metal-organic compounds
Poly[aqua[μ2-cis-1,2-bis(4-pyridyl)ethylene-κ2N:N′](μ2-5-nitroisophthalato-κ3O:O′,O′′)nickel(II)]
aDepartment of Petroleum Engineering, Daqing Petroleum Institute, Heilongjiang 151400, People's Republic of China, bDepartment of Chemistry, Zhejiang University 310027, People's Republic of China, and cSecond Oil Recovery Plant, Daqing Oilfields Co, Daqing 163414, People's Republic of China
*Correspondence e-mail: chem8618@126.com
In the title compound, [Ni(C8H3NO6)(C12H10N2)(H2O)]n, the NiII atom is octahedrally coordinated by two cis N atoms from two different 1,2-bis(4-pyridyl)ethylene (bpe) ligands, two O atoms from one chelating carboxyl group of the 5-nitroisophthalic acid (nip) ligand, one O atom from another monodentate nip ligand and one O atom from a water molecule, forming a three-dimensional network structure. Intermolecular O—H⋯O hydrogen bonding stabilizes this arrangement. The of the structure contains one NiII atom, one water molecule, one nip ligand and two half-molecules of the bpe ligand with an inversion centre at the mid-point of the central C=C bond.
Related literature
For structures containing nip ligands, see: Xiao & Yuan (2004); Xiao et al. (2005). For structures containing bpe ligands, see: Bauer & Weber (2009); Jung et al. (2009); Zheng & Zhu (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809053872/wm2289sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809053872/wm2289Isup2.hkl
Nickel(II) acetate tetrahydrate (0.5 mmol), 5-nitroisophthalic acid (0.5 mmol) and 1,2-bis(4-pyridyl)ethylene] (0.5 mmol) were placed in a 30 ml teflon-lined, stainless-steel Parr autoclave together with water (20 ml). The autoclave was heated at 423 K for a week and was subsequently cooled slowly to room temperature. Green single crystals were obtained.
The H atoms of the water molecules were located in a difference Fourier map and were refined isotropically, with O—H and H—H distance restraints of 0.82 (1) Å and 1.37 (2) Å, respectively. There is a conspicious electron density of ca 1.1 electrons per cubic Angstrom at ca x=-0.27, y=0.5, z=-0.22. This points to a statistically disordered (s.o.f. ca 0.15) water molecule with distances of this highest peak to the H7B and O7 atoms of 2.78 Å and 3.11 Å, respectively. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms. The Uiso(H) values were set at 1.2Ueq (C) and 1.5Ueq (O).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(C8H3NO6)(C12H10N2)(H2O)] | Z = 2 |
Mr = 468.06 | F(000) = 480 |
Triclinic, P1 | Dx = 1.552 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3723 (6) Å | Cell parameters from 563 reflections |
b = 10.9947 (7) Å | θ = 2.3–25.2° |
c = 11.1704 (8) Å | µ = 1.02 mm−1 |
α = 109.970 (1)° | T = 293 K |
β = 90.190 (1)° | Prism, green |
γ = 110.727 (1)° | 0.43 × 0.24 × 0.15 mm |
V = 1001.68 (12) Å3 |
Bruker SMART CCD area-detector diffractometer | 3580 independent reflections |
Radiation source: fine-focus sealed tube | 3332 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.011 |
ϕ and ω scans | θmax = 25.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −10→11 |
Tmin = 0.669, Tmax = 0.862 | k = −13→13 |
5380 measured reflections | l = −13→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0584P)2 + 0.2791P] where P = (Fo2 + 2Fc2)/3 |
3580 reflections | (Δ/σ)max = 0.001 |
287 parameters | Δρmax = 1.05 e Å−3 |
1 restraint | Δρmin = −0.29 e Å−3 |
[Ni(C8H3NO6)(C12H10N2)(H2O)] | γ = 110.727 (1)° |
Mr = 468.06 | V = 1001.68 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.3723 (6) Å | Mo Kα radiation |
b = 10.9947 (7) Å | µ = 1.02 mm−1 |
c = 11.1704 (8) Å | T = 293 K |
α = 109.970 (1)° | 0.43 × 0.24 × 0.15 mm |
β = 90.190 (1)° |
Bruker SMART CCD area-detector diffractometer | 3580 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 3332 reflections with I > 2σ(I) |
Tmin = 0.669, Tmax = 0.862 | Rint = 0.011 |
5380 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 1 restraint |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 1.05 e Å−3 |
3580 reflections | Δρmin = −0.29 e Å−3 |
287 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | −0.10441 (3) | 0.65566 (2) | 0.40788 (2) | 0.02504 (11) | |
O1 | 0.08218 (16) | 0.83742 (14) | 0.52003 (14) | 0.0310 (3) | |
O2 | 0.12955 (16) | 0.65335 (15) | 0.40496 (14) | 0.0317 (3) | |
O3 | 0.72083 (17) | 0.72162 (16) | 0.46313 (14) | 0.0335 (3) | |
O4 | 0.7598 (2) | 0.76834 (19) | 0.67483 (15) | 0.0452 (4) | |
O5 | 0.7148 (2) | 1.2514 (2) | 0.8534 (2) | 0.0669 (6) | |
O6 | 0.4914 (3) | 1.2513 (2) | 0.8145 (3) | 0.0922 (9) | |
O7 | −0.10853 (19) | 0.59321 (17) | 0.56426 (15) | 0.0368 (4) | |
H7C | −0.1478 | 0.6361 | 0.6203 | 0.055* | |
N1 | −0.2423 (2) | 0.45995 (18) | 0.28631 (17) | 0.0310 (4) | |
N2 | −0.0886 (2) | 0.73429 (18) | 0.26156 (16) | 0.0295 (4) | |
N3 | 0.5841 (2) | 1.1956 (2) | 0.79624 (19) | 0.0459 (5) | |
C1 | 0.1744 (2) | 0.7762 (2) | 0.48722 (19) | 0.0267 (4) | |
C2 | 0.3389 (2) | 0.8505 (2) | 0.55081 (19) | 0.0274 (4) | |
C3 | 0.4422 (2) | 0.7831 (2) | 0.52789 (19) | 0.0288 (4) | |
H3 | 0.4126 | 0.6938 | 0.4655 | 0.035* | |
C4 | 0.5902 (2) | 0.8484 (2) | 0.59767 (18) | 0.0291 (4) | |
C5 | 0.6353 (2) | 0.9824 (2) | 0.6881 (2) | 0.0328 (5) | |
H5 | 0.7322 | 1.0259 | 0.7372 | 0.039* | |
C6 | 0.5339 (2) | 1.0506 (2) | 0.70426 (19) | 0.0314 (4) | |
C7 | 0.3861 (2) | 0.9872 (2) | 0.63851 (19) | 0.0307 (4) | |
H7A | 0.3195 | 1.0348 | 0.6525 | 0.037* | |
C8 | 0.6993 (2) | 0.7724 (2) | 0.57767 (19) | 0.0296 (4) | |
C9 | −0.1887 (3) | 0.3572 (2) | 0.2488 (2) | 0.0427 (6) | |
H9 | −0.0886 | 0.3762 | 0.2815 | 0.051* | |
C10 | −0.2739 (3) | 0.2259 (2) | 0.1648 (2) | 0.0444 (6) | |
H10 | −0.2310 | 0.1581 | 0.1412 | 0.053* | |
C11 | −0.4237 (3) | 0.1925 (2) | 0.1143 (2) | 0.0363 (5) | |
C12 | −0.4787 (3) | 0.2997 (3) | 0.1542 (2) | 0.0475 (6) | |
H12 | −0.5788 | 0.2831 | 0.1235 | 0.057* | |
C13 | −0.3868 (3) | 0.4297 (2) | 0.2382 (2) | 0.0436 (6) | |
H13 | −0.4263 | 0.4998 | 0.2628 | 0.052* | |
C14 | −0.5208 (3) | 0.0535 (3) | 0.0252 (2) | 0.0428 (5) | |
C15 | −0.0938 (3) | 0.6642 (2) | 0.1362 (2) | 0.0435 (6) | |
H15 | −0.1075 | 0.5704 | 0.1097 | 0.052* | |
C16 | −0.0798 (3) | 0.7238 (3) | 0.0449 (2) | 0.0478 (6) | |
H16 | −0.0861 | 0.6701 | −0.0412 | 0.057* | |
C17 | −0.0564 (3) | 0.8640 (2) | 0.0810 (2) | 0.0354 (5) | |
C18 | −0.0545 (2) | 0.9364 (2) | 0.2110 (2) | 0.0322 (5) | |
H18 | −0.0422 | 1.0300 | 0.2400 | 0.039* | |
C19 | −0.0710 (2) | 0.8682 (2) | 0.2961 (2) | 0.0309 (4) | |
H19 | −0.0697 | 0.9182 | 0.3824 | 0.037* | |
C20 | −0.0330 (3) | 0.9319 (2) | −0.0139 (2) | 0.0388 (5) | |
H20 | −0.0673 | 0.8748 | −0.1000 | 0.047* | |
H14 | −0.618 (3) | 0.041 (3) | 0.004 (3) | 0.047* | |
H7B | −0.133 (3) | 0.5144 (15) | 0.564 (3) | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02416 (16) | 0.02304 (16) | 0.02844 (16) | 0.01047 (11) | 0.00144 (10) | 0.00846 (11) |
O1 | 0.0250 (7) | 0.0272 (7) | 0.0388 (8) | 0.0123 (6) | 0.0017 (6) | 0.0073 (6) |
O2 | 0.0295 (8) | 0.0274 (8) | 0.0372 (8) | 0.0142 (6) | 0.0026 (6) | 0.0072 (6) |
O3 | 0.0311 (8) | 0.0437 (9) | 0.0329 (8) | 0.0228 (7) | 0.0069 (6) | 0.0135 (7) |
O4 | 0.0518 (10) | 0.0629 (11) | 0.0355 (8) | 0.0384 (9) | 0.0058 (7) | 0.0179 (8) |
O5 | 0.0436 (11) | 0.0469 (11) | 0.0771 (14) | 0.0061 (9) | −0.0101 (10) | −0.0050 (10) |
O6 | 0.0737 (16) | 0.0553 (13) | 0.114 (2) | 0.0416 (12) | −0.0254 (14) | −0.0269 (13) |
O7 | 0.0449 (9) | 0.0370 (9) | 0.0391 (8) | 0.0229 (8) | 0.0077 (7) | 0.0189 (7) |
N1 | 0.0319 (9) | 0.0260 (9) | 0.0316 (9) | 0.0085 (7) | 0.0016 (7) | 0.0090 (7) |
N2 | 0.0318 (9) | 0.0297 (9) | 0.0308 (9) | 0.0145 (8) | 0.0059 (7) | 0.0125 (7) |
N3 | 0.0435 (12) | 0.0380 (11) | 0.0462 (11) | 0.0147 (10) | 0.0013 (9) | 0.0043 (9) |
C1 | 0.0270 (10) | 0.0270 (10) | 0.0312 (10) | 0.0130 (8) | 0.0064 (8) | 0.0139 (8) |
C2 | 0.0252 (10) | 0.0300 (10) | 0.0301 (10) | 0.0116 (8) | 0.0048 (8) | 0.0135 (8) |
C3 | 0.0283 (10) | 0.0301 (10) | 0.0296 (10) | 0.0135 (9) | 0.0052 (8) | 0.0103 (8) |
C4 | 0.0246 (10) | 0.0365 (12) | 0.0318 (10) | 0.0144 (9) | 0.0082 (8) | 0.0163 (9) |
C5 | 0.0260 (11) | 0.0387 (12) | 0.0335 (11) | 0.0120 (9) | 0.0030 (8) | 0.0130 (9) |
C6 | 0.0305 (11) | 0.0299 (11) | 0.0312 (10) | 0.0114 (9) | 0.0052 (8) | 0.0084 (9) |
C7 | 0.0295 (11) | 0.0317 (11) | 0.0364 (11) | 0.0168 (9) | 0.0089 (9) | 0.0137 (9) |
C8 | 0.0238 (10) | 0.0314 (11) | 0.0346 (11) | 0.0111 (9) | 0.0036 (8) | 0.0127 (9) |
C9 | 0.0386 (13) | 0.0323 (12) | 0.0490 (13) | 0.0135 (10) | −0.0102 (10) | 0.0054 (10) |
C10 | 0.0458 (14) | 0.0309 (12) | 0.0492 (14) | 0.0160 (11) | −0.0063 (11) | 0.0045 (10) |
C11 | 0.0381 (12) | 0.0295 (11) | 0.0323 (11) | 0.0057 (9) | 0.0034 (9) | 0.0079 (9) |
C12 | 0.0296 (12) | 0.0428 (14) | 0.0534 (14) | 0.0097 (10) | −0.0032 (10) | 0.0020 (11) |
C13 | 0.0328 (12) | 0.0363 (12) | 0.0517 (14) | 0.0142 (10) | 0.0003 (10) | 0.0030 (11) |
C14 | 0.0392 (13) | 0.0359 (12) | 0.0383 (12) | 0.0055 (10) | −0.0005 (10) | 0.0049 (10) |
C15 | 0.0657 (17) | 0.0315 (12) | 0.0374 (12) | 0.0226 (11) | 0.0145 (11) | 0.0130 (10) |
C16 | 0.0717 (18) | 0.0380 (13) | 0.0313 (11) | 0.0197 (12) | 0.0149 (11) | 0.0110 (10) |
C17 | 0.0340 (12) | 0.0387 (12) | 0.0363 (11) | 0.0129 (10) | 0.0078 (9) | 0.0178 (10) |
C18 | 0.0343 (11) | 0.0307 (11) | 0.0354 (11) | 0.0144 (9) | 0.0061 (9) | 0.0144 (9) |
C19 | 0.0323 (11) | 0.0306 (11) | 0.0314 (10) | 0.0144 (9) | 0.0046 (8) | 0.0107 (9) |
C20 | 0.0433 (13) | 0.0434 (12) | 0.0324 (11) | 0.0161 (10) | 0.0059 (10) | 0.0174 (10) |
Ni1—O3i | 2.0326 (14) | C4—C8 | 1.507 (3) |
Ni1—N1 | 2.0417 (17) | C5—C6 | 1.383 (3) |
Ni1—N2 | 2.0777 (17) | C5—H5 | 0.9300 |
Ni1—O7 | 2.0797 (15) | C6—C7 | 1.380 (3) |
Ni1—O1 | 2.1031 (14) | C7—H7A | 0.9300 |
Ni1—O2 | 2.2021 (14) | C9—C10 | 1.363 (3) |
Ni1—C1 | 2.470 (2) | C9—H9 | 0.9300 |
O1—C1 | 1.257 (2) | C10—C11 | 1.383 (3) |
O2—C1 | 1.262 (2) | C10—H10 | 0.9300 |
O3—C8 | 1.258 (2) | C11—C12 | 1.388 (3) |
O3—Ni1ii | 2.0326 (14) | C11—C14 | 1.458 (3) |
O4—C8 | 1.244 (3) | C12—C13 | 1.368 (3) |
O5—N3 | 1.217 (3) | C12—H12 | 0.9300 |
O6—N3 | 1.210 (3) | C13—H13 | 0.9300 |
O7—H7C | 0.8200 | C14—C14iii | 1.314 (5) |
O7—H7B | 0.814 (10) | C14—H14 | 0.89 (3) |
N1—C9 | 1.335 (3) | C15—C16 | 1.372 (3) |
N1—C13 | 1.337 (3) | C15—H15 | 0.9300 |
N2—C19 | 1.336 (3) | C16—C17 | 1.387 (3) |
N2—C15 | 1.339 (3) | C16—H16 | 0.9300 |
N3—C6 | 1.471 (3) | C17—C18 | 1.394 (3) |
C1—C2 | 1.501 (3) | C17—C20 | 1.468 (3) |
C2—C3 | 1.390 (3) | C18—C19 | 1.377 (3) |
C2—C7 | 1.391 (3) | C18—H18 | 0.9300 |
C3—C4 | 1.397 (3) | C19—H19 | 0.9300 |
C3—H3 | 0.9300 | C20—C20iv | 1.322 (5) |
C4—C5 | 1.382 (3) | C20—H20 | 0.9300 |
O3i—Ni1—N1 | 95.70 (7) | C3—C4—C8 | 120.55 (18) |
O3i—Ni1—N2 | 89.29 (6) | C4—C5—C6 | 118.92 (19) |
N1—Ni1—N2 | 91.76 (7) | C4—C5—H5 | 120.5 |
O3i—Ni1—O7 | 90.31 (6) | C6—C5—H5 | 120.5 |
N1—Ni1—O7 | 92.91 (7) | C7—C6—C5 | 122.42 (19) |
N2—Ni1—O7 | 175.33 (6) | C7—C6—N3 | 118.54 (19) |
O3i—Ni1—O1 | 98.89 (6) | C5—C6—N3 | 119.04 (19) |
N1—Ni1—O1 | 165.38 (6) | C6—C7—C2 | 118.61 (19) |
N2—Ni1—O1 | 89.30 (6) | C6—C7—H7A | 120.7 |
O7—Ni1—O1 | 86.16 (6) | C2—C7—H7A | 120.7 |
O3i—Ni1—O2 | 159.73 (6) | O4—C8—O3 | 127.14 (19) |
N1—Ni1—O2 | 104.19 (6) | O4—C8—C4 | 117.32 (18) |
N2—Ni1—O2 | 93.84 (6) | O3—C8—C4 | 115.52 (17) |
O7—Ni1—O2 | 84.95 (6) | N1—C9—C10 | 123.1 (2) |
O1—Ni1—O2 | 61.19 (5) | N1—C9—H9 | 118.5 |
O3i—Ni1—C1 | 129.22 (6) | C10—C9—H9 | 118.5 |
N1—Ni1—C1 | 134.81 (7) | C9—C10—C11 | 120.5 (2) |
N2—Ni1—C1 | 93.28 (7) | C9—C10—H10 | 119.7 |
O7—Ni1—C1 | 83.37 (6) | C11—C10—H10 | 119.7 |
O1—Ni1—C1 | 30.59 (6) | C10—C11—C12 | 116.1 (2) |
O2—Ni1—C1 | 30.66 (6) | C10—C11—C14 | 123.0 (2) |
C1—O1—Ni1 | 91.05 (12) | C12—C11—C14 | 121.0 (2) |
C1—O2—Ni1 | 86.48 (11) | C13—C12—C11 | 120.5 (2) |
C8—O3—Ni1ii | 125.17 (13) | C13—C12—H12 | 119.7 |
Ni1—O7—H7C | 109.5 | C11—C12—H12 | 119.7 |
Ni1—O7—H7B | 128 (2) | N1—C13—C12 | 122.6 (2) |
H7C—O7—H7B | 108.7 | N1—C13—H13 | 118.7 |
C9—N1—C13 | 117.23 (19) | C12—C13—H13 | 118.7 |
C9—N1—Ni1 | 120.54 (15) | C14iii—C14—C11 | 126.5 (3) |
C13—N1—Ni1 | 122.20 (15) | C14iii—C14—H14 | 117.9 (18) |
C19—N2—C15 | 116.78 (18) | C11—C14—H14 | 115.6 (18) |
C19—N2—Ni1 | 116.73 (14) | N2—C15—C16 | 123.3 (2) |
C15—N2—Ni1 | 126.49 (15) | N2—C15—H15 | 118.3 |
O6—N3—O5 | 123.4 (2) | C16—C15—H15 | 118.3 |
O6—N3—C6 | 118.2 (2) | C15—C16—C17 | 120.0 (2) |
O5—N3—C6 | 118.3 (2) | C15—C16—H16 | 120.0 |
O1—C1—O2 | 121.02 (18) | C17—C16—H16 | 120.0 |
O1—C1—C2 | 118.64 (18) | C16—C17—C18 | 116.7 (2) |
O2—C1—C2 | 120.31 (17) | C16—C17—C20 | 121.1 (2) |
O1—C1—Ni1 | 58.36 (10) | C18—C17—C20 | 122.2 (2) |
O2—C1—Ni1 | 62.86 (10) | C19—C18—C17 | 119.4 (2) |
C2—C1—Ni1 | 173.30 (14) | C19—C18—H18 | 120.3 |
C3—C2—C7 | 119.69 (19) | C17—C18—H18 | 120.3 |
C3—C2—C1 | 121.18 (18) | N2—C19—C18 | 123.63 (19) |
C7—C2—C1 | 119.07 (18) | N2—C19—H19 | 118.2 |
C2—C3—C4 | 120.61 (19) | C18—C19—H19 | 118.2 |
C2—C3—H3 | 119.7 | C20iv—C20—C17 | 124.9 (3) |
C4—C3—H3 | 119.7 | C20iv—C20—H20 | 117.6 |
C5—C4—C3 | 119.60 (18) | C17—C20—H20 | 117.6 |
C5—C4—C8 | 119.83 (18) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x−1, −y, −z; (iv) −x, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7C···O4i | 0.82 | 1.88 | 2.612 (2) | 149 |
O7—H7B···O2v | 0.81 (1) | 2.00 (1) | 2.786 (2) | 163 (3) |
Symmetry codes: (i) x−1, y, z; (v) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C8H3NO6)(C12H10N2)(H2O)] |
Mr | 468.06 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.3723 (6), 10.9947 (7), 11.1704 (8) |
α, β, γ (°) | 109.970 (1), 90.190 (1), 110.727 (1) |
V (Å3) | 1001.68 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.02 |
Crystal size (mm) | 0.43 × 0.24 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.669, 0.862 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5380, 3580, 3332 |
Rint | 0.011 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.089, 1.04 |
No. of reflections | 3580 |
No. of parameters | 287 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.05, −0.29 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ni1—O3i | 2.0326 (14) | Ni1—O7 | 2.0797 (15) |
Ni1—N1 | 2.0417 (17) | Ni1—O1 | 2.1031 (14) |
Ni1—N2 | 2.0777 (17) | Ni1—O2 | 2.2021 (14) |
Symmetry code: (i) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7C···O4i | 0.82 | 1.88 | 2.612 (2) | 148.5 |
O7—H7B···O2ii | 0.814 (10) | 1.999 (13) | 2.786 (2) | 163 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+1. |
Acknowledgements
The project was supported by the Natural Science Foundation of Zhejiang Province, China (No. Y407091).
References
Bauer, W. & Weber, B. (2009). Inorg. Chim. Acta, 362, 2341–2346. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Jung, E. J., Lee, U. & Koo, B. K. (2009). Inorg. Chim. Acta, 362, 1655–1659. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, H. P., Li, X.-H. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m158–m159. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. E60, m1501–m1503. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zheng, X. F. & Zhu, L. G. (2009). Cryst. Growth Des. 9, 4407–4414. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Great interest has recently been focused on the crystal engineering of supramolecular architectures assembled by means of well designed organic ligands and metal ions under appropriate conditions. Previous reports have revealed that carboxylate ligands such as m-isophthalic acid can bind and bridge metal ions in various coordination modes, and bi-functional ligands, such as 4,4,-bipyridine or trans-1,2-bis(4-pyridyl)ethylene (bpe) also can link the metal ions to form network structures (Xiao & Yuan, 2004; Xiao et al., 2005; Bauer & Weber, 2009; Jung et al., 2009; Zheng & Zhu, 2009). Much less is known of systems containing two different ligands. Hence we have employed bpe and 5-nitroisophthalic acid (nip) as ligands in this work. We report herein the new three-dimensional structure of [Ni(nip)(bpe)(H2O)]n.
The asymmetric unit of the structure contains one NiII atom, one water molecule, one nip ligand and two half-molecules of the N-heterocycle with an inversion centre at the midpoint of the central C═C bond. The Ni1 site shows a slightly distorted octahedron with a NiN2O4 coordination set, as depicted in Fig.1, where the two equatorial N atoms (N1, N2) are from two different bpe ligands, four O atoms from two different nip (O1, O2 and O3i atoms [symmetry code: (i) x - 1, y, z]), and one water molecule, respectively, with O2 and O3i atoms [symmetry code: (i) x - 1, y, z] in the axial positions. The metal centres are connected in a three-dimensional fashion through the bpe and nip ligands. The Ni—O and Ni—N bond lengths fall in the ranges 2.0326 (14)–2.2021 (14) Å and 2.0417 (17)–2.0777 (17) Å, respectively. O—H···O hydrogen bonding between the water molecules and the O atoms of the free carboxylate groups stabilizes this assembly. The coordination water molecule forms strong hydrogen bonds O7—H7C···O4i and O7—H7B···O2v to the oxygen atoms of the carboxylate anion of the nip ligand (see Table 2). Fig. 2 shows a part of the packed structure of the title compound.