metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m10-m11

Poly[[(N,N-di­methyl­formamide-κO)(μ3-pyrazine-2,3-di­carboxyl­ato-κ4N1,O2:O3:O3)copper(II)] monohydrate]

aDepartment of Petroleum Engineering, Daqing Petroleum Institute, Heilongjiang 151400, People's Republic of China, bDepartment of Chemistry, Zhejiang University, People's Republic of China, and cSecond Oil Recovery Plant, Daqing Oilfields Co, Daqing 163414, People's Republic of China
*Correspondence e-mail: chem8618@126.com

(Received 11 November 2009; accepted 28 November 2009; online 4 December 2009)

In the title compound, {[Cu(C6H2N2O4)(C3H7NO)]·H2O}n, the Cu(II) atom is coordinated by an N,O-bidentate pyrazine-2,3-dicarboxyl­ate (pzdc) dianion, two O atoms from two other pzdc anions and one O atom from the dimethlyformamide ligand, forming a distorted square-pyramidal CuNO4 geometry. The polymeric character of the structure is established by the formation of layers parallel to (100) via bridging pzdc ligands. O—H⋯O hydrogen bonding between water mol­ecules and uncoordinated carboxyl­ate O atoms leads to additional stabilization of the structure.

Related literature

For related structures with the pyrazine-2,3-dicarboxyl­ate (pzdc) dianion, see: Hua & Liu (2009[Hua, Y. & Liu, S. X. (2009). J. Mol. Struct. 918, 165-173.]); Konar et al. (2004[Konar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593-1597.]); Li et al. (2004[Li, X. H., Shi, Q., Hu, M. L. & Xiao, H. P. (2004). Inorg. Chem. Commun. 7, 912-914.]); Lin et al. (2009[Lin, X. M., Chen, L., Fang, H. C., Zhou, Z. Y., Zhou, X. X., Chen, J. Q., Xu, A. W. & Cai, Y. P. (2009). Inorg. Chim. Acta, 362, 2619-2626.]); Tombul & Guven (2009[Tombul, M. & Guven, K. (2009). Acta Cryst. E65, m213-m214.]); Wang et al. (2008[Wang, X., Li, X.-Y., Wang, Q.-W. & Che, G.-B. (2008). Acta Cryst. E64, m1078-m1079.]); Xiang et al. (2004[Xiang, G.-Q., Zhu, N.-W., Hu, M.-L., Xiao, H.-P. & Chen, X.-X. (2004). Acta Cryst. E60, m647-m649.]); Xu et al. (2008[Xu, Z.-L., Li, X.-Y., Che, G.-B., Lu, L. & Xu, C.-H. (2008). Acta Cryst. E64, m1215-m1216.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H2N2O4)(C3H7NO)]·H2O

  • Mr = 320.75

  • Monoclinic, P 21 /c

  • a = 10.1656 (5) Å

  • b = 13.6310 (8) Å

  • c = 9.1461 (2) Å

  • β = 91.430 (2)°

  • V = 1266.96 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.75 mm−1

  • T = 298 K

  • 0.39 × 0.10 × 0.06 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: integration (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.549, Tmax = 0.902

  • 6222 measured reflections

  • 2283 independent reflections

  • 1600 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.115

  • S = 0.98

  • 2283 reflections

  • 180 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O4i 0.82 (5) 2.00 (3) 2.771 (5) 156 (7)
O6—H6A⋯O1ii 0.82 (5) 2.38 (3) 3.138 (6) 153 (5)
O6—H6A⋯O2ii 0.82 (5) 2.30 (3) 3.037 (5) 149 (5)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polymeric compounds play an important role in the field of molecular magnetism. Di- and polycarboxylates are capable of bridging and providing effective magnetic exchange pathways. Pyrazine-2,3-dicarboxylic acid (H2pzdc) has been widely applied to construct polymeric coordination compounds; their structures and magnetic properties were investigated (Li et al., 2004; Xiang et al., 2004; Hua & Liu, 2009; Lin et al., 2009; Tombul & Guven, 2009). We present here the structure of the title compound, {[Cu(pzdc)(DMF)].H2O}n, (I).

In the structure of compound (I), each Cu(II) atom is coordinated by an N atom of the pyrazine ring and a carboxylic O atom from one pzdc2- anion, two O atoms from two other pzdc2- anions, and O atom from DMF, forming a distorted square-pyramidal environment, as depicted in Fig. 1. The four atoms N1, O2, O5 and O3i form the basal plane, whereas the O3ii atom [symmetry code: (i) -x +1, y - 1/2, -z + 1; (ii) x, -y + 3/2, z -1/2] occupies the apical site with a longer Cu1—O3ii bond length of 2.378 (3) /%A. In the basal plane, the bond distances of Cu1—N1 and Cu1—O3i are 2.002 (3) and 1.958 (3) Å, which are shorter than those observed for the distorted square-pyramidal CuN2O3 coordination in a related structure of a Cu(II)pzdc derivative (Hua & Liu, 2009). The plane defined by carboxylic group O1—C1—C2—C3 is nearly coplanar to the pyrazine ring with the dihedral angle of 3.7 (7)°, while another carboxylate plane defined by the C2—C3—C6—O4 is approximately perpendicular to the pyrazine ring [dihedral angel of 92.9 (5)°]. This conformation was also observed in a series of other transition metal complexes formed with H2pzdc (Li et al., 2004; Xiang et al., 2004; Konar et al., 2004; Hua et al., 2009). Extensive hydrogen bonding interactions help to stabilize the structure. The carboxylate O atoms take part in a O—H···O hydrogen bonding and are acceptor atoms with O atoms of water molecules as donator atoms (Table 1).

Related literature top

For related structures with the pyrazine-2,3-dicarboxylate (pzdc) dianion, see: Hua & Liu (2009); Konar et al. (2004); Li et al. (2004); Lin et al. (2009); Tombul & Guven (2009); Wang et al. (2008); Xiang et al. (2004); Xu et al. (2008).

Experimental top

Mixed DMF and aqueous solution (15 ml) of CuCl2.2H2O (0.5 mmol) and 2,3-pyrazinedicarboxylic acid ((H2pzdc, 0.25 mmol) were slowly added into a methanolic (5 ml) solution of triethylene diamine (TED, 0.5 mmol); the resulting mixture was stirred for 5 minutes and allowed to stand at room temperature for about four days until blue single crystals were obtained.

Refinement top

H atoms of the water molecules were located in a difference Fourier map and were refined isotropically, with O—H and H—H distance restraints of 0.84 (1) Å and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms. The Uiso(H) values were set at 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination of the Cu(II) atom in the structure of compound (I), showing atom labels and 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. The polymeric structure of compound (I); water molecules and DMF have been omitted for clarity.
Poly[[(N,N-dimethylformamide-κO)(µ3-pyrazine-2,3- dicarboxylato-κ4N1,O2:O3:O3)copper(II)] monohydrate] top
Crystal data top
[Cu(C6H2N2O4)(C3H7NO)]·H2OF(000) = 652
Mr = 320.75Dx = 1.682 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1111 reflections
a = 10.1656 (5) Åθ = 2.5–22.4°
b = 13.6310 (8) ŵ = 1.75 mm1
c = 9.1461 (2) ÅT = 298 K
β = 91.430 (2)°Prism, blue
V = 1266.96 (10) Å30.39 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
2283 independent reflections
Radiation source: fine-focus sealed tube1600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
phi and ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: integration
(SADABS; Bruker, 2002)
h = 812
Tmin = 0.549, Tmax = 0.902k = 1616
6222 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0482P)2]
where P = (Fo2 + 2Fc2)/3
2283 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.48 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C6H2N2O4)(C3H7NO)]·H2OV = 1266.96 (10) Å3
Mr = 320.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1656 (5) ŵ = 1.75 mm1
b = 13.6310 (8) ÅT = 298 K
c = 9.1461 (2) Å0.39 × 0.10 × 0.06 mm
β = 91.430 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
2283 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2002)
1600 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.902Rint = 0.058
6222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.48 e Å3
2283 reflectionsΔρmin = 0.34 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.59999 (5)0.58784 (3)0.07521 (6)0.0402 (2)
O10.5775 (3)0.8747 (2)0.1085 (4)0.0526 (10)
O20.6295 (3)0.7254 (2)0.0382 (4)0.0463 (9)
O30.4380 (3)0.9489 (2)0.3914 (3)0.0386 (8)
O40.2821 (3)0.9362 (2)0.2189 (4)0.0511 (9)
O50.7494 (3)0.5510 (2)0.0435 (4)0.0503 (9)
O60.2218 (5)0.1287 (3)0.1467 (7)0.121 (2)
N10.4710 (3)0.6417 (2)0.2162 (4)0.0298 (8)
N20.3001 (3)0.7442 (2)0.3914 (4)0.0402 (9)
N30.9066 (4)0.5894 (4)0.2048 (5)0.0655 (13)
C10.5654 (4)0.7859 (3)0.1145 (5)0.0331 (10)
C20.4684 (4)0.7404 (3)0.2158 (4)0.0279 (9)
C30.3821 (4)0.7913 (3)0.3018 (5)0.0316 (10)
C40.3064 (4)0.6467 (3)0.3912 (5)0.0420 (12)
H40.25160.61180.45230.050*
C50.3912 (4)0.5951 (3)0.3039 (5)0.0381 (11)
H50.39200.52690.30710.046*
C60.3670 (4)0.9018 (3)0.3005 (5)0.0352 (10)
C70.8054 (5)0.6097 (4)0.1238 (6)0.0554 (14)
H70.77320.67350.12710.066*
C80.9664 (6)0.6630 (5)0.2983 (8)0.112 (3)
H8A0.92160.72440.28740.168*
H8B0.95930.64210.39850.168*
H8C1.05750.67070.27060.168*
C90.9607 (6)0.4924 (5)0.2062 (7)0.092 (2)
H9A1.04860.49370.16550.137*
H9B0.96240.46880.30510.137*
H9C0.90730.44960.14910.137*
H6A0.277 (5)0.148 (4)0.089 (6)0.110*
H6B0.219 (6)0.0685 (9)0.155 (7)0.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0472 (4)0.0182 (3)0.0560 (4)0.0032 (2)0.0188 (3)0.0026 (3)
O10.075 (2)0.0191 (15)0.065 (3)0.0083 (15)0.029 (2)0.0011 (16)
O20.0559 (19)0.0221 (15)0.062 (2)0.0013 (14)0.0282 (17)0.0013 (16)
O30.0467 (17)0.0189 (14)0.050 (2)0.0034 (13)0.0072 (16)0.0062 (15)
O40.060 (2)0.0361 (18)0.057 (2)0.0112 (16)0.0027 (19)0.0003 (17)
O50.047 (2)0.0345 (17)0.070 (3)0.0050 (15)0.0268 (18)0.0034 (17)
O60.102 (4)0.071 (3)0.192 (6)0.010 (3)0.078 (4)0.054 (4)
N10.0353 (19)0.0157 (17)0.039 (2)0.0021 (14)0.0026 (17)0.0003 (16)
N20.049 (2)0.029 (2)0.043 (2)0.0043 (17)0.0103 (19)0.0032 (18)
N30.041 (2)0.083 (3)0.074 (4)0.010 (2)0.021 (2)0.004 (3)
C10.040 (2)0.025 (2)0.034 (3)0.0004 (19)0.008 (2)0.002 (2)
C20.036 (2)0.019 (2)0.029 (3)0.0042 (17)0.0021 (19)0.0008 (18)
C30.038 (2)0.025 (2)0.032 (3)0.0013 (18)0.001 (2)0.0019 (19)
C40.052 (3)0.030 (2)0.045 (3)0.010 (2)0.011 (2)0.002 (2)
C50.050 (3)0.021 (2)0.044 (3)0.004 (2)0.007 (2)0.000 (2)
C60.039 (2)0.026 (2)0.041 (3)0.004 (2)0.014 (2)0.004 (2)
C70.043 (3)0.053 (3)0.070 (4)0.009 (2)0.005 (3)0.007 (3)
C80.072 (4)0.144 (7)0.121 (7)0.014 (4)0.049 (4)0.053 (5)
C90.062 (4)0.098 (5)0.116 (6)0.011 (4)0.030 (4)0.050 (4)
Geometric parameters (Å, º) top
Cu1—O21.930 (3)N2—C31.346 (5)
Cu1—O51.954 (3)N3—C71.313 (6)
Cu1—O3i1.958 (3)N3—C91.432 (6)
Cu1—N12.002 (3)N3—C81.460 (7)
Cu1—O3ii2.378 (3)C1—C21.504 (5)
O1—C11.218 (5)C2—C31.380 (5)
O2—C11.271 (5)C3—C61.515 (5)
O3—C61.263 (5)C4—C51.381 (6)
O3—Cu1iii1.958 (3)C4—H40.9300
O3—Cu1iv2.378 (3)C5—H50.9300
O4—C61.220 (5)C7—H70.9300
O5—C71.235 (6)C8—H8A0.9600
O6—H6A0.82 (5)C8—H8B0.9600
O6—H6B0.82 (5)C8—H8C0.9600
N1—C51.318 (5)C9—H9A0.9600
N1—C21.344 (4)C9—H9B0.9600
N2—C41.331 (5)C9—H9C0.9600
O2—Cu1—O591.48 (13)C3—C2—C1125.4 (4)
O2—Cu1—O3i177.39 (13)N2—C3—C2121.3 (4)
O5—Cu1—O3i89.82 (13)N2—C3—C6114.5 (4)
O2—Cu1—N182.17 (12)C2—C3—C6124.2 (4)
O5—Cu1—N1169.37 (13)N2—C4—C5122.6 (4)
O3i—Cu1—N196.87 (12)N2—C4—H4118.7
O2—Cu1—O3ii100.87 (12)C5—C4—H4118.7
O5—Cu1—O3ii94.99 (12)N1—C5—C4120.6 (4)
O3i—Cu1—O3ii76.75 (12)N1—C5—H5119.7
N1—Cu1—O3ii94.57 (12)C4—C5—H5119.7
C1—O2—Cu1116.7 (3)O4—C6—O3126.2 (4)
C6—O3—Cu1iii118.9 (3)O4—C6—C3117.2 (4)
C6—O3—Cu1iv137.1 (3)O3—C6—C3116.4 (4)
Cu1iii—O3—Cu1iv103.25 (12)O5—C7—N3125.4 (5)
C7—O5—Cu1122.7 (3)O5—C7—H7117.3
H6A—O6—H6B113.5 (19)N3—C7—H7117.3
C5—N1—C2118.1 (4)N3—C8—H8A109.5
C5—N1—Cu1129.7 (3)N3—C8—H8B109.5
C2—N1—Cu1112.2 (3)H8A—C8—H8B109.5
C4—N2—C3116.4 (4)N3—C8—H8C109.5
C7—N3—C9120.4 (5)H8A—C8—H8C109.5
C7—N3—C8121.9 (5)H8B—C8—H8C109.5
C9—N3—C8117.6 (5)N3—C9—H9A109.5
O1—C1—O2124.5 (4)N3—C9—H9B109.5
O1—C1—C2120.4 (4)H9A—C9—H9B109.5
O2—C1—C2115.1 (3)N3—C9—H9C109.5
N1—C2—C3121.0 (4)H9A—C9—H9C109.5
N1—C2—C1113.7 (3)H9B—C9—H9C109.5
O5—Cu1—O2—C1169.1 (3)O1—C1—C2—C33.7 (7)
O3i—Cu1—O2—C171 (3)O2—C1—C2—C3175.6 (4)
N1—Cu1—O2—C12.3 (3)C4—N2—C3—C20.4 (6)
O3ii—Cu1—O2—C195.5 (3)C4—N2—C3—C6177.3 (4)
O2—Cu1—O5—C711.7 (4)N1—C2—C3—N21.5 (6)
O3i—Cu1—O5—C7166.0 (4)C1—C2—C3—N2178.8 (4)
N1—Cu1—O5—C764.7 (9)N1—C2—C3—C6176.0 (4)
O3ii—Cu1—O5—C789.4 (4)C1—C2—C3—C63.7 (7)
O2—Cu1—N1—C5179.2 (4)C3—N2—C4—C50.5 (6)
O5—Cu1—N1—C5127.0 (7)C2—N1—C5—C40.8 (6)
O3i—Cu1—N1—C51.7 (4)Cu1—N1—C5—C4178.4 (3)
O3ii—Cu1—N1—C578.9 (4)N2—C4—C5—N10.3 (7)
O2—Cu1—N1—C20.1 (3)Cu1iii—O3—C6—O47.2 (6)
O5—Cu1—N1—C253.8 (8)Cu1iv—O3—C6—O4175.4 (3)
O3i—Cu1—N1—C2177.5 (3)Cu1iii—O3—C6—C3167.7 (3)
O3ii—Cu1—N1—C2100.3 (3)Cu1iv—O3—C6—C30.5 (6)
Cu1—O2—C1—O1176.6 (4)N2—C3—C6—O484.7 (5)
Cu1—O2—C1—C24.1 (5)C2—C3—C6—O492.9 (5)
C5—N1—C2—C31.6 (6)N2—C3—C6—O390.7 (4)
Cu1—N1—C2—C3177.6 (3)C2—C3—C6—O391.7 (5)
C5—N1—C2—C1178.7 (4)Cu1—O5—C7—N3179.4 (4)
Cu1—N1—C2—C12.1 (4)C9—N3—C7—O50.6 (9)
O1—C1—C2—N1176.6 (4)C8—N3—C7—O5179.3 (6)
O2—C1—C2—N14.1 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O4v0.82 (5)2.00 (3)2.771 (5)156 (7)
O6—H6A···O1vi0.82 (5)2.38 (3)3.138 (6)153 (5)
O6—H6A···O2vi0.82 (5)2.30 (3)3.037 (5)149 (5)
Symmetry codes: (v) x, y1, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C6H2N2O4)(C3H7NO)]·H2O
Mr320.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.1656 (5), 13.6310 (8), 9.1461 (2)
β (°) 91.430 (2)
V3)1266.96 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.75
Crystal size (mm)0.39 × 0.10 × 0.06
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionIntegration
(SADABS; Bruker, 2002)
Tmin, Tmax0.549, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
6222, 2283, 1600
Rint0.058
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.115, 0.98
No. of reflections2283
No. of parameters180
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.34

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O4i0.82 (5)2.00 (3)2.771 (5)156 (7)
O6—H6A···O1ii0.82 (5)2.38 (3)3.138 (6)153 (5)
O6—H6A···O2ii0.82 (5)2.30 (3)3.037 (5)149 (5)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
 

Acknowledgements

The project was supported by the Natural Science Foundation of Zhejiang Province, China (No. Y407091).

References

First citationBruker (2002). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHua, Y. & Liu, S. X. (2009). J. Mol. Struct. 918, 165–173.  Google Scholar
First citationKonar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593–1597.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X. H., Shi, Q., Hu, M. L. & Xiao, H. P. (2004). Inorg. Chem. Commun. 7, 912–914.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, X. M., Chen, L., Fang, H. C., Zhou, Z. Y., Zhou, X. X., Chen, J. Q., Xu, A. W. & Cai, Y. P. (2009). Inorg. Chim. Acta, 362, 2619–2626.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTombul, M. & Guven, K. (2009). Acta Cryst. E65, m213–m214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X., Li, X.-Y., Wang, Q.-W. & Che, G.-B. (2008). Acta Cryst. E64, m1078–m1079.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiang, G.-Q., Zhu, N.-W., Hu, M.-L., Xiao, H.-P. & Chen, X.-X. (2004). Acta Cryst. E60, m647–m649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, Z.-L., Li, X.-Y., Che, G.-B., Lu, L. & Xu, C.-H. (2008). Acta Cryst. E64, m1215–m1216.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m10-m11
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds