metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m80-m81

Poly[aqua­[μ2-cis-1,2-bis­­(4-pyrid­yl)ethyl­ene-κ2N:N′](μ2-5-nitro­isophthalato-κ3O:O′,O′′)nickel(II)]

aDepartment of Petroleum Engineering, Daqing Petroleum Institute, Heilongjiang 151400, People's Republic of China, bDepartment of Chemistry, Zhejiang University 310027, People's Republic of China, and cSecond Oil Recovery Plant, Daqing Oilfields Co, Daqing 163414, People's Republic of China
*Correspondence e-mail: chem8618@126.com

(Received 5 December 2009; accepted 14 December 2009; online 19 December 2009)

In the title compound, [Ni(C8H3NO6)(C12H10N2)(H2O)]n, the NiII atom is octa­hedrally coordinated by two cis N atoms from two different 1,2-bis­(4-pyrid­yl)ethyl­ene (bpe) ligands, two O atoms from one chelating carboxyl group of the 5-nitro­isophthalic acid (nip) ligand, one O atom from another monodentate nip ligand and one O atom from a water mol­ecule, forming a three-dimensional network structure. Inter­molecular O—H⋯O hydrogen bonding stabilizes this arrangement. The asymmetric unit of the structure contains one NiII atom, one water mol­ecule, one nip ligand and two half-mol­ecules of the bpe ligand with an inversion centre at the mid-point of the central C=C bond.

Related literature

For structures containing nip ligands, see: Xiao & Yuan (2004[Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. E60, m1501-m1503.]); Xiao et al. (2005[Xiao, H. P., Li, X.-H. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m158-m159.]). For structures containing bpe ligands, see: Bauer & Weber (2009[Bauer, W. & Weber, B. (2009). Inorg. Chim. Acta, 362, 2341-2346.]); Jung et al. (2009[Jung, E. J., Lee, U. & Koo, B. K. (2009). Inorg. Chim. Acta, 362, 1655-1659.]); Zheng & Zhu (2009[Zheng, X. F. & Zhu, L. G. (2009). Cryst. Growth Des. 9, 4407-4414.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H3NO6)(C12H10N2)(H2O)]

  • Mr = 468.06

  • Triclinic, [P \overline 1]

  • a = 9.3723 (6) Å

  • b = 10.9947 (7) Å

  • c = 11.1704 (8) Å

  • α = 109.970 (1)°

  • β = 90.190 (1)°

  • γ = 110.727 (1)°

  • V = 1001.68 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.43 × 0.24 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.669, Tmax = 0.862

  • 5380 measured reflections

  • 3580 independent reflections

  • 3332 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.089

  • S = 1.04

  • 3580 reflections

  • 287 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O3i 2.0326 (14)
Ni1—N1 2.0417 (17)
Ni1—N2 2.0777 (17)
Ni1—O7 2.0797 (15)
Ni1—O1 2.1031 (14)
Ni1—O2 2.2021 (14)
Symmetry code: (i) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7C⋯O4i 0.82 1.88 2.612 (2) 149
O7—H7B⋯O2ii 0.81 (1) 2.00 (1) 2.786 (2) 163 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Great interest has recently been focused on the crystal engineering of supramolecular architectures assembled by means of well designed organic ligands and metal ions under appropriate conditions. Previous reports have revealed that carboxylate ligands such as m-isophthalic acid can bind and bridge metal ions in various coordination modes, and bi-functional ligands, such as 4,4,-bipyridine or trans-1,2-bis(4-pyridyl)ethylene (bpe) also can link the metal ions to form network structures (Xiao & Yuan, 2004; Xiao et al., 2005; Bauer & Weber, 2009; Jung et al., 2009; Zheng & Zhu, 2009). Much less is known of systems containing two different ligands. Hence we have employed bpe and 5-nitroisophthalic acid (nip) as ligands in this work. We report herein the new three-dimensional structure of [Ni(nip)(bpe)(H2O)]n.

The asymmetric unit of the structure contains one NiII atom, one water molecule, one nip ligand and two half-molecules of the N-heterocycle with an inversion centre at the midpoint of the central CC bond. The Ni1 site shows a slightly distorted octahedron with a NiN2O4 coordination set, as depicted in Fig.1, where the two equatorial N atoms (N1, N2) are from two different bpe ligands, four O atoms from two different nip (O1, O2 and O3i atoms [symmetry code: (i) x - 1, y, z]), and one water molecule, respectively, with O2 and O3i atoms [symmetry code: (i) x - 1, y, z] in the axial positions. The metal centres are connected in a three-dimensional fashion through the bpe and nip ligands. The Ni—O and Ni—N bond lengths fall in the ranges 2.0326 (14)–2.2021 (14) Å and 2.0417 (17)–2.0777 (17) Å, respectively. O—H···O hydrogen bonding between the water molecules and the O atoms of the free carboxylate groups stabilizes this assembly. The coordination water molecule forms strong hydrogen bonds O7—H7C···O4i and O7—H7B···O2v to the oxygen atoms of the carboxylate anion of the nip ligand (see Table 2). Fig. 2 shows a part of the packed structure of the title compound.

Related literature top

For structures containing nip ligands, see: Xiao & Yuan (2004); Xiao et al. (2005). For structures containing bpe ligands, see: Bauer & Weber (2009); Jung et al. (2009); Zheng & Zhu (2009).

Experimental top

Nickel(II) acetate tetrahydrate (0.5 mmol), 5-nitroisophthalic acid (0.5 mmol) and 1,2-bis(4-pyridyl)ethylene] (0.5 mmol) were placed in a 30 ml teflon-lined, stainless-steel Parr autoclave together with water (20 ml). The autoclave was heated at 423 K for a week and was subsequently cooled slowly to room temperature. Green single crystals were obtained.

Refinement top

The H atoms of the water molecules were located in a difference Fourier map and were refined isotropically, with O—H and H—H distance restraints of 0.82 (1) Å and 1.37 (2) Å, respectively. There is a conspicious electron density of ca 1.1 electrons per cubic Angstrom at ca x=-0.27, y=0.5, z=-0.22. This points to a statistically disordered (s.o.f. ca 0.15) water molecule with distances of this highest peak to the H7B and O7 atoms of 2.78 Å and 3.11 Å, respectively. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms. The Uiso(H) values were set at 1.2Ueq (C) and 1.5Ueq (O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination of the Ni (II) atom in the structure of the title compound, with atom labels and 50% probability displacement ellipsoids for all non-H atoms. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.]
[Figure 2] Fig. 2. A part of the network structure of the title compound.
Poly[aqua[µ2-cis-1,2-bis(4-pyridyl)ethylene- κ2N:N'](µ2-5-nitroisophthalato- κ3O:O',O'')nickel(II)] top
Crystal data top
[Ni(C8H3NO6)(C12H10N2)(H2O)]Z = 2
Mr = 468.06F(000) = 480
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3723 (6) ÅCell parameters from 563 reflections
b = 10.9947 (7) Åθ = 2.3–25.2°
c = 11.1704 (8) ŵ = 1.02 mm1
α = 109.970 (1)°T = 293 K
β = 90.190 (1)°Prism, green
γ = 110.727 (1)°0.43 × 0.24 × 0.15 mm
V = 1001.68 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3580 independent reflections
Radiation source: fine-focus sealed tube3332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1011
Tmin = 0.669, Tmax = 0.862k = 1313
5380 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.2791P]
where P = (Fo2 + 2Fc2)/3
3580 reflections(Δ/σ)max = 0.001
287 parametersΔρmax = 1.05 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
[Ni(C8H3NO6)(C12H10N2)(H2O)]γ = 110.727 (1)°
Mr = 468.06V = 1001.68 (12) Å3
Triclinic, P1Z = 2
a = 9.3723 (6) ÅMo Kα radiation
b = 10.9947 (7) ŵ = 1.02 mm1
c = 11.1704 (8) ÅT = 293 K
α = 109.970 (1)°0.43 × 0.24 × 0.15 mm
β = 90.190 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3580 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3332 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.862Rint = 0.011
5380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.05 e Å3
3580 reflectionsΔρmin = 0.29 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.10441 (3)0.65566 (2)0.40788 (2)0.02504 (11)
O10.08218 (16)0.83742 (14)0.52003 (14)0.0310 (3)
O20.12955 (16)0.65335 (15)0.40496 (14)0.0317 (3)
O30.72083 (17)0.72162 (16)0.46313 (14)0.0335 (3)
O40.7598 (2)0.76834 (19)0.67483 (15)0.0452 (4)
O50.7148 (2)1.2514 (2)0.8534 (2)0.0669 (6)
O60.4914 (3)1.2513 (2)0.8145 (3)0.0922 (9)
O70.10853 (19)0.59321 (17)0.56426 (15)0.0368 (4)
H7C0.14780.63610.62030.055*
N10.2423 (2)0.45995 (18)0.28631 (17)0.0310 (4)
N20.0886 (2)0.73429 (18)0.26156 (16)0.0295 (4)
N30.5841 (2)1.1956 (2)0.79624 (19)0.0459 (5)
C10.1744 (2)0.7762 (2)0.48722 (19)0.0267 (4)
C20.3389 (2)0.8505 (2)0.55081 (19)0.0274 (4)
C30.4422 (2)0.7831 (2)0.52789 (19)0.0288 (4)
H30.41260.69380.46550.035*
C40.5902 (2)0.8484 (2)0.59767 (18)0.0291 (4)
C50.6353 (2)0.9824 (2)0.6881 (2)0.0328 (5)
H50.73221.02590.73720.039*
C60.5339 (2)1.0506 (2)0.70426 (19)0.0314 (4)
C70.3861 (2)0.9872 (2)0.63851 (19)0.0307 (4)
H7A0.31951.03480.65250.037*
C80.6993 (2)0.7724 (2)0.57767 (19)0.0296 (4)
C90.1887 (3)0.3572 (2)0.2488 (2)0.0427 (6)
H90.08860.37620.28150.051*
C100.2739 (3)0.2259 (2)0.1648 (2)0.0444 (6)
H100.23100.15810.14120.053*
C110.4237 (3)0.1925 (2)0.1143 (2)0.0363 (5)
C120.4787 (3)0.2997 (3)0.1542 (2)0.0475 (6)
H120.57880.28310.12350.057*
C130.3868 (3)0.4297 (2)0.2382 (2)0.0436 (6)
H130.42630.49980.26280.052*
C140.5208 (3)0.0535 (3)0.0252 (2)0.0428 (5)
C150.0938 (3)0.6642 (2)0.1362 (2)0.0435 (6)
H150.10750.57040.10970.052*
C160.0798 (3)0.7238 (3)0.0449 (2)0.0478 (6)
H160.08610.67010.04120.057*
C170.0564 (3)0.8640 (2)0.0810 (2)0.0354 (5)
C180.0545 (2)0.9364 (2)0.2110 (2)0.0322 (5)
H180.04221.03000.24000.039*
C190.0710 (2)0.8682 (2)0.2961 (2)0.0309 (4)
H190.06970.91820.38240.037*
C200.0330 (3)0.9319 (2)0.0139 (2)0.0388 (5)
H200.06730.87480.10000.047*
H140.618 (3)0.041 (3)0.004 (3)0.047*
H7B0.133 (3)0.5144 (15)0.564 (3)0.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02416 (16)0.02304 (16)0.02844 (16)0.01047 (11)0.00144 (10)0.00846 (11)
O10.0250 (7)0.0272 (7)0.0388 (8)0.0123 (6)0.0017 (6)0.0073 (6)
O20.0295 (8)0.0274 (8)0.0372 (8)0.0142 (6)0.0026 (6)0.0072 (6)
O30.0311 (8)0.0437 (9)0.0329 (8)0.0228 (7)0.0069 (6)0.0135 (7)
O40.0518 (10)0.0629 (11)0.0355 (8)0.0384 (9)0.0058 (7)0.0179 (8)
O50.0436 (11)0.0469 (11)0.0771 (14)0.0061 (9)0.0101 (10)0.0050 (10)
O60.0737 (16)0.0553 (13)0.114 (2)0.0416 (12)0.0254 (14)0.0269 (13)
O70.0449 (9)0.0370 (9)0.0391 (8)0.0229 (8)0.0077 (7)0.0189 (7)
N10.0319 (9)0.0260 (9)0.0316 (9)0.0085 (7)0.0016 (7)0.0090 (7)
N20.0318 (9)0.0297 (9)0.0308 (9)0.0145 (8)0.0059 (7)0.0125 (7)
N30.0435 (12)0.0380 (11)0.0462 (11)0.0147 (10)0.0013 (9)0.0043 (9)
C10.0270 (10)0.0270 (10)0.0312 (10)0.0130 (8)0.0064 (8)0.0139 (8)
C20.0252 (10)0.0300 (10)0.0301 (10)0.0116 (8)0.0048 (8)0.0135 (8)
C30.0283 (10)0.0301 (10)0.0296 (10)0.0135 (9)0.0052 (8)0.0103 (8)
C40.0246 (10)0.0365 (12)0.0318 (10)0.0144 (9)0.0082 (8)0.0163 (9)
C50.0260 (11)0.0387 (12)0.0335 (11)0.0120 (9)0.0030 (8)0.0130 (9)
C60.0305 (11)0.0299 (11)0.0312 (10)0.0114 (9)0.0052 (8)0.0084 (9)
C70.0295 (11)0.0317 (11)0.0364 (11)0.0168 (9)0.0089 (9)0.0137 (9)
C80.0238 (10)0.0314 (11)0.0346 (11)0.0111 (9)0.0036 (8)0.0127 (9)
C90.0386 (13)0.0323 (12)0.0490 (13)0.0135 (10)0.0102 (10)0.0054 (10)
C100.0458 (14)0.0309 (12)0.0492 (14)0.0160 (11)0.0063 (11)0.0045 (10)
C110.0381 (12)0.0295 (11)0.0323 (11)0.0057 (9)0.0034 (9)0.0079 (9)
C120.0296 (12)0.0428 (14)0.0534 (14)0.0097 (10)0.0032 (10)0.0020 (11)
C130.0328 (12)0.0363 (12)0.0517 (14)0.0142 (10)0.0003 (10)0.0030 (11)
C140.0392 (13)0.0359 (12)0.0383 (12)0.0055 (10)0.0005 (10)0.0049 (10)
C150.0657 (17)0.0315 (12)0.0374 (12)0.0226 (11)0.0145 (11)0.0130 (10)
C160.0717 (18)0.0380 (13)0.0313 (11)0.0197 (12)0.0149 (11)0.0110 (10)
C170.0340 (12)0.0387 (12)0.0363 (11)0.0129 (10)0.0078 (9)0.0178 (10)
C180.0343 (11)0.0307 (11)0.0354 (11)0.0144 (9)0.0061 (9)0.0144 (9)
C190.0323 (11)0.0306 (11)0.0314 (10)0.0144 (9)0.0046 (8)0.0107 (9)
C200.0433 (13)0.0434 (12)0.0324 (11)0.0161 (10)0.0059 (10)0.0174 (10)
Geometric parameters (Å, º) top
Ni1—O3i2.0326 (14)C4—C81.507 (3)
Ni1—N12.0417 (17)C5—C61.383 (3)
Ni1—N22.0777 (17)C5—H50.9300
Ni1—O72.0797 (15)C6—C71.380 (3)
Ni1—O12.1031 (14)C7—H7A0.9300
Ni1—O22.2021 (14)C9—C101.363 (3)
Ni1—C12.470 (2)C9—H90.9300
O1—C11.257 (2)C10—C111.383 (3)
O2—C11.262 (2)C10—H100.9300
O3—C81.258 (2)C11—C121.388 (3)
O3—Ni1ii2.0326 (14)C11—C141.458 (3)
O4—C81.244 (3)C12—C131.368 (3)
O5—N31.217 (3)C12—H120.9300
O6—N31.210 (3)C13—H130.9300
O7—H7C0.8200C14—C14iii1.314 (5)
O7—H7B0.814 (10)C14—H140.89 (3)
N1—C91.335 (3)C15—C161.372 (3)
N1—C131.337 (3)C15—H150.9300
N2—C191.336 (3)C16—C171.387 (3)
N2—C151.339 (3)C16—H160.9300
N3—C61.471 (3)C17—C181.394 (3)
C1—C21.501 (3)C17—C201.468 (3)
C2—C31.390 (3)C18—C191.377 (3)
C2—C71.391 (3)C18—H180.9300
C3—C41.397 (3)C19—H190.9300
C3—H30.9300C20—C20iv1.322 (5)
C4—C51.382 (3)C20—H200.9300
O3i—Ni1—N195.70 (7)C3—C4—C8120.55 (18)
O3i—Ni1—N289.29 (6)C4—C5—C6118.92 (19)
N1—Ni1—N291.76 (7)C4—C5—H5120.5
O3i—Ni1—O790.31 (6)C6—C5—H5120.5
N1—Ni1—O792.91 (7)C7—C6—C5122.42 (19)
N2—Ni1—O7175.33 (6)C7—C6—N3118.54 (19)
O3i—Ni1—O198.89 (6)C5—C6—N3119.04 (19)
N1—Ni1—O1165.38 (6)C6—C7—C2118.61 (19)
N2—Ni1—O189.30 (6)C6—C7—H7A120.7
O7—Ni1—O186.16 (6)C2—C7—H7A120.7
O3i—Ni1—O2159.73 (6)O4—C8—O3127.14 (19)
N1—Ni1—O2104.19 (6)O4—C8—C4117.32 (18)
N2—Ni1—O293.84 (6)O3—C8—C4115.52 (17)
O7—Ni1—O284.95 (6)N1—C9—C10123.1 (2)
O1—Ni1—O261.19 (5)N1—C9—H9118.5
O3i—Ni1—C1129.22 (6)C10—C9—H9118.5
N1—Ni1—C1134.81 (7)C9—C10—C11120.5 (2)
N2—Ni1—C193.28 (7)C9—C10—H10119.7
O7—Ni1—C183.37 (6)C11—C10—H10119.7
O1—Ni1—C130.59 (6)C10—C11—C12116.1 (2)
O2—Ni1—C130.66 (6)C10—C11—C14123.0 (2)
C1—O1—Ni191.05 (12)C12—C11—C14121.0 (2)
C1—O2—Ni186.48 (11)C13—C12—C11120.5 (2)
C8—O3—Ni1ii125.17 (13)C13—C12—H12119.7
Ni1—O7—H7C109.5C11—C12—H12119.7
Ni1—O7—H7B128 (2)N1—C13—C12122.6 (2)
H7C—O7—H7B108.7N1—C13—H13118.7
C9—N1—C13117.23 (19)C12—C13—H13118.7
C9—N1—Ni1120.54 (15)C14iii—C14—C11126.5 (3)
C13—N1—Ni1122.20 (15)C14iii—C14—H14117.9 (18)
C19—N2—C15116.78 (18)C11—C14—H14115.6 (18)
C19—N2—Ni1116.73 (14)N2—C15—C16123.3 (2)
C15—N2—Ni1126.49 (15)N2—C15—H15118.3
O6—N3—O5123.4 (2)C16—C15—H15118.3
O6—N3—C6118.2 (2)C15—C16—C17120.0 (2)
O5—N3—C6118.3 (2)C15—C16—H16120.0
O1—C1—O2121.02 (18)C17—C16—H16120.0
O1—C1—C2118.64 (18)C16—C17—C18116.7 (2)
O2—C1—C2120.31 (17)C16—C17—C20121.1 (2)
O1—C1—Ni158.36 (10)C18—C17—C20122.2 (2)
O2—C1—Ni162.86 (10)C19—C18—C17119.4 (2)
C2—C1—Ni1173.30 (14)C19—C18—H18120.3
C3—C2—C7119.69 (19)C17—C18—H18120.3
C3—C2—C1121.18 (18)N2—C19—C18123.63 (19)
C7—C2—C1119.07 (18)N2—C19—H19118.2
C2—C3—C4120.61 (19)C18—C19—H19118.2
C2—C3—H3119.7C20iv—C20—C17124.9 (3)
C4—C3—H3119.7C20iv—C20—H20117.6
C5—C4—C3119.60 (18)C17—C20—H20117.6
C5—C4—C8119.83 (18)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7C···O4i0.821.882.612 (2)149
O7—H7B···O2v0.81 (1)2.00 (1)2.786 (2)163 (3)
Symmetry codes: (i) x1, y, z; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C8H3NO6)(C12H10N2)(H2O)]
Mr468.06
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3723 (6), 10.9947 (7), 11.1704 (8)
α, β, γ (°)109.970 (1), 90.190 (1), 110.727 (1)
V3)1001.68 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.43 × 0.24 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.669, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
5380, 3580, 3332
Rint0.011
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.04
No. of reflections3580
No. of parameters287
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.05, 0.29

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O3i2.0326 (14)Ni1—O72.0797 (15)
Ni1—N12.0417 (17)Ni1—O12.1031 (14)
Ni1—N22.0777 (17)Ni1—O22.2021 (14)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7C···O4i0.821.882.612 (2)148.5
O7—H7B···O2ii0.814 (10)1.999 (13)2.786 (2)163 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1.
 

Acknowledgements

The project was supported by the Natural Science Foundation of Zhejiang Province, China (No. Y407091).

References

First citationBauer, W. & Weber, B. (2009). Inorg. Chim. Acta, 362, 2341–2346.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJung, E. J., Lee, U. & Koo, B. K. (2009). Inorg. Chim. Acta, 362, 1655–1659.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H. P., Li, X.-H. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. E60, m1501–m1503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, X. F. & Zhu, L. G. (2009). Cryst. Growth Des. 9, 4407–4414.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m80-m81
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds