metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m86-m87

catena-Poly[[[tri­aqua­manganese(II)]-μ-4,4′-bi­pyridine-κ2N:N′-[tri­aqua­manganese(II)]-μ-pyrimidine-4,6-di­carboxyl­ato-κ4N1,O6:N3,O4] sulfate trihydrate]

aDepartamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
*Correspondence e-mail: flinaor@ugr.es

(Received 1 December 2009; accepted 14 December 2009; online 19 December 2009)

The two independent MnII ions in the polymeric title compound, {[Mn2(C6H2N2O4)(C10H8N2)(H2O)6]SO4·3H2O}, exhibit distorted MnN2O4 octa­hedral coordination geometries, with the pyrimidine-4,6-dicarboxyl­ate (pmdc) ligand acting in the bis-chelating μ-(κO,κN:κO′,κN′) bridging mode and the 4,4′-bipyridine (bpy) ligand in the μ-(κN:κN′) bridging mode. The remaining coordination sites are occupied by O atoms of water mol­ecules. As a consequence, cationic chains of [Mn2(μ-pmdc)(μ-4,4′-bpy)(H2O)6]2+ are generated, which extend approximately along the a axis. Sulfate counter-anions and three uncoordinated water mol­ecules complete the structure, which is stabilized by multiple O—H⋯O hydrogen-bonding inter­actions between the structural units.

Related literature

For the preparation of the pyrimidine-4,6-dicarboxyl­ato ligand (pmdc) we utilized the commercially available 4,6-dimethyl-pyrimidine, which can easily be oxidized to the corresponding dicarboxylic acid (H2pmdc), originally prepared by Hunt et al. (1959[Hunt, R. R., McOmie, J. F. W. & Sayer, E. R. (1959). J. Chem. Soc. p. 525-530.]). For pmdc coordination compounds, see: Beobide et al. (2008[Beobide, G., Wang, W., Castillo, O., Luque, A., Román, P., Tagliabue, G., Galli, S. & Navarro, J. A. R. (2008). Inorg. Chem. pp. 5267-5277.]); Masciocchi et al. (2009[Masciocchi, N., Galli, S., Tagliabue, G., Sironi, A., Castillo, O., Luque, A., Beobide, G., Wang, W., Romero, M. A., Barea, E. & Navarro, J. A. R. (2009). Inorg. Chem. pp. 3087-3094.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C6H2N2O4)(C10H8N2)(H2O)6]SO4·3H2O

  • Mr = 690.36

  • Monoclinic, P 21 /c

  • a = 18.745 (2) Å

  • b = 10.7639 (14) Å

  • c = 14.1585 (18) Å

  • β = 111.044 (2)°

  • V = 2666.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 298 K

  • 0.32 × 0.27 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.693, Tmax = 0.794

  • 30075 measured reflections

  • 6219 independent reflections

  • 5467 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.09

  • 6219 reflections

  • 403 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O12W 2.174 (2)
Mn1—O11W 2.180 (2)
Mn1—O1W 2.187 (2)
Mn1—O42 2.188 (2)
Mn1—N1Bi 2.219 (2)
Mn1—N3 2.272 (2)
Mn2—O2W 2.154 (2)
Mn2—O21W 2.170 (2)
Mn2—O22W 2.201 (2)
Mn2—O62 2.2055 (19)
Mn2—N1B1 2.214 (2)
Mn2—N1 2.282 (2)
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1AW⋯O4W 0.82 (1) 1.85 (1) 2.667 (5) 176 (4)
O1W—H1BW⋯O2Sii 0.82 (1) 2.11 (2) 2.891 (3) 159 (4)
O2W—H2BW⋯O62iii 0.82 (1) 1.96 (1) 2.775 (3) 172 (4)
O2W—H2AW⋯O1Sii 0.82 (1) 1.87 (1) 2.681 (3) 172 (4)
O21W—H21A⋯O3Siv 0.82 (1) 1.86 (1) 2.663 (3) 166 (4)
O21W—H21B⋯O5W 0.82 (1) 1.97 (1) 2.782 (4) 172 (4)
O11W—H11A⋯O42v 0.82 (1) 1.95 (1) 2.760 (3) 167 (4)
O11W—H11B⋯O2Siv 0.82 (1) 1.99 (1) 2.797 (3) 168 (4)
O5W—H5AW⋯O4Sii 0.82 2.12 2.927 (4) 168
O5W—H5BW⋯O61vi 0.82 2.15 2.910 (3) 154
O4W—H4AW⋯O41vii 0.82 (1) 1.89 (1) 2.702 (4) 170 (6)
O4W—H4BW⋯O4Wviii 0.82 (1) 2.48 (6) 2.908 (7) 114 (6)
O3W—H3BW⋯O3Siv 0.82 1.93 2.746 (5) 178
O12W—H12A⋯O3W 0.82 (1) 1.85 (1) 2.656 (4) 167 (4)
O12W—H12B⋯O2Sii 0.82 (1) 2.04 (1) 2.840 (3) 166 (4)
O22W—H22A⋯O4Siv 0.82 (1) 1.95 (1) 2.764 (3) 171 (3)
O22W—H22B⋯O61ix 0.82 (1) 2.03 (1) 2.852 (3) 177 (3)
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x, -y+1, -z+1; (vi) x, y-1, z; (vii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) -x, -y+1, -z; (ix) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

In the structure of the title compound there are two independent manganese ions. Each metal ion exhibits a distorted octahedral coordination geometry built up of one oxygen atom and one nitrogen atom from the bis-chelating pyrimidine-4,6-dicarboxylato ligand (pmdc), one nitrogen atom from the 4,4'-bipyridine (bpy) ligand and three oxygen atoms belonging to three coordinated water molecules (Fig. 1). The bridging nature of the pmdc and bpy ligands yields 1_D polymeric chains (Fig. 2) extending approximately along the a axis. The pmdc ligands adopt a µ-(κO,κN:κO'',κN') coordination mode, and their N,O chelation results in the formation of two five-membered chelate rings for each metal ion.

The pmdc ligand combines the N,N'-coordination features of pyrimidine to the donor properties of the carboxylate group. Moreover, possessing two easily removable acidic hydrogen atoms, it can be coupled to the M(II) ions of the transition metal series, in search for homoleptic coordination compounds of [M(pmdc)] formulation. In this communication, we have employed 4,4'-bipyridine ligand in order to have a further connectivity.

The structur is in agreement with previous crystallographic studies carried out in our group revealing that the pmdc ligand typically displays a tetradentate µ-(κO,κN:κO',κN') coordination mode with the carboxylate groups almost coplanar with the pyrimidine ring.

Related literature top

For the preparation of the pyrimidine-4,6-dicarboxylato ligand (pmdc) we utilized the commercially available 4,6-dimethyl-pyrimidine, which can easily be oxidized to the corresponding dicarboxylic acid (H2pmdc), originally prepared by Hunt et al. (1959). For pmdc coordination compounds, see: Beobide et al. (2008); Masciocchi et al. (2009).

Experimental top

The ligand pyrimidine-4,6-dicarboxylic acid (H2pmdc) was prepared from the oxidation of 4,6-dimethyl-pyrimidine (Hunt et al., 1959). The new metal complex [Mn2(µ-4,4'bpy)(µ-pmdc)(H2O)6]SO43H2O was obtained by reaction of an aqueous solution (30 ml) containing pyrimidine-4,6-dicarboxylato (168.3 mg) and MnSO4(H2O) (169.0 mg) at 353 K during 4 h. The resulting yellow suspension was cooled to room temperature and filtered. Subsequent diffusion of 4,4'_bipyridine (312.4 mg), dissolved in 10 ml of methanol, into this solution yielded pale yellow crystals suitable for X-ray diffraction after two weeks.

Refinement top

The water H atoms were located in difference maps and were refined as riding with O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(O). The pyrimidine an bipyridine H atoms were positioned geometrically and treated as riding with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Thermal displacement parameters are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the crystal packing showing the formation of [Mn2(µ-4,4'bpy)(µ-pmdc)(H2O)6] chains interacting through multiple H-bonding with sulfate and uncoordinated water molecules.
catena-Poly[[[triaquamanganese(II)]-µ-4,4'-bipyridine- κ2N:N'-[triaquamanganese(II)]-µ-pyrimidine-4,6- dicarboxylato-κ4N1,O6:N3,O4] sulfate trihydrate] top
Crystal data top
[Mn2(C6H2N2O4)(C10H8N2)(H2O)6]SO4·3H2OF(000) = 1416
Mr = 690.36Dx = 1.720 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5467 reflections
a = 18.745 (2) Åθ = 2.2–28.3°
b = 10.7639 (14) ŵ = 1.11 mm1
c = 14.1585 (18) ÅT = 298 K
β = 111.044 (2)°Prismatic, yellow
V = 2666.2 (6) Å30.32 × 0.27 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6219 independent reflections
Radiation source: fine-focus sealed tube5467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2424
Tmin = 0.693, Tmax = 0.794k = 1414
30075 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0452P)2 + 3.6924P]
where P = (Fo2 + 2Fc2)/3
6219 reflections(Δ/σ)max = 0.001
403 parametersΔρmax = 0.62 e Å3
14 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Mn2(C6H2N2O4)(C10H8N2)(H2O)6]SO4·3H2OV = 2666.2 (6) Å3
Mr = 690.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.745 (2) ŵ = 1.11 mm1
b = 10.7639 (14) ÅT = 298 K
c = 14.1585 (18) Å0.32 × 0.27 × 0.21 mm
β = 111.044 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6219 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5467 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.794Rint = 0.029
30075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04114 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.62 e Å3
6219 reflectionsΔρmin = 0.36 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.08050 (2)0.39447 (4)0.41167 (3)0.02939 (11)
Mn20.44821 (2)0.39042 (4)0.63222 (3)0.02798 (11)
S30.73306 (3)0.23319 (6)0.71958 (5)0.03205 (15)
O420.06099 (10)0.59414 (18)0.41849 (16)0.0379 (4)
O620.46593 (10)0.59002 (17)0.61315 (15)0.0347 (4)
O610.41374 (11)0.77834 (18)0.57634 (16)0.0402 (5)
C60.33123 (13)0.6050 (2)0.55476 (18)0.0254 (5)
C40.19647 (13)0.6050 (2)0.48627 (19)0.0269 (5)
O410.11712 (12)0.7803 (2)0.4390 (2)0.0518 (6)
N30.19627 (11)0.48139 (19)0.49708 (16)0.0282 (4)
C4B10.72311 (13)0.2647 (2)0.73258 (18)0.0275 (5)
O4S0.68705 (13)0.1207 (2)0.6968 (2)0.0562 (6)
N1B10.57019 (12)0.3380 (2)0.67793 (17)0.0317 (5)
C610.41011 (13)0.6651 (2)0.58391 (18)0.0283 (5)
N10.33086 (11)0.48247 (19)0.56945 (15)0.0266 (4)
O3S0.71671 (16)0.3041 (3)0.7977 (2)0.0683 (8)
C4B0.80457 (13)0.2258 (2)0.76527 (19)0.0285 (5)
O2S0.81545 (12)0.2037 (2)0.75528 (17)0.0502 (6)
C50.26391 (13)0.6720 (2)0.51419 (19)0.0292 (5)
H50.26400.75770.50610.035*
C410.11792 (14)0.6673 (3)0.4435 (2)0.0322 (5)
C3B10.70266 (15)0.3893 (3)0.7259 (2)0.0393 (7)
H3B10.73980.45080.73880.047*
C6B10.66448 (14)0.1778 (2)0.7099 (2)0.0320 (5)
H6B10.67550.09330.71310.038*
C5B10.58987 (14)0.2179 (3)0.6825 (2)0.0347 (6)
H5B10.55130.15850.66640.042*
C5B0.82614 (16)0.1080 (3)0.7465 (2)0.0399 (7)
H5B0.78920.05080.71030.048*
C2B10.62669 (15)0.4210 (3)0.6999 (2)0.0397 (6)
H2B10.61420.50490.69750.048*
C20.26343 (13)0.4251 (2)0.53933 (19)0.0288 (5)
H20.26330.33960.54850.035*
C3B0.86230 (16)0.3063 (3)0.8178 (3)0.0486 (8)
H3B0.85090.38670.83180.058*
O1S0.71547 (15)0.3118 (3)0.6300 (2)0.0710 (8)
C6B0.90251 (15)0.0755 (3)0.7817 (2)0.0372 (6)
H6B0.91570.00420.76850.045*
C2B0.93727 (16)0.2667 (3)0.8495 (3)0.0541 (9)
H2B0.97540.32280.88420.065*
N1B0.95814 (12)0.1532 (2)0.83358 (18)0.0332 (5)
O1W0.10573 (14)0.4228 (2)0.27392 (19)0.0519 (6)
H1AW0.0712 (16)0.435 (4)0.2194 (15)0.062*
H1BW0.1360 (18)0.375 (3)0.264 (3)0.062*
O2W0.43373 (12)0.3359 (3)0.48008 (17)0.0513 (6)
H2BW0.4601 (19)0.363 (4)0.449 (3)0.062*
H2AW0.3894 (8)0.326 (4)0.442 (2)0.062*
O21W0.40118 (13)0.2081 (2)0.63974 (18)0.0447 (5)
H21A0.3698 (16)0.209 (3)0.668 (2)0.054*
H21B0.386 (2)0.152 (2)0.597 (2)0.054*
O11W0.07172 (11)0.3346 (2)0.55418 (16)0.0440 (5)
H11A0.0316 (11)0.344 (4)0.564 (3)0.053*
H11B0.1089 (13)0.329 (4)0.6068 (15)0.053*
O5W0.33986 (19)0.0155 (3)0.5038 (2)0.0762 (9)
H5AW0.33890.04240.44930.091*
H5BW0.36580.04730.50880.091*
O4W0.0045 (3)0.4496 (4)0.0930 (3)0.1043 (14)
H4AW0.041 (2)0.401 (5)0.076 (5)0.125*
H4BW0.014 (4)0.418 (6)0.054 (4)0.125*
O3W0.1920 (3)0.0473 (4)0.5488 (3)0.1201 (15)
H3AW0.15030.04250.55490.144*
H3BW0.22010.09160.59410.144*
O12W0.12484 (14)0.2100 (2)0.40278 (19)0.0480 (5)
H12A0.1488 (19)0.169 (3)0.4530 (18)0.058*
H12B0.1474 (19)0.199 (4)0.364 (2)0.058*
O22W0.45581 (11)0.4068 (2)0.79051 (16)0.0377 (4)
H22A0.4150 (10)0.391 (3)0.797 (3)0.045*
H22B0.4929 (13)0.371 (3)0.831 (2)0.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01547 (18)0.0318 (2)0.0378 (2)0.00094 (14)0.00581 (15)0.00010 (15)
Mn20.01635 (18)0.0299 (2)0.0356 (2)0.00222 (13)0.00679 (15)0.00286 (15)
S30.0237 (3)0.0358 (3)0.0379 (3)0.0039 (2)0.0126 (3)0.0078 (3)
O420.0181 (8)0.0374 (10)0.0546 (12)0.0046 (7)0.0087 (8)0.0006 (9)
O620.0174 (8)0.0339 (10)0.0491 (11)0.0013 (7)0.0074 (8)0.0057 (8)
O610.0278 (9)0.0305 (10)0.0569 (12)0.0052 (8)0.0086 (9)0.0014 (9)
C60.0193 (11)0.0280 (12)0.0280 (11)0.0011 (9)0.0074 (9)0.0009 (9)
C40.0190 (11)0.0285 (12)0.0318 (12)0.0028 (9)0.0075 (9)0.0002 (9)
O410.0319 (11)0.0336 (11)0.0861 (17)0.0099 (9)0.0164 (11)0.0090 (11)
N30.0187 (9)0.0279 (10)0.0363 (11)0.0012 (8)0.0077 (8)0.0009 (8)
C4B10.0185 (11)0.0296 (12)0.0322 (12)0.0027 (9)0.0064 (9)0.0015 (10)
O4S0.0382 (12)0.0447 (13)0.0896 (18)0.0063 (10)0.0277 (12)0.0078 (12)
N1B10.0202 (10)0.0348 (12)0.0372 (11)0.0028 (8)0.0068 (8)0.0011 (9)
C610.0205 (11)0.0317 (13)0.0305 (12)0.0036 (9)0.0066 (9)0.0010 (10)
N10.0176 (9)0.0285 (10)0.0313 (10)0.0008 (8)0.0061 (8)0.0026 (8)
O3S0.0730 (18)0.0612 (16)0.093 (2)0.0118 (14)0.0574 (16)0.0194 (14)
C4B0.0187 (11)0.0292 (12)0.0349 (12)0.0019 (9)0.0064 (9)0.0027 (10)
O2S0.0283 (10)0.0618 (15)0.0542 (13)0.0055 (10)0.0072 (9)0.0114 (11)
C50.0223 (11)0.0251 (12)0.0387 (13)0.0008 (9)0.0092 (10)0.0007 (10)
C410.0195 (11)0.0347 (14)0.0416 (14)0.0060 (10)0.0102 (10)0.0029 (11)
C3B10.0199 (12)0.0286 (13)0.0628 (19)0.0016 (10)0.0068 (12)0.0024 (12)
C6B10.0218 (11)0.0268 (12)0.0450 (14)0.0008 (9)0.0090 (10)0.0015 (10)
C5B10.0206 (12)0.0314 (13)0.0500 (16)0.0022 (10)0.0100 (11)0.0029 (11)
C5B0.0237 (13)0.0335 (14)0.0549 (17)0.0012 (10)0.0048 (12)0.0092 (12)
C2B10.0247 (13)0.0270 (13)0.0607 (18)0.0044 (10)0.0073 (12)0.0021 (12)
C20.0192 (11)0.0264 (12)0.0376 (13)0.0003 (9)0.0064 (10)0.0025 (10)
C3B0.0236 (13)0.0295 (14)0.080 (2)0.0028 (11)0.0031 (14)0.0115 (14)
O1S0.0519 (15)0.090 (2)0.0696 (17)0.0077 (14)0.0206 (13)0.0426 (15)
C6B0.0238 (12)0.0311 (13)0.0511 (16)0.0041 (10)0.0068 (11)0.0045 (12)
C2B0.0222 (13)0.0356 (16)0.089 (3)0.0018 (11)0.0008 (14)0.0155 (16)
N1B0.0175 (10)0.0322 (11)0.0450 (13)0.0025 (8)0.0055 (9)0.0002 (9)
O1W0.0490 (14)0.0593 (15)0.0528 (13)0.0171 (11)0.0249 (11)0.0136 (12)
O2W0.0264 (10)0.0890 (18)0.0385 (11)0.0109 (11)0.0116 (9)0.0063 (11)
O21W0.0458 (12)0.0376 (11)0.0572 (14)0.0097 (9)0.0263 (11)0.0072 (9)
O11W0.0234 (9)0.0704 (15)0.0373 (11)0.0081 (10)0.0097 (8)0.0067 (10)
O5W0.103 (2)0.0530 (16)0.0651 (17)0.0213 (15)0.0207 (16)0.0019 (13)
O4W0.121 (3)0.105 (3)0.066 (2)0.079 (3)0.0082 (19)0.0021 (18)
O3W0.155 (4)0.093 (3)0.087 (3)0.023 (3)0.013 (2)0.032 (2)
O12W0.0500 (13)0.0449 (13)0.0583 (14)0.0126 (10)0.0305 (11)0.0090 (10)
O22W0.0284 (10)0.0438 (11)0.0395 (10)0.0049 (8)0.0106 (8)0.0049 (8)
Geometric parameters (Å, º) top
Mn1—O12W2.174 (2)C5—H50.9300
Mn1—O11W2.180 (2)C3B1—C2B11.380 (4)
Mn1—O1W2.187 (2)C3B1—H3B10.9300
Mn1—O422.188 (2)C6B1—C5B11.380 (3)
Mn1—N1Bi2.219 (2)C6B1—H6B10.9300
Mn1—N32.272 (2)C5B1—H5B10.9300
Mn2—O2W2.154 (2)C5B—C6B1.381 (4)
Mn2—O21W2.170 (2)C5B—H5B0.9300
Mn2—O22W2.201 (2)C2B1—H2B10.9300
Mn2—O622.2055 (19)C2—H20.9300
Mn2—N1B12.214 (2)C3B—C2B1.380 (4)
Mn2—N12.282 (2)C3B—H3B0.9300
S3—O4S1.454 (2)C6B—N1B1.333 (3)
S3—O1S1.461 (2)C6B—H6B0.9300
S3—O3S1.463 (3)C2B—N1B1.326 (4)
S3—O2S1.477 (2)C2B—H2B0.9300
O42—C411.270 (3)N1B—Mn1ii2.219 (2)
O62—C611.268 (3)O1W—H1AW0.820 (5)
O61—C611.228 (3)O1W—H1BW0.818 (5)
C6—N11.336 (3)O2W—H2BW0.820 (5)
C6—C51.386 (3)O2W—H2AW0.818 (5)
C6—C611.528 (3)O21W—H21A0.820 (5)
C4—N31.339 (3)O21W—H21B0.821 (5)
C4—C51.384 (3)O11W—H11A0.820 (5)
C4—C411.531 (3)O11W—H11B0.819 (5)
O41—C411.217 (3)O5W—H5AW0.8183
N3—C21.330 (3)O5W—H5BW0.8202
C4B1—C3B11.389 (4)O4W—H4AW0.819 (5)
C4B1—C6B11.390 (3)O4W—H4BW0.820 (5)
C4B1—C4B1.488 (3)O3W—H3AW0.8192
N1B1—C2B11.335 (3)O3W—H3BW0.8207
N1B1—C5B11.340 (3)O12W—H12A0.820 (5)
N1—C21.332 (3)O12W—H12B0.819 (5)
C4B—C3B1.377 (4)O22W—H22A0.821 (5)
C4B—C5B1.385 (4)O22W—H22B0.819 (5)
O12W—Mn1—O11W86.62 (9)C3B—C4B—C4B1120.7 (2)
O12W—Mn1—O1W82.31 (9)C5B—C4B—C4B1122.4 (2)
O11W—Mn1—O1W168.25 (9)C4—C5—C6116.7 (2)
O12W—Mn1—O42166.73 (8)C4—C5—H5121.6
O11W—Mn1—O42100.38 (9)C6—C5—H5121.6
O1W—Mn1—O4289.74 (9)O41—C41—O42127.7 (2)
O12W—Mn1—N1Bi96.20 (9)O41—C41—C4116.8 (2)
O11W—Mn1—N1Bi89.12 (8)O42—C41—C4115.5 (2)
O1W—Mn1—N1Bi95.96 (9)C2B1—C3B1—C4B1119.4 (2)
O42—Mn1—N1Bi95.17 (8)C2B1—C3B1—H3B1120.3
O12W—Mn1—N395.45 (9)C4B1—C3B1—H3B1120.3
O11W—Mn1—N390.24 (8)C5B1—C6B1—C4B1119.5 (2)
O1W—Mn1—N386.91 (9)C5B1—C6B1—H6B1120.3
O42—Mn1—N373.43 (7)C4B1—C6B1—H6B1120.3
N1Bi—Mn1—N3168.27 (8)N1B1—C5B1—C6B1123.3 (2)
O2W—Mn2—O21W83.99 (10)N1B1—C5B1—H5B1118.3
O2W—Mn2—O22W168.25 (9)C6B1—C5B1—H5B1118.3
O21W—Mn2—O22W84.33 (8)C6B—C5B—C4B119.9 (3)
O2W—Mn2—O6296.50 (9)C6B—C5B—H5B120.0
O21W—Mn2—O62165.68 (8)C4B—C5B—H5B120.0
O22W—Mn2—O6295.12 (8)N1B1—C2B1—C3B1123.6 (3)
O2W—Mn2—N1B188.22 (8)N1B1—C2B1—H2B1118.2
O21W—Mn2—N1B198.64 (9)C3B1—C2B1—H2B1118.2
O22W—Mn2—N1B192.31 (8)N3—C2—N1124.7 (2)
O62—Mn2—N1B195.68 (8)N3—C2—H2117.6
O2W—Mn2—N188.34 (8)N1—C2—H2117.6
O21W—Mn2—N193.45 (8)C4B—C3B—C2B119.5 (3)
O22W—Mn2—N193.60 (7)C4B—C3B—H3B120.3
O62—Mn2—N172.29 (7)C2B—C3B—H3B120.3
N1B1—Mn2—N1167.02 (8)N1B—C6B—C5B123.0 (3)
O4S—S3—O1S111.02 (17)N1B—C6B—H6B118.5
O4S—S3—O3S109.49 (15)C5B—C6B—H6B118.5
O1S—S3—O3S108.10 (19)N1B—C2B—C3B123.9 (3)
O4S—S3—O2S111.16 (14)N1B—C2B—H2B118.1
O1S—S3—O2S107.70 (14)C3B—C2B—H2B118.1
O3S—S3—O2S109.30 (16)C2B—N1B—C6B116.8 (2)
C41—O42—Mn1118.98 (16)C2B—N1B—Mn1ii116.33 (18)
C61—O62—Mn2121.17 (15)C6B—N1B—Mn1ii126.39 (18)
N1—C6—C5121.5 (2)Mn1—O1W—H1AW121 (3)
N1—C6—C61115.7 (2)Mn1—O1W—H1BW117 (3)
C5—C6—C61122.7 (2)H1AW—O1W—H1BW107 (4)
N3—C4—C5121.6 (2)Mn2—O2W—H2BW124 (3)
N3—C4—C41116.0 (2)Mn2—O2W—H2AW115 (3)
C5—C4—C41122.3 (2)H2BW—O2W—H2AW111 (4)
C2—N3—C4117.6 (2)Mn2—O21W—H21A113 (3)
C2—N3—Mn1128.39 (17)Mn2—O21W—H21B131 (3)
C4—N3—Mn1112.93 (16)H21A—O21W—H21B104 (4)
C3B1—C4B1—C6B1117.3 (2)Mn1—O11W—H11A120 (3)
C3B1—C4B1—C4B121.4 (2)Mn1—O11W—H11B123 (3)
C6B1—C4B1—C4B121.3 (2)H11A—O11W—H11B113 (4)
C2B1—N1B1—C5B1117.0 (2)H5AW—O5W—H5BW100.7
C2B1—N1B1—Mn2123.17 (18)H4AW—O4W—H4BW93 (6)
C5B1—N1B1—Mn2119.85 (17)H3AW—O3W—H3BW108.8
O61—C61—O62126.6 (2)Mn1—O12W—H12A123 (3)
O61—C61—C6118.3 (2)Mn1—O12W—H12B118 (3)
O62—C61—C6115.1 (2)H12A—O12W—H12B105 (4)
C2—N1—C6117.7 (2)Mn2—O22W—H22A112 (3)
C2—N1—Mn2126.51 (17)Mn2—O22W—H22B114 (2)
C6—N1—Mn2115.55 (15)H22A—O22W—H22B115 (3)
C3B—C4B—C5B116.9 (2)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1AW···O4W0.82 (1)1.85 (1)2.667 (5)176 (4)
O1W—H1BW···O2Siii0.82 (1)2.11 (2)2.891 (3)159 (4)
O2W—H2BW···O62iv0.82 (1)1.96 (1)2.775 (3)172 (4)
O2W—H2AW···O1Siii0.82 (1)1.87 (1)2.681 (3)172 (4)
O21W—H21A···O3Sv0.82 (1)1.86 (1)2.663 (3)166 (4)
O21W—H21B···O5W0.82 (1)1.97 (1)2.782 (4)172 (4)
O11W—H11A···O42vi0.82 (1)1.95 (1)2.760 (3)167 (4)
O11W—H11B···O2Sv0.82 (1)1.99 (1)2.797 (3)168 (4)
O5W—H5AW···O4Siii0.822.122.927 (4)168
O5W—H5BW···O61vii0.822.152.910 (3)154
O4W—H4AW···O41viii0.82 (1)1.89 (1)2.702 (4)170 (6)
O4W—H4BW···O4Wix0.82 (1)2.48 (6)2.908 (7)114 (6)
O3W—H3BW···O3Sv0.821.932.746 (5)178
O12W—H12A···O3W0.82 (1)1.85 (1)2.656 (4)167 (4)
O12W—H12B···O2Siii0.82 (1)2.04 (1)2.840 (3)166 (4)
O22W—H22A···O4Sv0.82 (1)1.95 (1)2.764 (3)171 (3)
O22W—H22B···O61x0.82 (1)2.03 (1)2.852 (3)177 (3)
Symmetry codes: (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y+1/2, z+3/2; (vi) x, y+1, z+1; (vii) x, y1, z; (viii) x, y1/2, z+1/2; (ix) x, y+1, z; (x) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mn2(C6H2N2O4)(C10H8N2)(H2O)6]SO4·3H2O
Mr690.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.745 (2), 10.7639 (14), 14.1585 (18)
β (°) 111.044 (2)
V3)2666.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.32 × 0.27 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.693, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
30075, 6219, 5467
Rint0.029
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.09
No. of reflections6219
No. of parameters403
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.36

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Mn1—O12W2.174 (2)Mn2—O2W2.154 (2)
Mn1—O11W2.180 (2)Mn2—O21W2.170 (2)
Mn1—O1W2.187 (2)Mn2—O22W2.201 (2)
Mn1—O422.188 (2)Mn2—O622.2055 (19)
Mn1—N1Bi2.219 (2)Mn2—N1B12.214 (2)
Mn1—N32.272 (2)Mn2—N12.282 (2)
Symmetry code: (i) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1AW···O4W0.820 (5)1.849 (8)2.667 (5)176 (4)
O1W—H1BW···O2Sii0.818 (5)2.113 (16)2.891 (3)159 (4)
O2W—H2BW···O62iii0.820 (5)1.960 (8)2.775 (3)172 (4)
O2W—H2AW···O1Sii0.818 (5)1.868 (8)2.681 (3)172 (4)
O21W—H21A···O3Siv0.820 (5)1.859 (11)2.663 (3)166 (4)
O21W—H21B···O5W0.821 (5)1.966 (8)2.782 (4)172 (4)
O11W—H11A···O42v0.820 (5)1.954 (10)2.760 (3)167 (4)
O11W—H11B···O2Siv0.819 (5)1.990 (10)2.797 (3)168 (4)
O5W—H5AW···O4Sii0.822.122.927 (4)168.3
O5W—H5BW···O61vi0.822.152.910 (3)153.8
O4W—H4AW···O41vii0.819 (5)1.890 (12)2.702 (4)170 (6)
O4W—H4BW···O4Wviii0.820 (5)2.48 (6)2.908 (7)114 (6)
O3W—H3BW···O3Siv0.821.932.746 (5)178.1
O12W—H12A···O3W0.820 (5)1.851 (11)2.656 (4)167 (4)
O12W—H12B···O2Sii0.819 (5)2.039 (11)2.840 (3)166 (4)
O22W—H22A···O4Siv0.821 (5)1.950 (8)2.764 (3)171 (3)
O22W—H22B···O61ix0.819 (5)2.034 (6)2.852 (3)177 (3)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+3/2; (v) x, y+1, z+1; (vi) x, y1, z; (vii) x, y1/2, z+1/2; (viii) x, y+1, z; (ix) x+1, y1/2, z+3/2.
 

Acknowledgements

Financial support from Spanish MEC (CTQ2008–00037/PPQ and SB-2005–0115) is gratefully acknowledged. The authors thank Professor Jorge A. R. Navarro and Miguel Quirós (U. Granada), Professor Oscar Castillo (U. Vasque Country) and Professor Norberto Masciocchi (U. Insubria) for helpful discussions.

References

First citationBeobide, G., Wang, W., Castillo, O., Luque, A., Román, P., Tagliabue, G., Galli, S. & Navarro, J. A. R. (2008). Inorg. Chem. pp. 5267–5277.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHunt, R. R., McOmie, J. F. W. & Sayer, E. R. (1959). J. Chem. Soc. p. 525–530.  CrossRef Google Scholar
First citationMasciocchi, N., Galli, S., Tagliabue, G., Sironi, A., Castillo, O., Luque, A., Beobide, G., Wang, W., Romero, M. A., Barea, E. & Navarro, J. A. R. (2009). Inorg. Chem. pp. 3087–3094.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m86-m87
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds