9, 137.0, 162.9 170.5. MS(ESI–) 175.1 [M—H+]
H atoms were positioned geometrically, with C–H = 0.95 - 0.96 Å and O—H = 0.90 Å, and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).Fig. 1. Reaction scheme for the preparation of the title compound (I). | |
Fig. 2. View of the two independent molecules in (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level. | |
Fig. 3. Crystal packing in the structure of (I), viewed down the c axis. |
C10H8O3 | F(000) = 736 |
Mr = 176.16 | Dx = 1.351 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2ybc | Cell parameters from 3378 reflections |
a = 18.7150 (14) Å | θ = 3.2–25.0° |
b = 12.7972 (10) Å | µ = 0.10 mm−1 |
c = 7.2310 (7) Å | T = 296 K |
β = 90.191 (8)° | Block, colourless |
V = 1731.8 (3) Å3 | 0.36 × 0.30 × 0.12 mm |
Z = 8 |
Oxford-Diffraction GEMINI S Ultra diffractometer | 3081 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1941 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 16.0774 pixels mm-1 | θmax = 25.2°, θmin = 3.2° |
ω and ϕ scans | h = −22→22 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | k = −15→15 |
Tmin = 0.965, Tmax = 0.988 | l = −8→8 |
10756 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0531P)2] where P = (Fo2 + 2Fc2)/3 |
3081 reflections | (Δ/σ)max = 0.001 |
235 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C10H8O3 | V = 1731.8 (3) Å3 |
Mr = 176.16 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 18.7150 (14) Å | µ = 0.10 mm−1 |
b = 12.7972 (10) Å | T = 296 K |
c = 7.2310 (7) Å | 0.36 × 0.30 × 0.12 mm |
β = 90.191 (8)° |
Oxford-Diffraction GEMINI S Ultra diffractometer | 3081 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 1941 reflections with I > 2σ(I) |
Tmin = 0.965, Tmax = 0.988 | Rint = 0.031 |
10756 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.14 e Å−3 |
3081 reflections | Δρmin = −0.14 e Å−3 |
235 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.47564 (6) | 0.17697 (9) | 0.12869 (19) | 0.0639 (5) | |
O7 | 0.57032 (6) | 0.02715 (9) | 0.10015 (17) | 0.0548 (5) | |
O8 | 0.68501 (5) | 0.06996 (8) | 0.06527 (16) | 0.0471 (4) | |
C1 | 0.53250 (9) | 0.24189 (13) | 0.1244 (2) | 0.0435 (6) | |
C2 | 0.60284 (8) | 0.20595 (12) | 0.1059 (2) | 0.0370 (5) | |
C3 | 0.65779 (8) | 0.27917 (13) | 0.1010 (2) | 0.0464 (6) | |
C4 | 0.64437 (10) | 0.38407 (14) | 0.1112 (3) | 0.0554 (7) | |
C5 | 0.57450 (11) | 0.41802 (14) | 0.1295 (3) | 0.0580 (7) | |
C6 | 0.51933 (9) | 0.34830 (14) | 0.1376 (2) | 0.0535 (7) | |
C7 | 0.61613 (8) | 0.09414 (12) | 0.0911 (2) | 0.0387 (6) | |
C8 | 0.69957 (9) | −0.04016 (13) | 0.0400 (3) | 0.0529 (7) | |
C9 | 0.77295 (9) | −0.05066 (13) | −0.0228 (2) | 0.0497 (7) | |
C10 | 0.83132 (10) | −0.06146 (15) | −0.0747 (3) | 0.0633 (8) | |
O11 | 1.00806 (6) | 0.04958 (11) | 0.2637 (2) | 0.0843 (6) | |
O17 | 0.91622 (6) | −0.09764 (10) | 0.33340 (19) | 0.0675 (5) | |
O18 | 0.80791 (6) | −0.05357 (8) | 0.43315 (15) | 0.0496 (4) | |
C11 | 0.95424 (9) | 0.11680 (14) | 0.3039 (3) | 0.0528 (7) | |
C12 | 0.88641 (8) | 0.08199 (13) | 0.3537 (2) | 0.0428 (6) | |
C13 | 0.83356 (9) | 0.15589 (13) | 0.3864 (2) | 0.0516 (7) | |
C14 | 0.84724 (10) | 0.26037 (15) | 0.3751 (3) | 0.0624 (8) | |
C15 | 0.91532 (11) | 0.29250 (15) | 0.3294 (3) | 0.0661 (8) | |
C16 | 0.96819 (10) | 0.22262 (16) | 0.2939 (3) | 0.0641 (8) | |
C17 | 0.87317 (9) | −0.02986 (13) | 0.3700 (2) | 0.0453 (6) | |
C18 | 0.79398 (10) | −0.16364 (13) | 0.4549 (3) | 0.0561 (7) | |
C19 | 0.72292 (10) | −0.17626 (13) | 0.5328 (2) | 0.0513 (7) | |
C20 | 0.66642 (10) | −0.19093 (15) | 0.5941 (3) | 0.0627 (8) | |
H1 | 0.48950 | 0.11110 | 0.10160 | 0.0760* | |
H3 | 0.70590 | 0.25560 | 0.08950 | 0.0550* | |
H4 | 0.68250 | 0.43350 | 0.10570 | 0.0670* | |
H5 | 0.56540 | 0.49150 | 0.13700 | 0.0690* | |
H6 | 0.47180 | 0.37330 | 0.15270 | 0.0630* | |
H8A | 0.69370 | −0.07620 | 0.15400 | 0.0630* | |
H8B | 0.66820 | −0.06890 | −0.04980 | 0.0630* | |
H10 | 0.87890 | −0.07030 | −0.11700 | 0.0750* | |
H11 | 0.99390 | −0.01650 | 0.28820 | 0.0990* | |
H13 | 0.78680 | 0.13280 | 0.42100 | 0.0610* | |
H14 | 0.81070 | 0.31060 | 0.39670 | 0.0750* | |
H15 | 0.92580 | 0.36530 | 0.32450 | 0.0790* | |
H16 | 1.01500 | 0.24600 | 0.26110 | 0.0790* | |
H18A | 0.79640 | −0.19700 | 0.33770 | 0.0640* | |
H18B | 0.82850 | −0.19340 | 0.53560 | 0.0640* | |
H20 | 0.62010 | −0.20280 | 0.64430 | 0.0760* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0381 (7) | 0.0519 (8) | 0.1017 (11) | −0.0002 (6) | 0.0130 (6) | −0.0085 (7) |
O7 | 0.0394 (7) | 0.0389 (7) | 0.0862 (10) | −0.0057 (6) | 0.0079 (6) | 0.0033 (6) |
O8 | 0.0360 (6) | 0.0325 (7) | 0.0728 (8) | 0.0015 (5) | 0.0047 (6) | −0.0034 (5) |
C1 | 0.0414 (10) | 0.0436 (11) | 0.0456 (11) | 0.0020 (8) | 0.0048 (8) | −0.0021 (8) |
C2 | 0.0388 (9) | 0.0340 (9) | 0.0381 (10) | 0.0011 (7) | 0.0050 (7) | 0.0004 (7) |
C3 | 0.0418 (10) | 0.0402 (11) | 0.0574 (12) | −0.0010 (8) | 0.0100 (8) | −0.0030 (8) |
C4 | 0.0619 (12) | 0.0377 (11) | 0.0668 (14) | −0.0063 (9) | 0.0118 (10) | −0.0065 (9) |
C5 | 0.0769 (14) | 0.0356 (11) | 0.0614 (13) | 0.0098 (10) | 0.0049 (10) | −0.0041 (9) |
C6 | 0.0504 (11) | 0.0489 (12) | 0.0612 (13) | 0.0144 (9) | 0.0068 (9) | −0.0059 (9) |
C7 | 0.0343 (9) | 0.0388 (10) | 0.0431 (10) | −0.0016 (8) | 0.0025 (7) | 0.0002 (8) |
C8 | 0.0461 (10) | 0.0331 (10) | 0.0794 (14) | 0.0048 (8) | 0.0039 (9) | −0.0018 (9) |
C9 | 0.0470 (11) | 0.0380 (11) | 0.0641 (13) | 0.0043 (8) | 0.0025 (9) | −0.0048 (9) |
C10 | 0.0509 (12) | 0.0542 (13) | 0.0847 (15) | 0.0051 (10) | 0.0100 (11) | −0.0090 (10) |
O11 | 0.0449 (8) | 0.0664 (10) | 0.1419 (14) | 0.0016 (7) | 0.0332 (8) | −0.0043 (9) |
O17 | 0.0504 (8) | 0.0455 (8) | 0.1068 (12) | 0.0114 (6) | 0.0168 (7) | −0.0037 (7) |
O18 | 0.0498 (7) | 0.0343 (7) | 0.0649 (8) | −0.0014 (5) | 0.0163 (6) | 0.0002 (5) |
C11 | 0.0421 (10) | 0.0540 (12) | 0.0624 (13) | −0.0011 (9) | 0.0113 (9) | −0.0022 (9) |
C12 | 0.0413 (9) | 0.0418 (10) | 0.0454 (11) | −0.0025 (8) | 0.0078 (8) | −0.0011 (8) |
C13 | 0.0455 (10) | 0.0427 (11) | 0.0667 (13) | −0.0010 (8) | 0.0172 (9) | 0.0000 (8) |
C14 | 0.0636 (13) | 0.0421 (12) | 0.0817 (15) | 0.0012 (10) | 0.0155 (11) | 0.0021 (10) |
C15 | 0.0756 (14) | 0.0418 (11) | 0.0810 (15) | −0.0126 (11) | 0.0095 (12) | 0.0039 (10) |
C16 | 0.0517 (12) | 0.0622 (14) | 0.0785 (15) | −0.0170 (10) | 0.0158 (10) | 0.0031 (11) |
C17 | 0.0406 (10) | 0.0439 (11) | 0.0513 (12) | 0.0025 (8) | 0.0059 (8) | −0.0013 (8) |
C18 | 0.0615 (12) | 0.0350 (11) | 0.0718 (13) | 0.0001 (9) | 0.0112 (10) | 0.0010 (9) |
C19 | 0.0570 (12) | 0.0366 (11) | 0.0602 (12) | −0.0055 (9) | 0.0079 (9) | 0.0017 (8) |
C20 | 0.0575 (12) | 0.0481 (12) | 0.0826 (15) | −0.0045 (10) | 0.0124 (11) | 0.0012 (10) |
O1—C1 | 1.351 (2) | C5—H5 | 0.9600 |
O7—C7 | 1.2143 (19) | C6—H6 | 0.9500 |
O8—C7 | 1.3394 (18) | C8—H8B | 0.9500 |
O8—C8 | 1.447 (2) | C8—H8A | 0.9500 |
O1—H1 | 0.9000 | C10—H10 | 0.9500 |
O11—C11 | 1.357 (2) | C11—C12 | 1.394 (2) |
O17—C17 | 1.214 (2) | C11—C16 | 1.381 (3) |
O18—C17 | 1.340 (2) | C12—C17 | 1.458 (2) |
O18—C18 | 1.441 (2) | C12—C13 | 1.389 (2) |
O11—H11 | 0.9000 | C13—C14 | 1.364 (3) |
C1—C6 | 1.387 (2) | C14—C15 | 1.380 (3) |
C1—C2 | 1.401 (2) | C15—C16 | 1.359 (3) |
C2—C3 | 1.392 (2) | C18—C19 | 1.455 (3) |
C2—C7 | 1.456 (2) | C19—C20 | 1.163 (3) |
C3—C4 | 1.368 (2) | C13—H13 | 0.9600 |
C4—C5 | 1.385 (3) | C14—H14 | 0.9500 |
C5—C6 | 1.366 (3) | C15—H15 | 0.9500 |
C8—C9 | 1.454 (2) | C16—H16 | 0.9600 |
C9—C10 | 1.165 (3) | C18—H18A | 0.9500 |
C3—H3 | 0.9500 | C18—H18B | 0.9500 |
C4—H4 | 0.9500 | C20—H20 | 0.9500 |
O1···O7 | 2.6193 (16) | C20···O1ii | 3.340 (2) |
O1···O7i | 3.2081 (17) | C20···C8xi | 3.519 (3) |
O1···C20ii | 3.340 (2) | C3···H13iv | 2.9700 |
O7···O1i | 3.2081 (17) | C4···H13iv | 3.0100 |
O7···O1 | 2.6193 (16) | C7···H1 | 2.3800 |
O7···C6iii | 3.416 (2) | C13···H3vii | 3.0300 |
O7···O7i | 3.0795 (17) | C14···H3vii | 3.0800 |
O8···C4iv | 3.419 (2) | C15···H11x | 3.1000 |
O11···O17 | 2.6007 (18) | C17···H11 | 2.3400 |
O11···C10v | 3.310 (2) | C18···H8A | 3.0800 |
O17···O11 | 2.6007 (18) | C19···H18Axi | 3.0600 |
O17···C16vi | 3.291 (2) | C19···H8A | 3.0700 |
O17···C10 | 3.379 (3) | C20···H8Bxii | 3.0100 |
O18···C9 | 3.3593 (18) | C20···H8Axi | 3.0500 |
O1···H20ii | 2.4600 | H1···O7 | 1.8600 |
O7···H6iii | 2.7800 | H1···C7 | 2.3800 |
O7···H8B | 2.4600 | H1···O7i | 2.5500 |
O7···H1 | 1.8600 | H3···C13iv | 3.0300 |
O7···H8A | 2.6900 | H3···C14iv | 3.0800 |
O7···H1i | 2.5500 | H3···H13iv | 2.4100 |
O8···H3 | 2.4100 | H3···H14iv | 2.5500 |
O11···H15vi | 2.7400 | H3···O8 | 2.4100 |
O11···H10v | 2.3800 | H4···H13iv | 2.5200 |
O17···H11 | 1.8200 | H6···O7viii | 2.7800 |
O17···H18A | 2.5800 | H8A···C18 | 3.0800 |
O17···H18B | 2.5200 | H8A···C19 | 3.0700 |
O17···H16vi | 2.4800 | H8A···C20ix | 3.0500 |
O18···H13 | 2.4200 | H8A···O7 | 2.6900 |
C4···O8vii | 3.419 (2) | H8B···C20xiii | 3.0100 |
C4···C7vii | 3.523 (3) | H8B···O7 | 2.4600 |
C5···C7vii | 3.429 (3) | H10···O11v | 2.3800 |
C6···O7viii | 3.416 (2) | H11···O17 | 1.8200 |
C7···C4iv | 3.523 (3) | H11···C17 | 2.3400 |
C7···C5iv | 3.429 (3) | H11···C15vi | 3.1000 |
C8···C20ix | 3.519 (3) | H11···H15vi | 2.2800 |
C9···C17 | 3.409 (2) | H13···O18 | 2.4200 |
C9···O18 | 3.3593 (18) | H13···C3vii | 2.9700 |
C10···O11v | 3.310 (2) | H13···C4vii | 3.0100 |
C10···C18ix | 3.593 (3) | H13···H3vii | 2.4100 |
C10···C17 | 3.332 (3) | H13···H4vii | 2.5200 |
C10···O17 | 3.379 (3) | H14···H3vii | 2.5500 |
C14···C15vii | 3.584 (3) | H15···O11x | 2.7400 |
C15···C14iv | 3.584 (3) | H15···H11x | 2.2800 |
C15···C16vii | 3.504 (3) | H16···O17x | 2.4800 |
C16···O17x | 3.291 (2) | H18A···O17 | 2.5800 |
C16···C15iv | 3.504 (3) | H18A···C19ix | 3.0600 |
C17···C9 | 3.409 (2) | H18B···O17 | 2.5200 |
C17···C10 | 3.332 (3) | H20···O1ii | 2.4600 |
C18···C10xi | 3.593 (3) | ||
C7—O8—C8 | 115.11 (12) | O8—C8—H8A | 110.00 |
C1—O1—H1 | 110.00 | C9—C10—H10 | 180.00 |
C17—O18—C18 | 115.08 (13) | O11—C11—C16 | 118.02 (16) |
C11—O11—H11 | 109.00 | C12—C11—C16 | 119.96 (16) |
O1—C1—C6 | 117.52 (15) | O11—C11—C12 | 122.01 (16) |
O1—C1—C2 | 122.74 (15) | C11—C12—C13 | 118.42 (15) |
C2—C1—C6 | 119.73 (15) | C11—C12—C17 | 119.34 (15) |
C1—C2—C3 | 118.42 (14) | C13—C12—C17 | 122.24 (14) |
C1—C2—C7 | 119.36 (14) | C12—C13—C14 | 121.55 (16) |
C3—C2—C7 | 122.22 (14) | C13—C14—C15 | 118.69 (17) |
C2—C3—C4 | 121.57 (15) | C14—C15—C16 | 121.51 (18) |
C3—C4—C5 | 119.13 (16) | C11—C16—C15 | 119.84 (18) |
C4—C5—C6 | 120.89 (17) | O17—C17—O18 | 121.26 (15) |
C1—C6—C5 | 120.25 (16) | O17—C17—C12 | 124.83 (15) |
O7—C7—O8 | 121.63 (14) | O18—C17—C12 | 113.91 (14) |
O7—C7—C2 | 124.67 (14) | O18—C18—C19 | 108.46 (14) |
O8—C7—C2 | 113.70 (13) | C18—C19—C20 | 177.08 (19) |
O8—C8—C9 | 107.93 (13) | C12—C13—H13 | 119.00 |
C8—C9—C10 | 178.35 (19) | C14—C13—H13 | 119.00 |
C2—C3—H3 | 119.00 | C13—C14—H14 | 121.00 |
C4—C3—H3 | 119.00 | C15—C14—H14 | 120.00 |
C5—C4—H4 | 120.00 | C14—C15—H15 | 119.00 |
C3—C4—H4 | 121.00 | C16—C15—H15 | 119.00 |
C4—C5—H5 | 119.00 | C11—C16—H16 | 120.00 |
C6—C5—H5 | 120.00 | C15—C16—H16 | 121.00 |
C1—C6—H6 | 120.00 | O18—C18—H18A | 109.00 |
C5—C6—H6 | 119.00 | O18—C18—H18B | 110.00 |
O8—C8—H8B | 110.00 | C19—C18—H18A | 110.00 |
C9—C8—H8A | 110.00 | C19—C18—H18B | 110.00 |
H8A—C8—H8B | 109.00 | H18A—C18—H18B | 109.00 |
C9—C8—H8B | 109.00 | C19—C20—H20 | 180.00 |
C8—O8—C7—O7 | 3.0 (2) | C2—C3—C4—C5 | 0.9 (3) |
C8—O8—C7—C2 | −176.81 (14) | C3—C4—C5—C6 | 0.1 (3) |
C7—O8—C8—C9 | 168.65 (13) | C4—C5—C6—C1 | −1.1 (3) |
C18—O18—C17—O17 | 0.6 (2) | O11—C11—C12—C13 | −177.77 (16) |
C18—O18—C17—C12 | −178.56 (14) | O11—C11—C12—C17 | 2.3 (3) |
C17—O18—C18—C19 | 177.13 (13) | C16—C11—C12—C13 | 2.1 (3) |
C6—C1—C2—C7 | −179.66 (13) | C16—C11—C12—C17 | −177.86 (17) |
O1—C1—C6—C5 | −178.39 (16) | O11—C11—C16—C15 | 178.65 (19) |
C2—C1—C6—C5 | 1.1 (2) | C12—C11—C16—C15 | −1.2 (3) |
O1—C1—C2—C7 | −0.2 (2) | C11—C12—C13—C14 | −1.6 (2) |
C6—C1—C2—C3 | −0.1 (2) | C17—C12—C13—C14 | 178.33 (16) |
O1—C1—C2—C3 | 179.35 (14) | C11—C12—C17—O17 | −4.3 (2) |
C1—C2—C3—C4 | −0.9 (2) | C11—C12—C17—O18 | 174.83 (15) |
C7—C2—C3—C4 | 178.62 (16) | C13—C12—C17—O17 | 175.82 (15) |
C3—C2—C7—O8 | −2.5 (2) | C13—C12—C17—O18 | −5.1 (2) |
C1—C2—C7—O7 | −2.8 (2) | C12—C13—C14—C15 | 0.2 (3) |
C1—C2—C7—O8 | 177.01 (13) | C13—C14—C15—C16 | 0.7 (3) |
C3—C2—C7—O7 | 177.69 (15) | C14—C15—C16—C11 | −0.2 (3) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y, −z+1; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2; (v) −x+2, −y, −z; (vi) −x+2, y−1/2, −z+1/2; (vii) x, −y+1/2, z+1/2; (viii) −x+1, y+1/2, −z+1/2; (ix) x, −y−1/2, z−1/2; (x) −x+2, y+1/2, −z+1/2; (xi) x, −y−1/2, z+1/2; (xii) x, y, z+1; (xiii) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O7 | 0.90 | 1.86 | 2.6193 (16) | 141 |
O1—H1···O7i | 0.90 | 2.55 | 3.2081 (17) | 130 |
O11—H11···O17 | 0.90 | 1.82 | 2.6007 (18) | 144 |
C10—H10···O11v | 0.95 | 2.38 | 3.310 (2) | 165 |
C16—H16···O17x | 0.960 | 2.48 | 3.291 (2) | 143 |
C20—H20···O1ii | 0.95 | 2.46 | 3.340 (2) | 154 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y, −z+1; (v) −x+2, −y, −z; (x) −x+2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H8O3 |
Mr | 176.16 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 18.7150 (14), 12.7972 (10), 7.2310 (7) |
β (°) | 90.191 (8) |
V (Å3) | 1731.8 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.36 × 0.30 × 0.12 |
Data collection | |
Diffractometer | Oxford-Diffraction GEMINI S Ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.965, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10756, 3081, 1941 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.098, 0.93 |
No. of reflections | 3081 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.14 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O7 | 0.90 | 1.86 | 2.6193 (16) | 141 |
O1—H1···O7i | 0.90 | 2.55 | 3.2081 (17) | 130 |
O11—H11···O17 | 0.90 | 1.82 | 2.6007 (18) | 144 |
C10—H10···O11ii | 0.95 | 2.38 | 3.310 (2) | 165 |
C16—H16···O17iii | 0.960 | 2.48 | 3.291 (2) | 143 |
C20—H20···O1iv | 0.95 | 2.46 | 3.340 (2) | 154 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y, −z; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+1, −y, −z+1. |
Acknowledgements
We acknowledge support of this work by Griffith University, the Queensland University of Technology, the Eskitis Institute for Cell and Molecular Therapies, and the Institute for Glycomics.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Houston, T. A., Levonis, S. M. & Kiefel, M. J. (2007). Aust. J. Chem. 60, 811–815. Web of Science CrossRef CAS Google Scholar
Houston, T. A., Quader, S., Boyd, S. E., Jenkins, I. D. & Healy, P. C. (2008). Acta Cryst. E64, o1738. Web of Science CSD CrossRef IUCr Journals Google Scholar
Houston, T. A., Wilkinson, B. L. & Blanchfield, J. T. (2004). Org. Lett. 6, 678–681. Web of Science CrossRef Google Scholar
Jung, M., Kerr, D. E. & Senter, P. D. (1997). Archiv. Der Pharm. 330, 173–176. CrossRef CAS Web of Science Google Scholar
Levonis, S. M., Bornaghi, L. F. & Houston, T. A. (2007). Aust. J. Chem. 60, 821–823. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sox, T. E. & Olson, C. A. (1989). Antimicrob. Agents Chemother. 33, 2075–2082. CrossRef CAS PubMed Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
Wiberg, K. B. & Laidig, K. E. (1987). J. Am. Chem. Soc. 109, 5935–5943. CrossRef CAS Web of Science Google Scholar
Wilkinson, B. L., Bornaghi, L. F., Houston, T. A. & Poulsen, S.-A. (2009). Click Chemistry in Carbohydrate Based Drug Development and Glycobiology: An Update in Glycobiology Research Trends, edited by G. Powell & O. McCabe, pp. 127–172. New York: Nova Science Publishers. Google Scholar
Wilkinson, B. L., Bornaghi, L. F., Houston, T. A., Poulsen, S.-A. & White, A. R. (2006). Acta Cryst. E62, o5065–o5067. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In an attempt to identify new antibacterial compounds, we have assembled a diverse range of azide and alkyne coupling partners for the purpose of creating compound libraries using Cu(I)-mediated azide-alkyne cycloadditions [CuAAC] (Houston et al., 2008; Wilkinson et al., 2009). Salicylates such as bismuth subsalicylate have been used for many years to treat diarrhea and other gastrointestinal disorders (Sox & Olson, 1989). We required a core salicylate scaffold that could be readily transformed into a variety of derivatives. Here, we describe the synthesis and X-ray crystal structure of 2'-propynyl 2-hydroxybenzoate (propargyl salicylate) (I) using our chemoselective method of boric acid-mediated esterification (Houston et al., 2004; 2007). Borate can activate hydroxycarboxylic acids such as salicylate toward esterification under mild conditions that are tolerant to acid-labile functional groups such as alkynes. This ester was previously synthesized by alkylation for the synthesis of cobalt carbonyl complexes and study of their anti-tumour activity (Jung et al., 1997).
Compound (I) was synthesized cleanly from salicylic acid and propargyl alcohol in 55% yield using 10 mol% boric acid in acetonitrile (Levonis et al., 2007) (Fig. 1), and crystallizes from toluene with two independent molecules in the asymmetric unit (Fig. 2). The ester group adopts the transoid arrangement (Wilkinson et al., 2006) as stereoelectronic requirements are met when the carbonyl bifurcates the methylene H atoms (Wiberg & Laidig, 1987). This allows both p → π and n → σ* overlap from the propargylated oxygen to the carbonyl. The propynyl groups are co-planar with the 2-hydroxybenzoate; with the intra-molecular O—H···O hydrogen bond between the phenolic proton and the carbonyl oxygen providing rigidity to the structure (Table 1). These factors result in the extension of the propynyl group away from the aromatic core and ensures that the reactivity of the alkyne when using the CuAAC method is not compromised by steric constraints. In the crystal lattice, the propynyl groups form inter-molecular C—H···O interactions with the phenolic oxygen (Table 1). Supramolecular chains along the direction of the b axis are found for both molecules with links by weak O1—H1···O7 (molecule A) and C16—H16···O17 (molecule B) inter-molecular interactions (Table 1, Fig. 3).