organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o73-o74

7-Benzenesulfonamido-3-methyl-8-oxo-5-thia-1-azabi­cyclo[4.2.0]octa-2-ene-2-carboxylic acid monohydrate

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, cPharmagen Ltd, Lahore 54000, Pakistan, and dPharmagen Ltd., Lahore 54000, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 11 November 2009; accepted 1 December 2009; online 9 December 2009)

In the title compound, C14H14N2O5S2·H2O, the six-membered ring fused to the β-lactam unit has a twisted conformation. Weak intra­molecular N—H⋯S and C—H⋯O inter­actions occur. Inter­molecular C—H⋯S, N—H⋯O, C—H⋯O and O—H⋯O hydrogen-bonding inter­actions stabilize the crystal structure, forming a three-dimensional network. Weak C—H⋯π inter­actions are also present.

Related literature

For the production of 7-amino-deacetoxy­cephalosporanic acid-like components by direct fermentation, see: Schroen et al. (2000[Schroen, C. G. P. H., VandeWiel, S., Kroon, P. J., DeVroom, E., Janssen, A. E. M. & Tramper, J. (2000). Biotechnol. Bioeng. 70, 654-661.]). For 7-benzene­sulfonamido-3-ethenyl-8-oxo-5-thia-1-aza­bicyclo­[4.2.0]oct-2-ene-2-carboxylic acid methanol solvate, see: Mariam et al. (2009[Mariam, I., Akkurt, M., Sharif, S., Haider, S. K. & Khan, I. U. (2009). Acta Cryst. E65, o1737.]). For structures with the β-lactam unit, see: Akkurt et al. (2008a[Akkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o2466-o2467.],b[Akkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o902-o903.],c[Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2008c). Acta Cryst. E64, o924.]); Baktır et al. (2009[Baktır, Z., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1623-o1624.]); Pınar et al. (2006[Pınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804-o806.]); Yalçın et al. (2009[Yalçın, Ş. P., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o626-o627.]); Çelik et al. (2009a[Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009a). Acta Cryst. E65, o2522-o2523.],b[Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009b). Acta Cryst. E65, o501-o502.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O5S2·H2O

  • Mr = 372.43

  • Orthorhombic, P 21 21 21

  • a = 5.9535 (7) Å

  • b = 15.8248 (19) Å

  • c = 18.411 (2) Å

  • V = 1734.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • 10847 measured reflections

  • 3572 independent reflections

  • 1890 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.109

  • S = 0.97

  • 3572 reflections

  • 226 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1425 Friedel pairs

  • Flack parameter: −0.07 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯OW1i 0.82 1.86 2.663 (6) 166
OW1—HW1⋯O5ii 0.83 (4) 2.14 (5) 2.799 (6) 136 (5)
N2—H2⋯S1 0.86 2.82 3.136 (3) 103
N2—H2⋯O2iii 0.86 2.30 2.846 (4) 122
OW1—HW2⋯O3 0.84 (5) 2.54 (5) 3.135 (6) 129 (5)
C3—H3A⋯O1 0.96 2.22 2.902 (6) 127
C6—H6⋯S1iv 0.98 2.80 3.756 (4) 165
C8—H8⋯O4i 0.98 2.30 3.100 (5) 138
C11—H11⋯O3v 0.93 2.51 3.192 (6) 130
C3—H3BCg3ii 0.96 2.72 3.640 (5) 161
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]. Cg3 is the centroid of the C9–C14 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

One of the building blocks of cephalosporin antibiotics is 7-amino-deacetoxycephalosporanic acid (7-ADCA). It is currently produced from penicillin G using an elaborate chemical ring-expansion step followed by an enzyme-catalyzed hydrolysis. However, 7-ADCA-like components can also be produced by direct fermentation (Schroen et al. 2000).

In the title molecule (I) shown in Fig. 1, the β-lactam unit (N1/C6–C8) has a twisted conformation with the dihedral angles of 164.7 (4)° and 164.7 (4)° between the planes N1 C6 C7 and C6 C8 C7 and the planes N1 C6 C8 and N1 C8 C7, respectively. The six-membered ring fused to the β-lactam unit, (N1/S1/C1/C2/C4/C6) is puckered with the puckering parameters (Cremer & Pople, 1975): QT = 0.618 (3) Å, θ = 54.2 (4) °, ϕ = 340.4 (5) °, respectively.

The crystal stucture is stabilized by intermolecular C—H···S, N—H···O, C—H···O and O—H···O hydrogen bonding interactions between symmetry-related molecules, forming a network in three dimensions (Table 1, Fig. 2). Furthermore, there is a weak C—H···π interaction [C3—H3B···Cg3(-x + 3/2, -y + 1, z + 1/2); H3B···Cg3 = 2.72 Å, C3···Cg3 = 3.640 (5) Å, C3—H3B···Cg3 = 161°, where Cg3 is a centroid of the phenyl ring C9–C14].

Related literature top

For the production of 7-amino-deacetoxycephalosporanic acid-like components by direct fermentation, see: Schroen et al. (2000). For 7-benzenesulfonamido-3-ethenyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid methanol solvate, see: Mariam et al. (2009). For structures with the β-lactam unit, see: Akkurt et al. (2008a,b,c); Baktır et al. (2009); Pınar et al. (2006); Yalçın et al. (2009); Çelik et al. (2009a,b). For puckering parameters, see: Cremer & Pople (1975). Cg3 is the centroid of the C9–C14 ring.

Experimental top

7-ADCA (1 g, 4.7 mmol) was dissolved in distilled water (20 ml) in a round bottom flask (50 ml). Na2CO3 (3M) solution was added to maintain the solution at pH 8–9, then benzene sulfonyl chloride (0.82 g, 4.7 mmol) was added dropwise to the solution and stirred at room temperature. As all benzene sulfonyl chloride was consumed, pH becomes stable at 8–9, which confirms the completion of reaction. Then pH was adjusted to 1–2, by using 3 N HCl. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized in ethyl acetate. Light yellow prisms of (I) appeared after two days.

Refinement top

The H atoms of the water molecule were located in difference Fourier maps and were refined with O—H distances restrained to 0.83 (1) Å and H···H distances restrained to 1.30 (1) Å, with displacement parameters fixed at 1.5 times Ueq of the parent O atoms. H atom on O1 was calculated and refined with a riding model [O—H = 0.82Å and Uiso(H) = 1.5Ueq(O)]. The other H atoms were placed geometrically, with N—H = 0.86 Å, C—H = 0.96–0.98 Å, and included in the refinement using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title compound viewed down a axis. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
7-Benzenesulfonamido-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]octa-2-ene- 2-carboxylic acid monohydrate top
Crystal data top
C14H14N2O5S2·H2OF(000) = 776
Mr = 372.43Dx = 1.426 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1402 reflections
a = 5.9535 (7) Åθ = 2.8–17.3°
b = 15.8248 (19) ŵ = 0.34 mm1
c = 18.411 (2) ÅT = 296 K
V = 1734.6 (3) Å3Prismatic, light yellow
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1890 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.064
Graphite monochromatorθmax = 26.8°, θmin = 2.6°
ϕ and ω scansh = 47
10847 measured reflectionsk = 1220
3572 independent reflectionsl = 1523
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0407P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 0.97Δρmax = 0.20 e Å3
3572 reflectionsΔρmin = 0.25 e Å3
226 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0083 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1425 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (11)
Crystal data top
C14H14N2O5S2·H2OV = 1734.6 (3) Å3
Mr = 372.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9535 (7) ŵ = 0.34 mm1
b = 15.8248 (19) ÅT = 296 K
c = 18.411 (2) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1890 reflections with I > 2σ(I)
10847 measured reflectionsRint = 0.064
3572 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 0.20 e Å3
S = 0.97Δρmin = 0.25 e Å3
3572 reflectionsAbsolute structure: Flack (1983), 1425 Friedel pairs
226 parametersAbsolute structure parameter: 0.07 (11)
3 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.8308 (2)0.30975 (7)0.07531 (7)0.0628 (5)
S21.06325 (17)0.48679 (7)0.11299 (6)0.0452 (4)
O10.1740 (7)0.4774 (2)0.21094 (17)0.0880 (16)
O20.1461 (5)0.51706 (18)0.09585 (15)0.0573 (11)
O30.6341 (5)0.56743 (17)0.05463 (18)0.0719 (13)
O41.3013 (4)0.48188 (19)0.11039 (15)0.0595 (11)
O50.9420 (5)0.44363 (17)0.16919 (15)0.0554 (10)
N10.5130 (5)0.42642 (19)0.06042 (18)0.0410 (11)
N20.9775 (5)0.44881 (19)0.03638 (18)0.0447 (12)
C10.6086 (8)0.2712 (3)0.1326 (3)0.072 (2)
C20.4335 (7)0.3333 (3)0.1575 (2)0.0500 (17)
C30.2901 (9)0.2995 (3)0.2184 (2)0.077 (2)
C40.3988 (6)0.4074 (3)0.1247 (2)0.0427 (16)
C50.2262 (7)0.4725 (3)0.1418 (3)0.0507 (17)
C60.6407 (7)0.3665 (2)0.0176 (2)0.0500 (17)
C70.6267 (6)0.4950 (3)0.0341 (2)0.0480 (16)
C80.7372 (7)0.4416 (3)0.0250 (2)0.0470 (17)
C90.9814 (6)0.5938 (2)0.1135 (2)0.0430 (14)
C101.1108 (7)0.6515 (3)0.0765 (2)0.0587 (17)
C111.0450 (10)0.7349 (3)0.0734 (3)0.074 (2)
C120.8513 (10)0.7598 (3)0.1058 (3)0.069 (2)
C130.7206 (8)0.7021 (3)0.1421 (3)0.0683 (19)
C140.7853 (7)0.6178 (3)0.1457 (3)0.0577 (19)
OW10.8355 (9)0.5874 (3)0.2110 (3)0.128 (2)
H10.079600.514500.216900.1320*
H1A0.532600.226100.106900.0860*
H1B0.676900.246500.175500.0860*
H21.071300.433400.003400.0530*
H3A0.171500.338800.228700.1160*
H3B0.380800.292000.261000.1160*
H3C0.226800.246200.204300.1160*
H60.546000.329400.012100.0600*
H80.657100.448400.071100.0560*
H101.242400.634300.053700.0710*
H111.133500.774100.049100.0890*
H120.806900.816100.103300.0830*
H130.588200.719500.164300.0820*
H140.696200.578400.169700.0690*
HW10.706 (6)0.587 (5)0.228 (3)0.1920*
HW20.819 (12)0.614 (4)0.172 (2)0.1920*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0590 (8)0.0401 (6)0.0892 (10)0.0106 (6)0.0078 (8)0.0044 (6)
S20.0366 (6)0.0512 (7)0.0479 (7)0.0031 (5)0.0001 (6)0.0012 (6)
O10.104 (3)0.110 (3)0.050 (2)0.032 (3)0.014 (2)0.012 (2)
O20.0538 (19)0.0611 (19)0.057 (2)0.0140 (18)0.0046 (17)0.0017 (17)
O30.062 (2)0.0368 (17)0.117 (3)0.0035 (17)0.029 (2)0.0053 (18)
O40.0328 (16)0.080 (2)0.0656 (19)0.0071 (16)0.0052 (15)0.0055 (18)
O50.0591 (18)0.0585 (17)0.0485 (19)0.0021 (16)0.0076 (17)0.0051 (15)
N10.0398 (19)0.0353 (18)0.048 (2)0.0017 (17)0.0067 (18)0.0016 (17)
N20.029 (2)0.054 (2)0.051 (2)0.0090 (16)0.0011 (16)0.0119 (18)
C10.077 (4)0.048 (3)0.091 (4)0.003 (3)0.002 (3)0.012 (3)
C20.043 (3)0.057 (3)0.050 (3)0.010 (3)0.000 (2)0.007 (2)
C30.080 (4)0.086 (4)0.066 (3)0.013 (3)0.005 (3)0.017 (3)
C40.038 (2)0.050 (3)0.040 (3)0.005 (2)0.001 (2)0.002 (2)
C50.040 (3)0.063 (3)0.049 (3)0.005 (2)0.004 (2)0.012 (3)
C60.048 (3)0.046 (3)0.056 (3)0.010 (2)0.000 (2)0.011 (2)
C70.041 (3)0.039 (2)0.064 (3)0.005 (2)0.003 (2)0.010 (2)
C80.037 (3)0.054 (3)0.050 (3)0.006 (2)0.003 (2)0.004 (2)
C90.037 (2)0.044 (2)0.048 (3)0.005 (2)0.004 (2)0.007 (2)
C100.052 (3)0.058 (3)0.066 (3)0.005 (3)0.012 (3)0.001 (3)
C110.094 (4)0.046 (3)0.083 (4)0.015 (3)0.020 (4)0.004 (3)
C120.082 (4)0.044 (3)0.081 (4)0.001 (3)0.009 (4)0.000 (3)
C130.053 (3)0.062 (3)0.090 (4)0.012 (3)0.012 (3)0.013 (3)
C140.047 (3)0.048 (3)0.078 (4)0.004 (2)0.004 (3)0.002 (2)
OW10.152 (4)0.104 (3)0.129 (4)0.035 (3)0.085 (4)0.000 (3)
Geometric parameters (Å, º) top
S1—C11.799 (5)C6—C81.535 (6)
S1—C61.793 (4)C7—C81.527 (6)
S2—O41.420 (3)C9—C141.363 (6)
S2—O51.435 (3)C9—C101.375 (6)
S2—N21.616 (3)C10—C111.378 (7)
S2—C91.762 (3)C11—C121.357 (8)
O1—C51.313 (6)C12—C131.373 (7)
O2—C51.200 (6)C13—C141.390 (7)
O3—C71.208 (5)C1—H1B0.9700
O1—H10.8200C1—H1A0.9700
OW1—HW20.84 (5)C3—H3C0.9600
OW1—HW10.83 (4)C3—H3A0.9600
N1—C41.398 (5)C3—H3B0.9600
N1—C71.368 (5)C6—H60.9800
N1—C61.449 (5)C8—H80.9800
N2—C81.450 (5)C10—H100.9300
N2—H20.8600C11—H110.9300
C1—C21.504 (7)C12—H120.9300
C2—C41.335 (6)C13—H130.9300
C2—C31.507 (6)C14—H140.9300
C4—C51.489 (6)
S1···N23.136 (3)C5···OW1iii3.216 (7)
S1···C5i3.698 (5)C7···O4iii3.297 (5)
S1···H22.8200C7···O2i3.313 (5)
S1···H6ii2.8000C7···O23.099 (5)
O1···OW1iii2.663 (6)C8···C143.577 (7)
O1···C32.902 (6)C8···O4iii3.100 (5)
OW1···O2i3.025 (6)C11···O3vii3.192 (6)
OW1···O33.135 (6)C12···O3vii3.346 (6)
OW1···C5i3.216 (7)C14···C83.577 (7)
OW1···O5iv2.799 (6)C4···H2iii3.0900
OW1···O1i2.663 (6)C5···H3A2.6700
O2···N12.693 (4)C5···H2iii2.8900
O2···C7iii3.313 (5)C9···H3Bvi3.0500
O2···C73.099 (5)C12···H3Bvi3.0400
O2···OW1iii3.025 (6)C13···H3Bvi2.9700
O2···O33.107 (4)C14···H3Bvi2.9900
O2···N2iii2.846 (4)H1···HW2iii2.3600
O3···O23.107 (4)H1···OW1iii1.8600
O3···OW13.135 (6)H1···HW1iii2.5100
O3···C53.276 (6)HW1···O5iv2.14 (5)
O3···C12v3.346 (6)HW1···H1i2.5100
O3···N23.242 (4)H1A···H3C2.5800
O3···C11v3.192 (6)H1B···H3B2.4700
O4···C7i3.297 (5)H2···O2i2.3000
O4···C8i3.100 (5)H2···N1i2.8800
O5···OW1vi2.799 (6)H2···S12.8200
O1···H3A2.2200H2···C5i2.8900
OW1···H1i1.8600H2···C4i3.0900
O2···HW2iii2.85 (6)HW2···O32.54 (5)
O2···H2iii2.3000HW2···O2i2.85 (6)
O2···H12v2.8100HW2···H1i2.3600
O3···HW22.54 (5)H3A···O12.2200
O3···H12v2.8300H3A···C52.6700
O3···H11v2.5100H3B···C12iv3.0400
O4···H102.6500H3B···C14iv2.9900
O4···H8i2.3000H3B···C9iv3.0500
O5···HW1vi2.14 (5)H3B···C13iv2.9700
O5···H142.5900H3B···H1B2.4700
O5···H82.4800H3C···H1A2.5800
N1···O22.693 (4)H6···S1viii2.8000
N2···O2i2.846 (4)H8···O52.4800
N2···S13.136 (3)H8···O4iii2.3000
N2···O33.242 (4)H10···O42.6500
N1···H2iii2.8800H11···O3vii2.5100
C3···O12.902 (6)H12···O3vii2.8300
C5···O33.276 (6)H12···O2vii2.8100
C5···S1iii3.698 (5)H14···O52.5900
C1—S1—C693.1 (2)S2—C9—C14120.5 (3)
O4—S2—O5120.03 (18)C10—C9—C14120.7 (4)
O4—S2—N2105.40 (17)C9—C10—C11119.8 (4)
O4—S2—C9109.19 (18)C10—C11—C12120.1 (5)
O5—S2—N2107.07 (17)C11—C12—C13120.2 (5)
O5—S2—C9108.33 (17)C12—C13—C14120.3 (5)
N2—S2—C9105.95 (17)C9—C14—C13118.9 (4)
C5—O1—H1110.00S1—C1—H1A108.00
HW1—OW1—HW2103 (6)S1—C1—H1B108.00
C6—N1—C793.8 (3)C2—C1—H1B108.00
C4—N1—C6125.1 (3)H1A—C1—H1B107.00
C4—N1—C7135.4 (3)C2—C1—H1A108.00
S2—N2—C8117.8 (3)C2—C3—H3B109.00
C8—N2—H2121.00C2—C3—H3C109.00
S2—N2—H2121.00H3A—C3—H3B109.00
S1—C1—C2117.8 (3)H3A—C3—H3C110.00
C1—C2—C4122.9 (4)H3B—C3—H3C109.00
C3—C2—C4124.1 (4)C2—C3—H3A109.00
C1—C2—C3112.8 (4)S1—C6—H6113.00
N1—C4—C2119.8 (4)C8—C6—H6113.00
N1—C4—C5111.5 (4)N1—C6—H6113.00
C2—C4—C5128.2 (4)C6—C8—H8110.00
O1—C5—C4114.2 (4)C7—C8—H8110.00
O2—C5—C4122.1 (5)N2—C8—H8110.00
O1—C5—O2123.7 (4)C11—C10—H10120.00
S1—C6—N1109.7 (3)C9—C10—H10120.00
S1—C6—C8117.0 (3)C10—C11—H11120.00
N1—C6—C888.2 (3)C12—C11—H11120.00
N1—C7—C891.5 (3)C13—C12—H12120.00
O3—C7—N1131.3 (4)C11—C12—H12120.00
O3—C7—C8137.1 (4)C12—C13—H13120.00
N2—C8—C7119.0 (3)C14—C13—H13120.00
C6—C8—C784.4 (3)C9—C14—H14121.00
N2—C8—C6120.3 (4)C13—C14—H14121.00
S2—C9—C10118.7 (3)
C6—S1—C1—C246.4 (4)S1—C1—C2—C3166.4 (3)
C1—S1—C6—N157.8 (3)S1—C1—C2—C418.8 (6)
C1—S1—C6—C8156.1 (3)C1—C2—C4—N16.2 (6)
O4—S2—N2—C8176.8 (3)C1—C2—C4—C5177.2 (4)
O5—S2—N2—C847.9 (3)C3—C2—C4—N1168.1 (4)
C9—S2—N2—C867.6 (3)C3—C2—C4—C53.0 (7)
O4—S2—C9—C1032.7 (4)N1—C4—C5—O1155.7 (4)
O4—S2—C9—C14151.9 (4)N1—C4—C5—O223.2 (6)
O5—S2—C9—C10165.0 (3)C2—C4—C5—O132.6 (6)
O5—S2—C9—C1419.5 (4)C2—C4—C5—O2148.5 (5)
N2—S2—C9—C1080.4 (3)S1—C6—C8—N219.3 (5)
N2—S2—C9—C1495.1 (4)S1—C6—C8—C7101.1 (3)
C6—N1—C4—C211.5 (6)N1—C6—C8—N2130.5 (4)
C6—N1—C4—C5161.0 (4)N1—C6—C8—C710.1 (3)
C7—N1—C4—C2134.5 (5)O3—C7—C8—N245.1 (7)
C7—N1—C4—C553.1 (6)O3—C7—C8—C6166.7 (5)
C4—N1—C6—S149.9 (4)N1—C7—C8—N2132.3 (4)
C4—N1—C6—C8168.0 (3)N1—C7—C8—C610.7 (3)
C7—N1—C6—S1106.9 (3)S2—C9—C10—C11177.2 (4)
C7—N1—C6—C811.2 (3)C14—C9—C10—C111.7 (6)
C4—N1—C7—O313.7 (7)S2—C9—C14—C13177.0 (4)
C4—N1—C7—C8164.0 (4)C10—C9—C14—C131.6 (7)
C6—N1—C7—O3166.4 (4)C9—C10—C11—C121.0 (7)
C6—N1—C7—C811.3 (3)C10—C11—C12—C130.3 (8)
S2—N2—C8—C6143.8 (3)C11—C12—C13—C140.2 (8)
S2—N2—C8—C7114.9 (3)C12—C13—C14—C90.8 (8)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z; (iii) x1, y, z; (iv) x+3/2, y+1, z+1/2; (v) x1/2, y+3/2, z; (vi) x+3/2, y+1, z1/2; (vii) x+1/2, y+3/2, z; (viii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···OW1iii0.821.862.663 (6)166
OW1—HW1···O5iv0.83 (4)2.14 (5)2.799 (6)136 (5)
N2—H2···S10.862.823.136 (3)103
N2—H2···O2i0.862.302.846 (4)122
OW1—HW2···O30.84 (5)2.54 (5)3.135 (6)129 (5)
C3—H3A···O10.962.222.902 (6)127
C6—H6···S1viii0.982.803.756 (4)165
C8—H8···O4iii0.982.303.100 (5)138
C8—H8···O50.982.482.922 (5)107
C11—H11···O3vii0.932.513.192 (6)130
C14—H14···O50.932.592.942 (5)103
C3—H3B···Cg3iv0.962.723.640 (5)161
Symmetry codes: (i) x+1, y, z; (iii) x1, y, z; (iv) x+3/2, y+1, z+1/2; (vii) x+1/2, y+3/2, z; (viii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H14N2O5S2·H2O
Mr372.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.9535 (7), 15.8248 (19), 18.411 (2)
V3)1734.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10847, 3572, 1890
Rint0.064
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.109, 0.97
No. of reflections3572
No. of parameters226
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25
Absolute structureFlack (1983), 1425 Friedel pairs
Absolute structure parameter0.07 (11)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···OW1i0.82001.86002.663 (6)166.00
OW1—HW1···O5ii0.83 (4)2.14 (5)2.799 (6)136 (5)
N2—H2···S10.86002.82003.136 (3)103.00
N2—H2···O2iii0.86002.30002.846 (4)122.00
OW1—HW2···O30.84 (5)2.54 (5)3.135 (6)129 (5)
C3—H3A···O10.96002.22002.902 (6)127.00
C6—H6···S1iv0.98002.80003.756 (4)165.00
C8—H8···O4i0.98002.30003.100 (5)138.00
C8—H8···O50.98002.48002.922 (5)107.00
C11—H11···O3v0.93002.51003.192 (6)130.00
C14—H14···O50.93002.59002.942 (5)103.00
C3—H3B···Cg3ii0.962.723.640 (5)161
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1, z+1/2; (iii) x+1, y, z; (iv) x1/2, y+1/2, z; (v) x+1/2, y+3/2, z.
 

Footnotes

Additional correspondence author, e-mail: iukhan@gcu.edu.pk.

References

First citationAkkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o2466–o2467.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o902–o903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2008c). Acta Cryst. E64, o924.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1623–o1624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009a). Acta Cryst. E65, o2522–o2523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009b). Acta Cryst. E65, o501–o502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMariam, I., Akkurt, M., Sharif, S., Haider, S. K. & Khan, I. U. (2009). Acta Cryst. E65, o1737.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804–o806.  CSD CrossRef IUCr Journals Google Scholar
First citationSchroen, C. G. P. H., VandeWiel, S., Kroon, P. J., DeVroom, E., Janssen, A. E. M. & Tramper, J. (2000). Biotechnol. Bioeng. 70, 654–661.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYalçın, Ş. P., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o626–o627.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o73-o74
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds