metal-organic compounds
Poly[[(N,N-dimethylformamide-κO)(μ3-pyrazine-2,3-dicarboxylato-κ4N1,O2:O3:O3)copper(II)] monohydrate]
aDepartment of Petroleum Engineering, Daqing Petroleum Institute, Heilongjiang 151400, People's Republic of China, bDepartment of Chemistry, Zhejiang University, People's Republic of China, and cSecond Oil Recovery Plant, Daqing Oilfields Co, Daqing 163414, People's Republic of China
*Correspondence e-mail: chem8618@126.com
In the title compound, {[Cu(C6H2N2O4)(C3H7NO)]·H2O}n, the Cu(II) atom is coordinated by an N,O-bidentate pyrazine-2,3-dicarboxylate (pzdc) dianion, two O atoms from two other pzdc anions and one O atom from the dimethlyformamide ligand, forming a distorted square-pyramidal CuNO4 geometry. The polymeric character of the structure is established by the formation of layers parallel to (100) via bridging pzdc ligands. O—H⋯O hydrogen bonding between water molecules and uncoordinated carboxylate O atoms leads to additional stabilization of the structure.
Related literature
For related structures with the pyrazine-2,3-dicarboxylate (pzdc) dianion, see: Hua & Liu (2009); Konar et al. (2004); Li et al. (2004); Lin et al. (2009); Tombul & Guven (2009); Wang et al. (2008); Xiang et al. (2004); Xu et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809051332/wm2283sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809051332/wm2283Isup2.hkl
Mixed DMF and aqueous solution (15 ml) of CuCl2.2H2O (0.5 mmol) and 2,3-pyrazinedicarboxylic acid ((H2pzdc, 0.25 mmol) were slowly added into a methanolic (5 ml) solution of triethylene diamine (TED, 0.5 mmol); the resulting mixture was stirred for 5 minutes and allowed to stand at room temperature for about four days until blue single crystals were obtained.
H atoms of the water molecules were located in a difference Fourier map and were refined isotropically, with O—H and H—H distance restraints of 0.84 (1) Å and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms. The Uiso(H) values were set at 1.2Ueq(C) and 1.5Ueq(O).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C6H2N2O4)(C3H7NO)]·H2O | F(000) = 652 |
Mr = 320.75 | Dx = 1.682 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1111 reflections |
a = 10.1656 (5) Å | θ = 2.5–22.4° |
b = 13.6310 (8) Å | µ = 1.75 mm−1 |
c = 9.1461 (2) Å | T = 298 K |
β = 91.430 (2)° | Prism, blue |
V = 1266.96 (10) Å3 | 0.39 × 0.10 × 0.06 mm |
Z = 4 |
Bruker APEX area-detector diffractometer | 2283 independent reflections |
Radiation source: fine-focus sealed tube | 1600 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
phi and ω scans | θmax = 25.3°, θmin = 2.0° |
Absorption correction: integration (SADABS; Bruker, 2002) | h = −8→12 |
Tmin = 0.549, Tmax = 0.902 | k = −16→16 |
6222 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0482P)2] where P = (Fo2 + 2Fc2)/3 |
2283 reflections | (Δ/σ)max < 0.001 |
180 parameters | Δρmax = 0.48 e Å−3 |
3 restraints | Δρmin = −0.34 e Å−3 |
[Cu(C6H2N2O4)(C3H7NO)]·H2O | V = 1266.96 (10) Å3 |
Mr = 320.75 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.1656 (5) Å | µ = 1.75 mm−1 |
b = 13.6310 (8) Å | T = 298 K |
c = 9.1461 (2) Å | 0.39 × 0.10 × 0.06 mm |
β = 91.430 (2)° |
Bruker APEX area-detector diffractometer | 2283 independent reflections |
Absorption correction: integration (SADABS; Bruker, 2002) | 1600 reflections with I > 2σ(I) |
Tmin = 0.549, Tmax = 0.902 | Rint = 0.058 |
6222 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 3 restraints |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.48 e Å−3 |
2283 reflections | Δρmin = −0.34 e Å−3 |
180 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.59999 (5) | 0.58784 (3) | 0.07521 (6) | 0.0402 (2) | |
O1 | 0.5775 (3) | 0.8747 (2) | 0.1085 (4) | 0.0526 (10) | |
O2 | 0.6295 (3) | 0.7254 (2) | 0.0382 (4) | 0.0463 (9) | |
O3 | 0.4380 (3) | 0.9489 (2) | 0.3914 (3) | 0.0386 (8) | |
O4 | 0.2821 (3) | 0.9362 (2) | 0.2189 (4) | 0.0511 (9) | |
O5 | 0.7494 (3) | 0.5510 (2) | −0.0435 (4) | 0.0503 (9) | |
O6 | 0.2218 (5) | 0.1287 (3) | 0.1467 (7) | 0.121 (2) | |
N1 | 0.4710 (3) | 0.6417 (2) | 0.2162 (4) | 0.0298 (8) | |
N2 | 0.3001 (3) | 0.7442 (2) | 0.3914 (4) | 0.0402 (9) | |
N3 | 0.9066 (4) | 0.5894 (4) | −0.2048 (5) | 0.0655 (13) | |
C1 | 0.5654 (4) | 0.7859 (3) | 0.1145 (5) | 0.0331 (10) | |
C2 | 0.4684 (4) | 0.7404 (3) | 0.2158 (4) | 0.0279 (9) | |
C3 | 0.3821 (4) | 0.7913 (3) | 0.3018 (5) | 0.0316 (10) | |
C4 | 0.3064 (4) | 0.6467 (3) | 0.3912 (5) | 0.0420 (12) | |
H4 | 0.2516 | 0.6118 | 0.4523 | 0.050* | |
C5 | 0.3912 (4) | 0.5951 (3) | 0.3039 (5) | 0.0381 (11) | |
H5 | 0.3920 | 0.5269 | 0.3071 | 0.046* | |
C6 | 0.3670 (4) | 0.9018 (3) | 0.3005 (5) | 0.0352 (10) | |
C7 | 0.8054 (5) | 0.6097 (4) | −0.1238 (6) | 0.0554 (14) | |
H7 | 0.7732 | 0.6735 | −0.1271 | 0.066* | |
C8 | 0.9664 (6) | 0.6630 (5) | −0.2983 (8) | 0.112 (3) | |
H8A | 0.9216 | 0.7244 | −0.2874 | 0.168* | |
H8B | 0.9593 | 0.6421 | −0.3985 | 0.168* | |
H8C | 1.0575 | 0.6707 | −0.2706 | 0.168* | |
C9 | 0.9607 (6) | 0.4924 (5) | −0.2062 (7) | 0.092 (2) | |
H9A | 1.0486 | 0.4937 | −0.1655 | 0.137* | |
H9B | 0.9624 | 0.4688 | −0.3051 | 0.137* | |
H9C | 0.9073 | 0.4496 | −0.1491 | 0.137* | |
H6A | 0.277 (5) | 0.148 (4) | 0.089 (6) | 0.110* | |
H6B | 0.219 (6) | 0.0685 (9) | 0.155 (7) | 0.110* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0472 (4) | 0.0182 (3) | 0.0560 (4) | 0.0032 (2) | 0.0188 (3) | 0.0026 (3) |
O1 | 0.075 (2) | 0.0191 (15) | 0.065 (3) | −0.0083 (15) | 0.029 (2) | −0.0011 (16) |
O2 | 0.0559 (19) | 0.0221 (15) | 0.062 (2) | −0.0013 (14) | 0.0282 (17) | 0.0013 (16) |
O3 | 0.0467 (17) | 0.0189 (14) | 0.050 (2) | −0.0034 (13) | 0.0072 (16) | −0.0062 (15) |
O4 | 0.060 (2) | 0.0361 (18) | 0.057 (2) | 0.0112 (16) | −0.0027 (19) | −0.0003 (17) |
O5 | 0.047 (2) | 0.0345 (17) | 0.070 (3) | 0.0050 (15) | 0.0268 (18) | 0.0034 (17) |
O6 | 0.102 (4) | 0.071 (3) | 0.192 (6) | 0.010 (3) | 0.078 (4) | 0.054 (4) |
N1 | 0.0353 (19) | 0.0157 (17) | 0.039 (2) | −0.0021 (14) | 0.0026 (17) | 0.0003 (16) |
N2 | 0.049 (2) | 0.029 (2) | 0.043 (2) | −0.0043 (17) | 0.0103 (19) | −0.0032 (18) |
N3 | 0.041 (2) | 0.083 (3) | 0.074 (4) | 0.010 (2) | 0.021 (2) | 0.004 (3) |
C1 | 0.040 (2) | 0.025 (2) | 0.034 (3) | −0.0004 (19) | 0.008 (2) | −0.002 (2) |
C2 | 0.036 (2) | 0.019 (2) | 0.029 (3) | −0.0042 (17) | −0.0021 (19) | −0.0008 (18) |
C3 | 0.038 (2) | 0.025 (2) | 0.032 (3) | −0.0013 (18) | −0.001 (2) | −0.0019 (19) |
C4 | 0.052 (3) | 0.030 (2) | 0.045 (3) | −0.010 (2) | 0.011 (2) | 0.002 (2) |
C5 | 0.050 (3) | 0.021 (2) | 0.044 (3) | −0.004 (2) | 0.007 (2) | 0.000 (2) |
C6 | 0.039 (2) | 0.026 (2) | 0.041 (3) | 0.004 (2) | 0.014 (2) | 0.004 (2) |
C7 | 0.043 (3) | 0.053 (3) | 0.070 (4) | 0.009 (2) | 0.005 (3) | −0.007 (3) |
C8 | 0.072 (4) | 0.144 (7) | 0.121 (7) | 0.014 (4) | 0.049 (4) | 0.053 (5) |
C9 | 0.062 (4) | 0.098 (5) | 0.116 (6) | 0.011 (4) | 0.030 (4) | −0.050 (4) |
Cu1—O2 | 1.930 (3) | N2—C3 | 1.346 (5) |
Cu1—O5 | 1.954 (3) | N3—C7 | 1.313 (6) |
Cu1—O3i | 1.958 (3) | N3—C9 | 1.432 (6) |
Cu1—N1 | 2.002 (3) | N3—C8 | 1.460 (7) |
Cu1—O3ii | 2.378 (3) | C1—C2 | 1.504 (5) |
O1—C1 | 1.218 (5) | C2—C3 | 1.380 (5) |
O2—C1 | 1.271 (5) | C3—C6 | 1.515 (5) |
O3—C6 | 1.263 (5) | C4—C5 | 1.381 (6) |
O3—Cu1iii | 1.958 (3) | C4—H4 | 0.9300 |
O3—Cu1iv | 2.378 (3) | C5—H5 | 0.9300 |
O4—C6 | 1.220 (5) | C7—H7 | 0.9300 |
O5—C7 | 1.235 (6) | C8—H8A | 0.9600 |
O6—H6A | 0.82 (5) | C8—H8B | 0.9600 |
O6—H6B | 0.82 (5) | C8—H8C | 0.9600 |
N1—C5 | 1.318 (5) | C9—H9A | 0.9600 |
N1—C2 | 1.344 (4) | C9—H9B | 0.9600 |
N2—C4 | 1.331 (5) | C9—H9C | 0.9600 |
O2—Cu1—O5 | 91.48 (13) | C3—C2—C1 | 125.4 (4) |
O2—Cu1—O3i | 177.39 (13) | N2—C3—C2 | 121.3 (4) |
O5—Cu1—O3i | 89.82 (13) | N2—C3—C6 | 114.5 (4) |
O2—Cu1—N1 | 82.17 (12) | C2—C3—C6 | 124.2 (4) |
O5—Cu1—N1 | 169.37 (13) | N2—C4—C5 | 122.6 (4) |
O3i—Cu1—N1 | 96.87 (12) | N2—C4—H4 | 118.7 |
O2—Cu1—O3ii | 100.87 (12) | C5—C4—H4 | 118.7 |
O5—Cu1—O3ii | 94.99 (12) | N1—C5—C4 | 120.6 (4) |
O3i—Cu1—O3ii | 76.75 (12) | N1—C5—H5 | 119.7 |
N1—Cu1—O3ii | 94.57 (12) | C4—C5—H5 | 119.7 |
C1—O2—Cu1 | 116.7 (3) | O4—C6—O3 | 126.2 (4) |
C6—O3—Cu1iii | 118.9 (3) | O4—C6—C3 | 117.2 (4) |
C6—O3—Cu1iv | 137.1 (3) | O3—C6—C3 | 116.4 (4) |
Cu1iii—O3—Cu1iv | 103.25 (12) | O5—C7—N3 | 125.4 (5) |
C7—O5—Cu1 | 122.7 (3) | O5—C7—H7 | 117.3 |
H6A—O6—H6B | 113.5 (19) | N3—C7—H7 | 117.3 |
C5—N1—C2 | 118.1 (4) | N3—C8—H8A | 109.5 |
C5—N1—Cu1 | 129.7 (3) | N3—C8—H8B | 109.5 |
C2—N1—Cu1 | 112.2 (3) | H8A—C8—H8B | 109.5 |
C4—N2—C3 | 116.4 (4) | N3—C8—H8C | 109.5 |
C7—N3—C9 | 120.4 (5) | H8A—C8—H8C | 109.5 |
C7—N3—C8 | 121.9 (5) | H8B—C8—H8C | 109.5 |
C9—N3—C8 | 117.6 (5) | N3—C9—H9A | 109.5 |
O1—C1—O2 | 124.5 (4) | N3—C9—H9B | 109.5 |
O1—C1—C2 | 120.4 (4) | H9A—C9—H9B | 109.5 |
O2—C1—C2 | 115.1 (3) | N3—C9—H9C | 109.5 |
N1—C2—C3 | 121.0 (4) | H9A—C9—H9C | 109.5 |
N1—C2—C1 | 113.7 (3) | H9B—C9—H9C | 109.5 |
O5—Cu1—O2—C1 | −169.1 (3) | O1—C1—C2—C3 | 3.7 (7) |
O3i—Cu1—O2—C1 | 71 (3) | O2—C1—C2—C3 | −175.6 (4) |
N1—Cu1—O2—C1 | 2.3 (3) | C4—N2—C3—C2 | −0.4 (6) |
O3ii—Cu1—O2—C1 | 95.5 (3) | C4—N2—C3—C6 | 177.3 (4) |
O2—Cu1—O5—C7 | −11.7 (4) | N1—C2—C3—N2 | 1.5 (6) |
O3i—Cu1—O5—C7 | 166.0 (4) | C1—C2—C3—N2 | −178.8 (4) |
N1—Cu1—O5—C7 | −64.7 (9) | N1—C2—C3—C6 | −176.0 (4) |
O3ii—Cu1—O5—C7 | 89.4 (4) | C1—C2—C3—C6 | 3.7 (7) |
O2—Cu1—N1—C5 | 179.2 (4) | C3—N2—C4—C5 | −0.5 (6) |
O5—Cu1—N1—C5 | −127.0 (7) | C2—N1—C5—C4 | 0.8 (6) |
O3i—Cu1—N1—C5 | 1.7 (4) | Cu1—N1—C5—C4 | −178.4 (3) |
O3ii—Cu1—N1—C5 | 78.9 (4) | N2—C4—C5—N1 | 0.3 (7) |
O2—Cu1—N1—C2 | 0.1 (3) | Cu1iii—O3—C6—O4 | 7.2 (6) |
O5—Cu1—N1—C2 | 53.8 (8) | Cu1iv—O3—C6—O4 | 175.4 (3) |
O3i—Cu1—N1—C2 | −177.5 (3) | Cu1iii—O3—C6—C3 | −167.7 (3) |
O3ii—Cu1—N1—C2 | −100.3 (3) | Cu1iv—O3—C6—C3 | 0.5 (6) |
Cu1—O2—C1—O1 | 176.6 (4) | N2—C3—C6—O4 | −84.7 (5) |
Cu1—O2—C1—C2 | −4.1 (5) | C2—C3—C6—O4 | 92.9 (5) |
C5—N1—C2—C3 | −1.6 (6) | N2—C3—C6—O3 | 90.7 (4) |
Cu1—N1—C2—C3 | 177.6 (3) | C2—C3—C6—O3 | −91.7 (5) |
C5—N1—C2—C1 | 178.7 (4) | Cu1—O5—C7—N3 | 179.4 (4) |
Cu1—N1—C2—C1 | −2.1 (4) | C9—N3—C7—O5 | 0.6 (9) |
O1—C1—C2—N1 | −176.6 (4) | C8—N3—C7—O5 | 179.3 (6) |
O2—C1—C2—N1 | 4.1 (5) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6B···O4v | 0.82 (5) | 2.00 (3) | 2.771 (5) | 156 (7) |
O6—H6A···O1vi | 0.82 (5) | 2.38 (3) | 3.138 (6) | 153 (5) |
O6—H6A···O2vi | 0.82 (5) | 2.30 (3) | 3.037 (5) | 149 (5) |
Symmetry codes: (v) x, y−1, z; (vi) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C6H2N2O4)(C3H7NO)]·H2O |
Mr | 320.75 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 10.1656 (5), 13.6310 (8), 9.1461 (2) |
β (°) | 91.430 (2) |
V (Å3) | 1266.96 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.75 |
Crystal size (mm) | 0.39 × 0.10 × 0.06 |
Data collection | |
Diffractometer | Bruker APEX area-detector diffractometer |
Absorption correction | Integration (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.549, 0.902 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6222, 2283, 1600 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.115, 0.98 |
No. of reflections | 2283 |
No. of parameters | 180 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.48, −0.34 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6B···O4i | 0.82 (5) | 2.00 (3) | 2.771 (5) | 156 (7) |
O6—H6A···O1ii | 0.82 (5) | 2.38 (3) | 3.138 (6) | 153 (5) |
O6—H6A···O2ii | 0.82 (5) | 2.30 (3) | 3.037 (5) | 149 (5) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z. |
Acknowledgements
The project was supported by the Natural Science Foundation of Zhejiang Province, China (No. Y407091).
References
Bruker (2002). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hua, Y. & Liu, S. X. (2009). J. Mol. Struct. 918, 165–173. Google Scholar
Konar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593–1597. Web of Science CSD CrossRef CAS Google Scholar
Li, X. H., Shi, Q., Hu, M. L. & Xiao, H. P. (2004). Inorg. Chem. Commun. 7, 912–914. Web of Science CSD CrossRef CAS Google Scholar
Lin, X. M., Chen, L., Fang, H. C., Zhou, Z. Y., Zhou, X. X., Chen, J. Q., Xu, A. W. & Cai, Y. P. (2009). Inorg. Chim. Acta, 362, 2619–2626. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tombul, M. & Guven, K. (2009). Acta Cryst. E65, m213–m214. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, X., Li, X.-Y., Wang, Q.-W. & Che, G.-B. (2008). Acta Cryst. E64, m1078–m1079. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xiang, G.-Q., Zhu, N.-W., Hu, M.-L., Xiao, H.-P. & Chen, X.-X. (2004). Acta Cryst. E60, m647–m649. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xu, Z.-L., Li, X.-Y., Che, G.-B., Lu, L. & Xu, C.-H. (2008). Acta Cryst. E64, m1215–m1216. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polymeric compounds play an important role in the field of molecular magnetism. Di- and polycarboxylates are capable of bridging and providing effective magnetic exchange pathways. Pyrazine-2,3-dicarboxylic acid (H2pzdc) has been widely applied to construct polymeric coordination compounds; their structures and magnetic properties were investigated (Li et al., 2004; Xiang et al., 2004; Hua & Liu, 2009; Lin et al., 2009; Tombul & Guven, 2009). We present here the structure of the title compound, {[Cu(pzdc)(DMF)].H2O}n, (I).
In the structure of compound (I), each Cu(II) atom is coordinated by an N atom of the pyrazine ring and a carboxylic O atom from one pzdc2- anion, two O atoms from two other pzdc2- anions, and O atom from DMF, forming a distorted square-pyramidal environment, as depicted in Fig. 1. The four atoms N1, O2, O5 and O3i form the basal plane, whereas the O3ii atom [symmetry code: (i) -x +1, y - 1/2, -z + 1; (ii) x, -y + 3/2, z -1/2] occupies the apical site with a longer Cu1—O3ii bond length of 2.378 (3) /%A. In the basal plane, the bond distances of Cu1—N1 and Cu1—O3i are 2.002 (3) and 1.958 (3) Å, which are shorter than those observed for the distorted square-pyramidal CuN2O3 coordination in a related structure of a Cu(II)pzdc derivative (Hua & Liu, 2009). The plane defined by carboxylic group O1—C1—C2—C3 is nearly coplanar to the pyrazine ring with the dihedral angle of 3.7 (7)°, while another carboxylate plane defined by the C2—C3—C6—O4 is approximately perpendicular to the pyrazine ring [dihedral angel of 92.9 (5)°]. This conformation was also observed in a series of other transition metal complexes formed with H2pzdc (Li et al., 2004; Xiang et al., 2004; Konar et al., 2004; Hua et al., 2009). Extensive hydrogen bonding interactions help to stabilize the structure. The carboxylate O atoms take part in a O—H···O hydrogen bonding and are acceptor atoms with O atoms of water molecules as donator atoms (Table 1).