organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5α-Androst-3-en-17β-yl acetate

aCEMDRX, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, P-3004-516 Coimbra, Portugal, and bCentro de Estudos Farmacêuticos, Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, P-3000-295 Coimbra, Portugal
*Correspondence e-mail: jap@pollux.fis.uc.pt

(Received 4 December 2009; accepted 10 December 2009; online 16 December 2009)

In the crystal structure of the title compound, C21H32O2, ring A is highly distorted, with a conformation inter­mediate between 10β-sofa and 1α,10β-half chair; rings B and C have slightly flattened chair conformations. Ring D assumes an unusual 13β-envelope conformation, probably induced by the acet­oxy substituent. Cohesion of the crystal structure is due only to weak van der Waals inter­actions.

Related literature

For structure–activity relationships (SAR) of steroids with modified A and D rings as aromatase inhibitors, see: Cepa et al. (2005[Cepa, M. M. D. S., Tavares da Silva, E. J., Correia-da-Silva, G., Roleira, F. M. & Teixeira, N. A. A. (2005). J. Med. Chem. 48, 6379-6385.], 2008[Cepa, M. M. D. S., Tavares da Silva, E. J., Correia-da-Silva, G., Roleira, F. M. & Teixeira, N. A. A. (2008). Steroids, 73, 1409-1415.]). For the synthesis and assignment of the absolute configuration, see: Cepa et al. (2008[Cepa, M. M. D. S., Tavares da Silva, E. J., Correia-da-Silva, G., Roleira, F. M. & Teixeira, N. A. A. (2008). Steroids, 73, 1409-1415.]). For a related structure, see Paixão et al. (2001[Paixão, J. A., Andrade, L. C. R., Almeida, M. J. M., Tavares da Silva, E. J., Roleira, F. M., Sá e Melo, M. L. & Campos Neves, A. S. (2001). Acta Cryst. E57, o189-o191.]). For reference bond-length data, see: Allen et al. 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]. For conformational details, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroids Structure, Vol. 1. New York: Plenum.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Altona et al. (1968[Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32.]).

[Scheme 1]

Experimental

Crystal data
  • C21H32O2

  • Mr = 316.47

  • Monoclinic, C 2

  • a = 14.7728 (3) Å

  • b = 6.2673 (1) Å

  • c = 20.2514 (5) Å

  • β = 99.874 (1)°

  • V = 1847.21 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.41 × 0.39 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. Universiry of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.993

  • 22420 measured reflections

  • 2292 independent reflections

  • 1554 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.102

  • S = 1.08

  • 2292 reflections

  • 211 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Following our interest in the study of structure-activity relationships (SAR) of steroids with modified A- and D-rings as aromatase inhibitors (Cepa et al., 2005), we have recently prepared and evaluated the title compound (Cepa et al., 2008), the 17-acetyl derivative of a potent aromatase inhibitor previously studied by X-ray diffraction (Paixão et al., 2001). In order to understand the role of specific D-ring substitution patterns in this inhibition process, its crystal structure was determined by single-crystal X-ray diffractometry.

Apart from the C6—C7 bond length, which is slightly shorter [1.511 (3) Å] than the average Csp3—Csp3 bond length in the molecule [1.53 (1) Å], bond lengths are well within reported values (Allen et al., 1987). Due to the C3C4 double bond, ring A is highly distorted with a conformation intermediate between 10β-sofa and 1α,10β-half chair [(asymmetry parameters (Duax & Norton, 1975): ΔCs(3)=8.9 (3), ΔC2(3,4)=16.8 (4) and ΔC2(1,2)=52.2 (4)°]. Rings B and C have slightly flattened chair conformations. Ring D assumes an unusual 13β-envelope conformation [puckering parameters (Cremer & Pople, 1975) q2=0.477 (3)Å and ϕ2=188.6 (4)°; pseudo-rotation (Altona et al., 1968) and asymmetry parameters (Duax & Norton, 1975): Δ=25.0 (4), ϕm=49.3 (2), ΔCs(13)=5.8 (3), ΔC2(13,14)=17.0 (3) and ΔCs(14)=30.5 (3)°). The distance C3—O17B is 11.087 (3) Å. A pseudo-torsion C19—C10···C13—C18 angle of 3.3 (2)° indicates a slight twist of the molecule. The dihedral angle between the least-squares plane of ring D (C14···C17) and that of the four non-H atoms of the 17β acetate group is 69.2 (1)°. The structure lacks any strong hydrogen-bond donor; only weak van der Waals interactions can be responsible for the cohesion of the crystal structure.

Related literature top

For structure–activity relationships (SAR) of steroids with modified A and D rings as aromatase inhibitors, see: Cepa et al. (2005, 2008). For a related structure, see Paixão et al. (2001). For reference bond-length data, see: Allen et al. 1987. For conformational details, see: Duax & Norton (1975); Cremer & Pople (1975); Altona et al. (1968).

Experimental top

The title steroid was prepared according to the procedure previously reported (Cepa et al., 2008), yielding 95% of the pure compound as a white solid. Crystals suitable for X-ray studies were grown by slow evaporation from absolute ethanol. Mp 389–392 K.

Refinement top

All hydrogen atoms were refined as riding on their parent atoms, with C—H = 0.96, 0.97 and 0.98 Å for methyl, methylene and methine hydrogen atoms; Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other H atoms. The absolute configuration was known from the synthetic route. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
5α-Androst-3-en-17β-yl acetate top
Crystal data top
C21H32O2F(000) = 696
Mr = 316.47Dx = 1.138 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 14.7728 (3) ÅCell parameters from 7585 reflections
b = 6.2673 (1) Åθ = 2.8–21.5°
c = 20.2514 (5) ŵ = 0.07 mm1
β = 99.874 (1)°T = 293 K
V = 1847.21 (7) Å3Prism, colourless
Z = 40.41 × 0.39 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2292 independent reflections
Radiation source: fine-focus sealed tube1554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1818
Tmin = 0.971, Tmax = 0.993k = 88
22420 measured reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.3162P]
where P = (Fo2 + 2Fc2)/3
2292 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C21H32O2V = 1847.21 (7) Å3
Mr = 316.47Z = 4
Monoclinic, C2Mo Kα radiation
a = 14.7728 (3) ŵ = 0.07 mm1
b = 6.2673 (1) ÅT = 293 K
c = 20.2514 (5) Å0.41 × 0.39 × 0.10 mm
β = 99.874 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2292 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1554 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.993Rint = 0.030
22420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.102H-atom parameters constrained
S = 1.08Δρmax = 0.13 e Å3
2292 reflectionsΔρmin = 0.17 e Å3
211 parameters
Special details top

Experimental. IR νmax(KBr) cm-1: 3015 (C–H), 1733 (CO); 1H NMR (300 MHz, CDCl3) δ: 0.77 (3H, s, 18-H3)*, 0.79 (3H, s, 19-H3)*, 2.03 (3H, s, CH3COO), 4.59 (1H, dd, J17α,16α=7.9, J17α,16β=7.9, 17α-H), 5.27 (1H, ddd, J4,3=9.8, J4,5α=4.5, J4,2α=2.5, 4-H), 5.54 (1H, ddd, J3,4=9.8, J3,2β=6.3, J3,2α=3.2, 3-H); 13C NMR (75.6 MHz, DMSO-d6) δ: 11.8 (C-19)**, 12.2 (C-18)**, 20.5, 21.1, 23.4, 23.5, 27.2, 27.5, 31.5, 34.1, 34.9, 35.3, 36.9, 42.7, 45.8 (C-5), 50.7, 53.3, 82.9 (C-17), 125.4 (C-3), 131.2 (C-4); 171.2 (CO); EIMS m/z 316 (M+, 100%). *,** Signals may be interchangeable.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19131 (17)0.6621 (5)0.62336 (12)0.0534 (7)
H1A0.16770.74800.65650.064*
H1B0.22520.75580.59830.064*
C20.11018 (18)0.5657 (6)0.57530 (14)0.0724 (9)
H2A0.06260.52590.60060.087*
H2B0.08480.67330.54290.087*
C30.13589 (19)0.3740 (5)0.53863 (13)0.0633 (8)
H30.09230.31510.50500.076*
C40.21769 (18)0.2854 (5)0.55206 (12)0.0525 (7)
H40.22880.16480.52790.063*
C50.29364 (15)0.3678 (4)0.60392 (11)0.0428 (6)
H50.32650.47210.58080.051*
C60.36450 (17)0.2002 (4)0.63145 (13)0.0508 (7)
H6A0.33660.09500.65680.061*
H6B0.38580.12780.59460.061*
C70.44506 (15)0.3031 (4)0.67622 (12)0.0480 (7)
H7A0.47730.39440.64930.058*
H7B0.48730.19280.69580.058*
C80.41595 (15)0.4351 (4)0.73221 (11)0.0385 (6)
H80.39110.33800.76260.046*
C90.34047 (14)0.5989 (4)0.70474 (10)0.0353 (5)
H90.36810.69510.67560.042*
C100.25731 (14)0.4943 (4)0.65963 (11)0.0394 (6)
C110.31613 (15)0.7380 (4)0.76137 (11)0.0434 (6)
H11A0.27280.84680.74210.052*
H11B0.28600.65000.79050.052*
C120.39942 (15)0.8466 (4)0.80345 (11)0.0429 (6)
H12A0.42530.94870.77590.052*
H12B0.38000.92370.84010.052*
C130.47280 (15)0.6831 (4)0.83163 (11)0.0378 (6)
C140.49663 (14)0.5547 (4)0.77246 (11)0.0399 (6)
H140.51610.65920.74170.048*
C150.58350 (16)0.4311 (5)0.80303 (13)0.0599 (8)
H15A0.62120.40020.76940.072*
H15B0.56790.29810.82290.072*
C160.63351 (16)0.5840 (5)0.85708 (13)0.0572 (7)
H16A0.64500.51480.90060.069*
H16B0.69170.63010.84580.069*
C170.56810 (15)0.7744 (4)0.85757 (12)0.0447 (6)
H170.58260.88340.82630.054*
C180.44041 (17)0.5428 (5)0.88509 (12)0.0530 (7)
H18A0.48590.43580.89980.080*
H18B0.38350.47510.86640.080*
H18C0.43160.62960.92250.080*
C190.20421 (17)0.3490 (5)0.70079 (13)0.0562 (7)
H19A0.16930.43500.72650.084*
H19B0.24680.26250.73050.084*
H19C0.16340.25870.67110.084*
C17A0.64397 (18)0.9967 (5)0.94474 (13)0.0538 (7)
C17B0.6399 (2)1.0837 (7)1.01266 (14)0.0876 (11)
H17B0.58041.05571.02380.131*
H17C0.65051.23481.01290.131*
H17D0.68621.01651.04500.131*
O17A0.57234 (11)0.8688 (3)0.92319 (8)0.0531 (5)
O17B0.70289 (13)1.0344 (4)0.91272 (10)0.0760 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0468 (15)0.0607 (18)0.0501 (15)0.0143 (13)0.0005 (13)0.0053 (14)
C20.0503 (16)0.094 (2)0.0664 (19)0.0145 (18)0.0084 (15)0.021 (2)
C30.0517 (17)0.085 (2)0.0500 (16)0.0041 (17)0.0007 (13)0.0134 (17)
C40.0549 (16)0.0559 (16)0.0456 (15)0.0013 (14)0.0061 (13)0.0085 (13)
C50.0421 (13)0.0468 (14)0.0400 (13)0.0028 (13)0.0082 (11)0.0007 (12)
C60.0507 (16)0.0492 (15)0.0520 (15)0.0099 (13)0.0074 (13)0.0120 (13)
C70.0422 (14)0.0486 (15)0.0530 (15)0.0155 (12)0.0072 (12)0.0062 (13)
C80.0365 (12)0.0400 (13)0.0394 (13)0.0057 (11)0.0079 (10)0.0030 (11)
C90.0356 (12)0.0359 (13)0.0354 (12)0.0034 (11)0.0085 (10)0.0034 (11)
C100.0324 (12)0.0456 (14)0.0399 (13)0.0033 (11)0.0059 (10)0.0007 (11)
C110.0379 (13)0.0472 (16)0.0437 (14)0.0117 (12)0.0028 (11)0.0036 (12)
C120.0437 (14)0.0432 (14)0.0421 (13)0.0076 (12)0.0079 (11)0.0051 (12)
C130.0327 (12)0.0441 (14)0.0367 (13)0.0037 (10)0.0063 (10)0.0037 (11)
C140.0325 (12)0.0421 (14)0.0452 (13)0.0073 (11)0.0074 (10)0.0029 (12)
C150.0391 (14)0.070 (2)0.0666 (18)0.0160 (14)0.0019 (13)0.0073 (16)
C160.0378 (13)0.073 (2)0.0582 (16)0.0059 (15)0.0001 (12)0.0014 (16)
C170.0382 (13)0.0567 (15)0.0389 (14)0.0024 (12)0.0059 (11)0.0019 (12)
C180.0490 (15)0.0644 (17)0.0459 (15)0.0046 (14)0.0087 (12)0.0078 (14)
C190.0474 (14)0.0678 (18)0.0556 (15)0.0138 (14)0.0148 (12)0.0053 (15)
C17A0.0412 (15)0.0629 (18)0.0527 (17)0.0044 (14)0.0049 (13)0.0013 (14)
C17B0.070 (2)0.124 (3)0.0644 (19)0.028 (2)0.0012 (15)0.027 (2)
O17A0.0442 (10)0.0721 (12)0.0418 (9)0.0114 (10)0.0045 (7)0.0088 (10)
O17B0.0516 (11)0.1011 (17)0.0758 (14)0.0238 (13)0.0125 (10)0.0063 (13)
Geometric parameters (Å, º) top
C1—C21.533 (3)C11—H11B0.9700
C1—C101.533 (3)C12—C131.529 (3)
C1—H1A0.9700C12—H12A0.9700
C1—H1B0.9700C12—H12B0.9700
C2—C31.495 (4)C13—C171.527 (3)
C2—H2A0.9700C13—C181.534 (3)
C2—H2B0.9700C13—C141.534 (3)
C3—C41.315 (3)C14—C151.536 (3)
C3—H30.9300C14—H140.9800
C4—C51.491 (3)C15—C161.545 (4)
C4—H40.9300C15—H15A0.9700
C5—C61.520 (3)C15—H15B0.9700
C5—C101.548 (3)C16—C171.536 (4)
C5—H50.9800C16—H16A0.9700
C6—C71.511 (3)C16—H16B0.9700
C6—H6A0.9700C17—O17A1.446 (3)
C6—H6B0.9700C17—H170.9800
C7—C81.524 (3)C18—H18A0.9600
C7—H7A0.9700C18—H18B0.9600
C7—H7B0.9700C18—H18C0.9600
C8—C141.521 (3)C19—H19A0.9600
C8—C91.547 (3)C19—H19B0.9600
C8—H80.9800C19—H19C0.9600
C9—C111.532 (3)C17A—O17B1.195 (3)
C9—C101.546 (3)C17A—O17A1.340 (3)
C9—H90.9800C17A—C17B1.490 (4)
C10—C191.538 (3)C17B—H17B0.9600
C11—C121.531 (3)C17B—H17C0.9600
C11—H11A0.9700C17B—H17D0.9600
C2—C1—C10113.4 (2)H11A—C11—H11B107.7
C2—C1—H1A108.9C13—C12—C11111.2 (2)
C10—C1—H1A108.9C13—C12—H12A109.4
C2—C1—H1B108.9C11—C12—H12A109.4
C10—C1—H1B108.9C13—C12—H12B109.4
H1A—C1—H1B107.7C11—C12—H12B109.4
C3—C2—C1113.2 (2)H12A—C12—H12B108.0
C3—C2—H2A108.9C17—C13—C12115.5 (2)
C1—C2—H2A108.9C17—C13—C18110.66 (18)
C3—C2—H2B108.9C12—C13—C18111.13 (19)
C1—C2—H2B108.9C17—C13—C1498.27 (17)
H2A—C2—H2B107.7C12—C13—C14107.64 (17)
C4—C3—C2122.6 (3)C18—C13—C14113.1 (2)
C4—C3—H3118.7C8—C14—C13114.43 (17)
C2—C3—H3118.7C8—C14—C15119.4 (2)
C3—C4—C5123.6 (3)C13—C14—C15103.75 (18)
C3—C4—H4118.2C8—C14—H14106.1
C5—C4—H4118.2C13—C14—H14106.1
C4—C5—C6114.0 (2)C15—C14—H14106.1
C4—C5—C10112.18 (18)C14—C15—C16103.8 (2)
C6—C5—C10112.93 (18)C14—C15—H15A111.0
C4—C5—H5105.6C16—C15—H15A111.0
C6—C5—H5105.6C14—C15—H15B111.0
C10—C5—H5105.6C16—C15—H15B111.0
C7—C6—C5110.3 (2)H15A—C15—H15B109.0
C7—C6—H6A109.6C17—C16—C15105.17 (18)
C5—C6—H6A109.6C17—C16—H16A110.7
C7—C6—H6B109.6C15—C16—H16A110.7
C5—C6—H6B109.6C17—C16—H16B110.7
H6A—C6—H6B108.1C15—C16—H16B110.7
C6—C7—C8112.61 (19)H16A—C16—H16B108.8
C6—C7—H7A109.1O17A—C17—C13111.19 (17)
C8—C7—H7A109.1O17A—C17—C16113.30 (19)
C6—C7—H7B109.1C13—C17—C16104.5 (2)
C8—C7—H7B109.1O17A—C17—H17109.2
H7A—C7—H7B107.8C13—C17—H17109.2
C14—C8—C7111.78 (18)C16—C17—H17109.2
C14—C8—C9108.42 (18)C13—C18—H18A109.5
C7—C8—C9111.75 (17)C13—C18—H18B109.5
C14—C8—H8108.3H18A—C18—H18B109.5
C7—C8—H8108.3C13—C18—H18C109.5
C9—C8—H8108.3H18A—C18—H18C109.5
C11—C9—C10114.78 (17)H18B—C18—H18C109.5
C11—C9—C8110.83 (16)C10—C19—H19A109.5
C10—C9—C8112.44 (17)C10—C19—H19B109.5
C11—C9—H9106.0H19A—C19—H19B109.5
C10—C9—H9106.0C10—C19—H19C109.5
C8—C9—H9106.0H19A—C19—H19C109.5
C1—C10—C19108.93 (19)H19B—C19—H19C109.5
C1—C10—C9111.59 (19)O17B—C17A—O17A123.3 (3)
C19—C10—C9111.01 (18)O17B—C17A—C17B125.3 (3)
C1—C10—C5105.87 (18)O17A—C17A—C17B111.4 (2)
C19—C10—C5111.4 (2)C17A—C17B—H17B109.5
C9—C10—C5107.95 (16)C17A—C17B—H17C109.5
C12—C11—C9113.60 (18)H17B—C17B—H17C109.5
C12—C11—H11A108.8C17A—C17B—H17D109.5
C9—C11—H11A108.8H17B—C17B—H17D109.5
C12—C11—H11B108.8H17C—C17B—H17D109.5
C9—C11—H11B108.8C17A—O17A—C17116.84 (19)
C10—C1—C2—C337.9 (3)C9—C11—C12—C1355.1 (3)
C1—C2—C3—C46.9 (4)C11—C12—C13—C17163.78 (18)
C2—C3—C4—C51.2 (5)C11—C12—C13—C1869.1 (2)
C3—C4—C5—C6155.6 (3)C11—C12—C13—C1455.2 (2)
C3—C4—C5—C1025.7 (4)C7—C8—C14—C13177.5 (2)
C4—C5—C6—C7172.2 (2)C9—C8—C14—C1358.9 (2)
C10—C5—C6—C758.2 (3)C7—C8—C14—C1553.7 (3)
C5—C6—C7—C854.7 (3)C9—C8—C14—C15177.28 (19)
C6—C7—C8—C14174.4 (2)C17—C13—C14—C8179.97 (19)
C6—C7—C8—C952.7 (3)C12—C13—C14—C859.9 (2)
C14—C8—C9—C1153.2 (2)C18—C13—C14—C863.3 (2)
C7—C8—C9—C11176.8 (2)C17—C13—C14—C1548.1 (2)
C14—C8—C9—C10176.82 (17)C12—C13—C14—C15168.3 (2)
C7—C8—C9—C1053.2 (2)C18—C13—C14—C1568.6 (2)
C2—C1—C10—C1960.0 (3)C8—C14—C15—C16162.0 (2)
C2—C1—C10—C9177.1 (2)C13—C14—C15—C1633.2 (2)
C2—C1—C10—C559.9 (3)C14—C15—C16—C174.6 (3)
C11—C9—C10—C161.9 (2)C12—C13—C17—O17A78.3 (3)
C8—C9—C10—C1170.18 (18)C18—C13—C17—O17A49.0 (3)
C11—C9—C10—C1959.8 (3)C14—C13—C17—O17A167.57 (19)
C8—C9—C10—C1968.1 (2)C12—C13—C17—C16159.1 (2)
C11—C9—C10—C5177.85 (19)C18—C13—C17—C1673.6 (2)
C8—C9—C10—C554.2 (2)C14—C13—C17—C1645.0 (2)
C4—C5—C10—C152.5 (3)C15—C16—C17—O17A146.8 (2)
C6—C5—C10—C1177.1 (2)C15—C16—C17—C1325.6 (3)
C4—C5—C10—C1965.8 (3)O17B—C17A—O17A—C170.1 (4)
C6—C5—C10—C1964.7 (2)C17B—C17A—O17A—C17179.8 (2)
C4—C5—C10—C9172.1 (2)C13—C17—O17A—C17A164.9 (2)
C6—C5—C10—C957.5 (2)C16—C17—O17A—C17A77.7 (3)
C10—C9—C11—C12177.70 (18)C19—C10—C13—C183.33 (19)
C8—C9—C11—C1253.6 (2)

Experimental details

Crystal data
Chemical formulaC21H32O2
Mr316.47
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)14.7728 (3), 6.2673 (1), 20.2514 (5)
β (°) 99.874 (1)
V3)1847.21 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.41 × 0.39 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.971, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
22420, 2292, 1554
Rint0.030
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.102, 1.08
No. of reflections2292
No. of parameters211
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13–32.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCepa, M. M. D. S., Tavares da Silva, E. J., Correia-da-Silva, G., Roleira, F. M. & Teixeira, N. A. A. (2005). J. Med. Chem. 48, 6379–6385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCepa, M. M. D. S., Tavares da Silva, E. J., Correia-da-Silva, G., Roleira, F. M. & Teixeira, N. A. A. (2008). Steroids, 73, 1409–1415.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). In Atlas of Steroids Structure, Vol. 1. New York: Plenum.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationPaixão, J. A., Andrade, L. C. R., Almeida, M. J. M., Tavares da Silva, E. J., Roleira, F. M., Sá e Melo, M. L. & Campos Neves, A. S. (2001). Acta Cryst. E57, o189–o191.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. Universiry of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds